

D5.2 Universal Node Interfaces and Software
Architecture

Dissemination level PU

Version 1.0 Reviewed

Due date 31.03.2014

Version date 26.08.2014

This project is co-funded

 by the European Union

ii D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Document information

Authors

Editor: INTEL

Contributors:

 BISDN - Hagen Woesner

 EHU - Jokin Garay, Jon Matias

 ETH - Gergely Pongracz, Robert Szabo

 INTEL - David Verbeiren

 OTE - George Agapiou

 POLITO – Fulvio Risso, Mario Baldi, Alex Palesandro, Ivano Cerrato

Reviewers: Balazs Sonkoly (BME), Holger Winkelmann (TP)

Coordinator

Dr. András Császár

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB

Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme

FP7-ICT-2013-11

Collaborative project

Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the information
is fit for any particular purpose. The above referenced consortium members shall have no liability for damages
of any kind including without limitation direct, special, indirect, or consequential damages that may result from
the use of these materials subject to any liability which is mandatory due to applicable law.

© 2014-2016 by UNIFY Consortium

mailto:andras.csaszar@ericsson.com

iii D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Revision and history chart

Version Date Comment

0.1 30.06.2014 Initial version based on MS5.1

0.2 14.07.2014 Updated section on flow space specification, closed most items for review

0.3 25.07.2014 Added application control interfaces considerations, some tidying up.
Version released for review.

0.4 25.08.2014 Addressed comments from reviewers.

1.0 26.08.2014 Final version

iv D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Table of contents

1 Introduction 7

2 State of the Art and Related Work 8

2.1 OpenStack 8
2.1.1 Neutron 11

2.2 Platform Virtualization 13
2.2.1 QEMU and KVM 13
2.2.2 Xen 14
2.2.3 LXC 14
2.2.4 Docker 16

2.3 Libvirt 17
2.4 Data Plane Processing on x86 18

2.4.1 Intel Data Plane Development Kit (DPDK) 19
2.4.2 netmap 21
2.4.3 Direct NIC Access (DNA) 22

2.5 Virtual Switching Solutions 24
2.5.1 Open vSwitch 24
2.5.2 Intel DPDK vSwitch 25
2.5.3 Extensible DataPath Deamon (xDPd) 26

2.6 Control Plane – Data Plane Protocols 27
2.6.1 OpenFlow 27
2.6.2 ForCES 28

2.7 Data Plane Management Protocols 28
2.7.1 OF-Config 28
2.7.2 OVSDB 29

3 UNIFY overview 30

3.1 Overall Architecture Overview 30
3.1.1 Network Function Forwarding Graph 32

3.2 Universal Node in the UNIFY Architecture 32
3.2.1 NF-FG as input to the UN 35

v D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

4 Universal Node Architecture 38

4.1 Overview 38
4.2 UN Components 41

4.2.1 Host Environment 41
4.2.2 Unified Resource Manager 41
4.2.3 VNF Execution Environment 44
4.2.4 Virtual Switching Engine 45

5 Universal Node Interfaces 46

5.1 NF-FG Management Interface 46
5.1.1 Network Function Forwarding Graphs 46
5.1.2 VNF Specification 48
5.1.3 Flow Space Specification 52
5.1.4 NF-FG Management Primitives 56

5.2 Resource Management 58
5.2.1 Resource Management Primitives 58

5.3 VNF Template and Images Repository Interface 60
5.4 Application Control Interface 63

6 Conclusion 64

List of abbreviations and acronyms 65

References 66

6 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Executive summary

This document establishes the software architecture of the Universal Node and defines its external interfaces.

An overview of existing related technologies and interfaces is first given (Section 2). It covers compute
platform virtualization solutions, the cloud computing platform OpenStack, high-performance packet
processing as well as control and management interfaces.

Next, an overview of the UNIFY project is provided with its layers and reference points and a mapping is
established with the Universal Node (UN) in order to locate it in the programmability framework being defined
in WP3. The concept of Network Function Forwarding Graph (NF-FG) is introduced and some of its aspects that
are critical for the architecture of the UN are detailed.

Based on the positioning of the UN within the UNIFY architecture, a functional view of the UN is derived. This
represents an evolution from the high-level UN architecture that was introduced in D5.1 in that the interface
with the upper orchestration layer has been updated to have the NF-FG as core element.

The proposed UN architecture is then described introducing more concrete architectural blocks and how they
interact with each other. One key element of the UN architecture is the Unified Resource Manager where
compute and networking resources are managed by a common entity, reflecting the fact that computing and
networking resources are not independent on the UN since packet switching and packet processing, even when
happening outside of Virtual Network Functions, may require dedicated compute resources. Additionally, this
common resource manager also plays the role of a local orchestrator that is responsible for optimized
assignment of the node resources to the deployed NF-FGs and their Virtual Network Functions (VNF), taking
into account platform topology aspects that can significantly affect performance of the platform and the
Network Functions.

Finally the various interfaces of the UN are described with the semantics of their primitives or concrete
interface proposals. This covers the interfaces with upper orchestration layer for deployment and
management of NF-FGs and for resource discovery and resource usage reporting. It also includes an interface
to fetch Virtual Network Function specifications and related binary images from a central repository.

With architecture in place and external interfaces defined, the UN prototyping work can progress in support of
the benchmarking and integrated prototype efforts.

7 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

1 Introduction

In D5.1, the requirements on the Universal Node data plane were detailed and an initial high-level architecture
was introduced. Since then, the work progressed within the overall UNIFY project with the overarching UNIFY
architecture being defined (WP2) and the programmability framework being articulated (WP3).

This document describes how the Universal Node fits within the UNIFY architecture, provides an updated and
more detailed architecture of the Universal Node and describes its external interfaces. It reflects the progress
of these activities corresponding to project milestone M5.1 and provides a sound basis to support the UN
prototyping activities.

It should be noted that some aspects are more detailed than others and that some topics remain open for
further investigation as noted in the conclusion section of this document.

8 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

2 State of the Art and Related Work

2.1 OpenStack
OpenStack [1] is a cloud operating system that controls large pools of compute, storage, and networking
resources throughout a datacentre. Its components can be controlled through extensive REST based APIs and
a dashboard gives administrators control while empowering their users to provision resources through a web
interface.

OpenStack’s great popularity is primarily due to the large amount of heterogeneous partners backing the
project. According to this large support, the very wide range of different competence, inherited by different
company cultures, is exploited in all different components development, resulting in a platform that pretends
to cover every aspect of a cloud platform. The extremely modular architecture allows the framework to be
scalable and flexibly adaptable in really different situations. Openstack provides components to easily handle
different resource types (storage, compute, network) available in a data-centre environment. Nevertheless, its
overall development is oriented to an extensible design, simplifying the writing of external plugins to
implement further functionalities by third-party actors. This is concretely achieved in each component design,
but also in the low involvement required to register and integrate a complete third-party component in the
pool.

Architectural Overview

Figure 2.1 - OpenStack

9 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

OpenStack consists of the following main components (see Figure 2.1):

● Compute (codenamed "Nova") provides virtual servers upon demand. Rackspace and HP provide
commercial compute services built on Nova and it is used internally at companies like Mercado Libre and
NASA (where it originated).

● Network (codenamed "Neutron") provides "network connectivity as a service" between interface devices
managed by other OpenStack services (most likely Nova). The service works by allowing users to create
their own networks and then attach interfaces to them. OpenStack Network has a pluggable architecture to
support many popular networking vendors and technologies.

● Image (codenamed "Glance") provides a catalogue and repository for virtual disk images. These disk images
are most commonly used in OpenStack Compute. While this service is technically optional, any cloud of size
will require it.

● Object Store (codenamed "Swift") provides object storage. It allows storing or retrieving files (but not mount
directories like a fileserver). Several companies provide commercial storage services based on Swift. These
include KT (formerly Korea Telecom), Rackspace (from which Swift originated) and Internap. Swift can be
used as backend storage for Glance and also to store application data.

● Dashboard (codenamed "Horizon") provides a modular web-based user interface for all the OpenStack
services. With this web GUI, most operations like launching an instance, assigning IP addresses and setting
access controls can be performed.

● Identity (codenamed "Keystone") provides authentication and authorization for all the OpenStack services.
It also provides support for other OpenStack components by offering a catalogue of services where the
various components (Glance, Nova, Swift, Keystone itself…) and their respective API endpoints are listed and
can be queried.

● Block Storage (codenamed "Cinder") provides persistent block storage to guest VMs.

● Orchestration (codenamed “Heat”) provides an orchestration service for all the OpenStack resources. It
requires as input files a list of resources (e.g. Neutron networks, Nova virtual servers) with their
relationships and parameters. As output, it will produce the correct sequence of API calls to the
corresponding platform components (e.g. Neutron, Nova, Cinder) in order to deploy the desired resources.

● Ceilometer provides an infrastructure to collect measurements from other OpenStack components. Its
primary targets are monitoring and metering, with an initial focus on customer billing purposes, but it
should be able to share the collected data with any type of client component.

10 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

The interactions between the components are depicted in the following figure:

Figure 2.2 - OpenStack components

Each of the components provides an API to access it, which can be used as a REST API with the http protocol, or
as CLI. The OpenStack APIs are documented at http://api.openstack.org.

The compute (Nova) and the networking (Neutron) components are the ones that are the most related to the
UNIFY data plane.

The Nova API calls are used e.g. to launch a VM. Such a Nova API call is shown in Figure 2.3 below with the
arrow #2. The VM itself will be started and managed directly by the Hypervisor. Various types of hypervisors
are supported, the widest function set is available when using XenServer/XCP, KVM on x86 or QEMU on x86.
The communication interface between the Nova Compute module and the Hypervisor is primarily libvirt.

http://api.openstack.org/

11 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Figure 2.3 - Internals of Nova, steps to launch a VM

Note: "Quantum" is an earlier name of "Neutron"

2.1.1 Neutron
Neutron is the OpenStack component that provides flexible and on-demand access to network resources,
establishing networking services between different devices (e.g. vNIC) created and managed by other
OpenStack services.

Neutron exports to the user three classes of network abstractions: networks, subnets and ports. Those
abstractions reflect the behaviour of their physical counterparts. At first, a network is a virtual per-tenant
layer-2 broadcast domain. If not explicitly shared, each network is accessible only by its tenant. Each network
has one or more IP addressing blocks called subnets. A subnet could have several network parameters
associated with it (e.g. gateway, DNS server). A port represents a virtual switch port to which VMs attach their
interfaces. Each port defines the MAC address and the IP address to be assigned to the VMs plugged interfaces.
When an IP address, taken from a subnet pool, is selected, it implies that the port/interface is part of the
selected subnet. When IP addresses are associated to a port, this also implies the port is associated with a
subnet, as the IP address was taken from the allocation pool for a specific subnet. Moreover, standard APIs
were extended in order to simplify user deployment, filling the conceptual gap between physical networks and

12 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

virtually defined ones. Therefore, in the extended REST API, several further abstractions are added. In
particular, L3-network router extension is used to route packets between different L2 networks.

Neutron enforces the user-defined network topology leveraging different L2 technologies (GRE, VXLAN, VLAN)
and supporting several backend L2-switch technologies (Open vSwitch, Arista, BigSwitch). Neutron L2 drivers
usually consist of a component residing on the neutron server and an agent, replicated on each compute node,
which enforces the required actions on the virtual switch present on the node. In order to provide a unified
interface to different L2 virtual switch technology, starting from OpenStack Havana release, Neutron provides
the Modular Layer 2 (ML2) component that abstracts L2 events (e.g. create/update/delete network),
standardizing the interface for third-party technologies. In the default configuration, Neutron leverages the
Open vSwitch (OVS) technology, requiring the creation of different instances in order to meet different
network requirements. ML2 mechanism drivers are normally required to define their own hooks, which will be
executed in presence of a certain event on Neutron-defined objects (network, subnet, port).

Neutron also supports connectivity to external networks, regulating access to the Internet. This can be
provided by means of a Neutron router acting as default gateway, allowing VMs on the network to reach
external hosts or, alternatively, specific VMs could be provided with a public address on the external network.
Moreover, since internal addresses are not directly accessible by the Internet and external addresses are a
scarce resource, Neutron provides the possibility to temporarily associate a “floating” IP address to specific
VMs instances, allowing the traffic to be temporarily redirected to the correct VM. This association can be done
dynamically after the VM provisioning.

Furthermore, Neutron supports per-tenant “security groups” definition in order to regulate ingress/egress
traffic with firewall-like rules. Like other Neutron abstractions, these rules are not strictly related to a
particular implementation but their instantiation will depend on the underlying plugin used. The operation of
security groups is simple: traffic matched with security group rules is allowed and, without a match, packets
are dropped. For instance, leveraging OVS plugin, iptables defined rules are used to implement security group
policies.

In summary, Neutron available APIs include the following primitives:

- Create/Update/Delete Networks

- Create/Update/Delete Subnets

- Create/Update/Set default gateway/Delete Routers

- Create/Attach/Detach/Delete ports

- Create/Set-policy/Delete Security Groups

13 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

2.2 Platform Virtualization
2.2.1 QEMU and KVM
QEMU [2] [3] is an open source virtualization solution that supports both machine emulation and hypervisor
operation. When the guest and host machines are of different processor architectures, dynamic binary
translation allows QEMU to run the guest with reasonable performance. For compatible guest and host
processors, the executable code of the guest can be directly executed on the host processor with the
hypervisor only intervening when needed for emulating the rest of the guest platform. This is implemented by
KVM, a Linux kernel module that is now developed as part of the QEMU project.

KVM takes advantage of hardware assisted virtualization features present in modern x86 processors to further
reduce the overhead incurred by running applications in such virtual machines thereby providing close to
native performance in many cases. These features attempt to reduce the frequency or the cost of the
processor control transitions from the application running in the guest to the hypervisor (“VM Exits”) that can
happen for various reasons. Here are some examples of such features found on Intel Xeon processors:

● Specific VM control structures (VMCS) with storage for processor state for virtual machines decrease
the latency of transitions.

● Extended Page Tables (EPT) remove the need for the hypervisor to maintain shadow page tables and
avoid hypervisor intervention when the guest OS modifies its page tables.

● Tagged Translation Lookaside Buffer (TLB) entries avoid having to flush the whole TLB at VM transitions.

QEMU is a full machine virtualization solution that allows running unmodified operating systems, drivers and of
course applications in the guest systems. This is in contrast with solutions referred to as para-virtualization,
where the guest operating system must be specifically adapted in some areas to interface to the hypervisor
instead of the real hardware. Para-virtualization removes the need for emulating hardware and can therefore
provide a significant performance advantage when accessing devices such as network adapters.

Various evolutions have however blurred the lines between these different approaches:

● QEMU/KVM now also uses para-virtualization when available, more recently in the form of the virtio
infrastructure in the Linux kernel.

● The presence of an IOMMU on modern platforms allows giving direct access to virtual machines to
designated devices, or portions of devices (PCI passthrough).

● Some devices also present dedicated support for being efficiently shared among multiple virtual
machines. This is the case of the PCI-SIG Single Root I/O Virtualization (SR-IOV) technology by which a

14 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

device presents multiple virtual functions (VF) to be used by virtual machines. Each VF has dedicated
resources in the device (for example queues) but eventually makes use of the shared physical function
(PF).

2.2.2 Xen
Xen [4] is an hypervisor that is originally based on the para-virtualization approach requiring modified versions
of the guest operating systems that, running de-privileged, make so-called hypercalls (calls to the hypervisor)
instead of issuing privileged instructions.

However, as discussed previously, hardware assisted virtualization features present in modern processor
architectures also make it possible to let those guest operating systems execute the privileged instructions,
once the appropriate configuration has been done by the hypervisor. Xen has of course embraced this
approach as well which allows it to run unmodified operating systems in guests (“full virtualization”).

In Xen terminology, virtual machines are called “domains” and the Xen architecture makes use of a privileged
domain, called “domain 0”, to manage the hypervisor and the devices. The hypervisor itself runs on the bare
hardware (“Type 1” hypervisor) and launches the “domain 0”. In contrast, QEMU runs on top of a host operating
system, even though the usage of the KVM kernel module in the host OS makes both architectures more
similar.

2.2.3 LXC
Linux containers (LXC) is an operating system-level virtualization technology that allows deploying and
executing lightweight virtual machines (i.e., containers) on a Linux-based host system.

OS-level virtualization is a software virtualization method where different and isolated user-space instances
run on the same kernel of the host system; with the exception of the commercial (and closed source) version
of OpenVZ1, also named Parallels Virtuozzo, OS-level virtualization technologies are integrated in the Linux
kernel. In other words, different LXC containers appear such as distinct running instances of the “same” (in
fact, some minimal differences are possible) operating system, with distinct bash shells, etc.

Linux containers are virtual environments that look like a classic virtual machine for the processes running
inside them, but they are just processes for the kernel of the host system. Containers differ from classic

virtual machines in that they do not emulate hardware and, because they share the same kernel as the host
system, they cannot run different operating systems, for example Microsoft Windows. Note that different
Linux distributions are fine as long as they share the same kernel as the host. Figure 2.4 below should clarify

1 Another OS-level virtualization technology; most of its features are now integrated in the vanilla linux kernel and so
included in LXC

15 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

the concept. Note that there is no hypervisor when using LXC: the hypervisor is the host kernel itself, with its
integrated virtualization features.

Figure 2.4 - Containers vs Hypervisors

Containers can practically achieve native execution performance because fundamentally they are based on
isolation instead of classical virtualization: there is practically no overhead while running a process inside a
container and the memory consumption is minimal (less than 1 MB); therefore containers are faster (to boot,
freeze and dispose), lighter, denser and more scalable than classic virtual machines.

With containers, it is possible to isolate different processes or groups of processes and to allocate different
resources to them without the complexity of full virtualization. Resources consist of CPU quotas, memory, I/O
bandwidth, network isolation, disk quotas and file system isolation.

LXC is a collection of vanilla Linux kernel features (cgroups, namespaces, chroots, kernel capabilities etc.) that
can be used to isolate processes in different ways and a user-space tool to use all of these features together to
create full-fledged containers.

LXC is not a monolithic system, it is possible to configure containers with only the needed features: the only
things that will be isolated are those specified in the configuration file for any container (for example it is
possible to have only PID namespace isolation or only network isolation etc.); different resources can be
assigned to different containers and different level of isolation between different containers (and the host) can
be established.

Unfortunately the isolation is not 100% effective: tests prove that if a container demands more resources than
it was assigned, it will impact other containers [5].

16 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Moreover, LXC lacks the checkpointing and other features needed for the support of live migration, so other
software tools such as CRIU [6] should to be used in order to (partially) achieve those functionalities.

Finally LXC support in OpenStack does not include all LXC features and, even more worrying, the only driver for
using LXC with OpenStack will be deprecated by the Icehouse release: the libvirt driver for LXC as of April 2014
has no future plans for development [7]. This seems to suggest that LXC may not represent a good choice if the
full support within OpenStack is a mandatory requirement.

2.2.4 Docker
Docker is an open source software that easily allows to create lightweight, portable, self-sufficient containers
from any application. It does that by deploying applications inside Linux containers.

A container comprises an application and its dependencies (for example binaries and libraries). Containers
serve to isolate processes running in user space on the host's operating system.

Using Docker, containers file systems are created using copy-on-write, which makes deployment extremely
fast, memory-cheap and disk-cheap. Changes to a container's file system can be committed into a new image
and re-used to create more containers. No templating or manual configuration is required.

With traditional Virtual Machines, each application, each copy of an application, and each slight modification of
an application requires creating an entirely new VM (to maintain all the versions). In contrast, when using
Docker, running several copies of the same application on a host does not even require copying the shared
binaries and, if the application is modified, only the differences need to be copied. This makes it very efficient
to store and run containers and it also makes updating applications easier.

Docker adds to plain Linux containers the ability to build once a container with an application inside and to run
and migrate it across different Linux systems (architecture must match), without the need to worry about
configurations and dependencies typical of each platform.

Containers can either be created manually or, if a source code repository contains a DockerFile, automatically.

Docker offers resource management and isolation the same way as Linux containers do and, on top of that, it
makes it easy to manage the versioning of applications and sharing of ready to run containers (in private or
public clouds).

Docker provides its own container support (libcontainer, built on namespaces and cgroup OS features) but also
supports other container drivers like LXC or libvirt. What Docker adds to that is the way it assembles a
filesystem for the container by combining the host filesystem together with additional layers to "emulate" the
complete environment. This is done using UnionFS (aufs = another union fs). The "emulated" environments are

17 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

isolated by the execution driver. The Docker image only contains the difference to a standard docker-exported
environment.

Until version 0.6 Docker used standard LXC for containers, then it started using its own container toolkit
named libcontainer. Version 1.0 of Docker will provide a stable core and stable API so it should be easier to
extend Docker to support other container formats (e.g. BSD Jails, Solaris Zones, OpenVZ) and other features
like Software-Defined Networking [8].

The main Docker binary supports 3 modes of operation: 1) launched as a daemon, it manages the containers on
the Linux host, 2) as a CLI client which talks to the daemon over a REST API to control container creation and
execution and 3) as a client of Docker Repositories that lets the user explore and fetch available images or
share the images she creates.

OpenStack support is actively developed by Docker Inc. and the community. The initial idea was to develop a
driver for Nova but there were disadvantages to this approach like the difficulty to expose some of the more
useful Docker functionality (for example linking containers) or the fact that some VM-specific functionalities
expected by the standard API extensions didn’t make sense in a container context.

The new approach to orchestrating Docker in OpenStack is via Heat [9]. Using the Heat plugin, users may
deploy and manage Docker containers on top of traditional OpenStack deployments, making it compatible with
existing OpenStack clouds. The Docker plugin for Heat has been accepted into OpenStack and will be in the
Icehouse release.

Despite the Heat plugin is now the official approach to support OpenStack, the Nova driver has seen continued
development [10]: it now provides compatibility with Open vSwitch and the door has been opened to
supporting other Neutron drivers.

2.3 Libvirt
Libvirt is a toolkit to interact with the virtualization capabilities of recent versions of Linux (and other OSes). As
indicated, OpenStack Compute does not provide any virtualization capabilities by itself; instead, it uses other
APIs to perform this task. These APIs are: (1) LibVirt API, (2) Xen API, (3) vSphere API, and (4) Windows
Management Interface. The LibVirt API [11] is the most common used API in OpenStack because it is easy to use
compared to other APIs and supports most of the virtualization technologies of the Linux platform. It is a
toolkit (API, daemon, and command line utilities) implemented by Red Hat to install, run, and interact with the
Linux virtualization technologies. The wide range of Linux virtualization technologies supported by libVirt
includes KVM (Kernel virtual machine), Xen, UserMode Linux, QEMU (Quick EMUlator), and LXC (Linux
Container).

The following are the advantages of the LibVirt API:

18 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

1. It allows setup of VMs (start/stop).

2. It provides efficient resource provisioning of VMs.

3. It can control VMs remotely though a secure interface.

4. It provides isolation from the frequent changes expected at the lower level of the virtualization
framework.

5. It provides modules to enumerate, monitor and use the resources available on the managed node,
including CPUs, memory, storage, networking, and NUMA partitions.

6. It provides domain specific monitoring such as the state monitoring APIs needed to implement
management policies.

There are some shortcomings of the LibVirt API such as, (1) the Libvirt API often requires a caller to know the
local path to a particular storage element, and (2) it does not support features like load balancing between
VMs. In addition, not all the virtualization technologies are supported by the libVirt API. The unsupported
technologies are Citrix Xen Server (CXP), Xen Cloud Platform (XCP), VMware ESX, and Microsoft Hyper-V.
These technologies can be supported by using a different virtualization API in the OpenStack Compute. For
example, the Xen API can support CXP and XCP, the vSphere API can support VMware ESX, and the Windows
Management Interface API can support Microsoft Hyper-V.

2.4 Data Plane Processing on x86
Applications operating on the network traffic should be carefully engineered in order to be able to operate at
line rate without any drop of the packet in transit. For instance, a packet processing application operating on a
10Gbps Ethernet network, must be able to process more than 14 Mpps of 64 bytes packets.

To achieve such high performance, current solutions for packet processing allow applications (e.g., network
functions) to perform raw packet I/O, i.e., to directly access the network interface cards (NICs) without
requiring the intervention of the operating system, which would introduce a non-negligible overhead. High
performance is also achieved through the so called “zero-copy” mechanism, which allows an application to
receive, process, and finally send a packet without any copy of the packet itself.

Other techniques used to achieve high-speed packet processing include: (i) interrupt mitigation, which limits
the number of interrupt generated (and hence the number of context switches) by sending a single interrupt
for a bucket of packets ready to be processed; (ii) data prefetching; (iii) batch processing; (iv) polling operating
mode, in which the application continuously tries to receive packets from the NIC. It is worth noting that

19 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

polling, although improving performance (especially from a latency point of view), has the side effect of using
an entire CPU core.

The remainder of this section briefly presents the three technologies that are mainly used today to implement
high performance packet processing applications on general purpose compute platforms, namely: Intel DPDK,
netmap, and pf_ring DNA.

2.4.1 Intel Data Plane Development Kit (DPDK)
Intel DPDK [12] is a framework optimized for the development of data plane applications. It provides to
programmers many functions designed to create efficient network functions on x86 platforms, particularly
with respect to those that involve high-speed packet processing. This section provides an overall description of
the DPDK features and components (shown in Figure 2.5).

Figure 2.5 - Main DPDK components

2.4.1.1 Applications execution models
DPDK supports both the run to completion and the pipeline model. The former assumes that each CPU core
executes the same application instance, so that several packets can be processed in parallel in the same way.
Instead, in the latter each CPU core is responsible of a different stage of the packet processing; hence, in this
case there may be several packets processed in parallel, each one in a different stage of the pipeline.

Furthermore, DPDK assumes that the processes being executed (e.g., network functions) operate in polling
mode, in order to be more efficient and reduce the time spent by a packet travelling in the server. This requires
each process to occupy one full core of the CPU (in fact, DPDK processes are usually pinned to a specific CPU
core for optimization reasons), hence the number of processes running concurrently is limited by the CPU
architecture and are usually on the order of a few dozens. Although this scheduling model is not mandatory,
DPDK primitives are definitely more appropriate when applications are designed in that way; for example DPDK
does not offer any interrupt-like mechanism to notify the application of the arrival of a packet on the NIC.

20 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Hence, the programmer may need to adapt (or re-implement) some of the DPDK functions to support also
processes operating in an interrupt-like fashion.

2.4.1.2 EAL, lcores, and multi-processes applications
The Environment Abstraction Layer (EAL) is one of the main components of DPDK. It is in charge of the
initialization of the resources needed by DPDK applications and provides applications with an API to use these
resources.

EAL defines the concept of logical core (lcore), which is an application instance running on a CPU core. In
particular, a DPDK process consists of the master lcore, which can create other lcores in the initialization phase
of the DPDK process, through the API offered by the EAL.

In addition, EAL supports multi-processes applications, which consist of a primary process and a number of
secondary processes. In this case, shared memories and other DPDK resources can be only initialized by the
primary process, while the secondary processes can just use pre-initialized resources. Moreover, all the
processes that are part of the same DPDK application share all the resources allocated by the primary process
through the EAL. Independent primary processes that do not share resources are also supported.

2.4.1.3 Memory management
DPDK offers two ways to manage the memory: the rte_malloc and the mempool.

The rte_malloc is a library that looks similar to the standard libc malloc. In fact, it can be used to allocate
objects (of any size) during the execution of the program, using huge pages. The rte_malloc has the following
nice features, aimed at improving the performance of applications: (i) objects are allocated aligned with the
cache line, and (ii) applications can require that an object is allocated on a particular NUMA2 socket.

The mempool, instead, is a set of pre-allocated objects; in particular, it contains a rte_ring of objects that can be
acquired/released by lcores according to their needs. It is worth noting that several lcores can share the same
mempool; in this case, to improve performance, it is possible to use a per-core cache of free objects. The
mempool presents the following nice features: (i) it is created using huge pages, in order to reduce TLB misses;
(ii) all objects within the mempool are aligned properly so that accesses to them are spread across all memory
channels; (iii) it can be allocated on a particular NUMA socket. As a final remark, in a multi-processes DPDK
application, a mempool can only be created by the primary process, through the EAL.

2 In a Non-Uniform Memory Access (NUMA) multi-processor system, the memory is divided into multiple NUMA
nodes. Processors have direct access to the local memory of the NUMA node they belong to but must go
through an interconnect in order to access memory that is local to another NUMA node. As a result, the access
time depends on the memory location relative to the processor. Optimized applications must therefore ensure
that memory is allocated on the NUMA node that runs the code for which the lower access time is the most
beneficial.

21 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

2.4.1.4 Data exchange mechanisms
lcores in the same DPDK application can exchange data among each other through the rte_ring, which is a
lockless FIFO queue that allows burst/bulk-single/multi-enqueue/dequeue operations. Each slot of the
rte_ring contains a pointer to the object to be exchanged; this way, data can be moved across lcores in a zero-
copy fashion. If the rte_ring is used to exchange network packets, each slot of the buffer points to an rte_mbuf,
which is an object in the mempool that contains a pointer to the packet, and some metadata associated with
the packet itself (e.g., its length). It is worth noting that each rte_ring used in a DPDK application must be
created, through the EAL, by the primary process.

2.4.1.5 Executing asynchronous operations
To enable the execution of callback functions asynchronously, DPDK provides some timers, which (i) can be
periodic or single, and (ii) can be loaded in one core, and executed into another. The EAL provides an interface
to add, delete and restart timers.

2.4.1.6 Accessing to the network
The Poll Mode Driver (PMD) library is the part of DPDK used by applications to access the network interface
cards (NICs) without the intermediation (and the overhead) of the operating system. In addition, this library
allows applications to exploit features offered by the Intel NIC controllers, such as RSS, FDIR, SR-IOV and VMDq.
The PMD does not generate any interrupt when packets are available in the NIC, hence the lcores that receives
packets from the network should implement a polling model.

As a final remark, packets received from the network are stored into a specific mempool, indicated during the
initialization of the application, so that all the applications sharing the mempool can potentially access the data
without incurring any copies.

2.4.2 netmap
netmap [13] is a library that provides, to packet processing applications such as network functions, fast access
to the network interface cards. Hence, unlike DPDK, it does not offer an entire framework to build applications,
but just a way to efficiently access to the packets that must be processed.

netmap uses some well-known performance-boosting techniques, such as memory-mapping the card's packet
buffers, I/O batching, and the possibility to model send/receive queues as circular buffers to match what is
implemented in the hardware. The programming model is simple (circular rings of fixed size buffers), and
applications use only standard system calls: non-blocking ioctl() to synchronize with the hardware, and
poll()-able file descriptors to wait for packet receptions or transmissions on individual queues.

It is worth noting that netmap implements a special device, /dev/netmap, which is the gateway to switch

one or more network cards to netmap mode, where the NIC's datapath is disconnected from the operating

22 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

system. The file descriptor returned by opening this device can be used to poll() one or all the queues of a

network interface.

2.4.2.1 Overall architecture
The key components in the netmap architecture are the data structures shown in Figure 2.6, which are

designed to provide: (i) reduced/amortized
per-packet overheads, (ii) efficient forwarding
between interfaces, (iii) efficient
communication between the NIC and the host
stack, and (iv) support for multi-queue
adapters and multi core systems. netmap
supports these features by associating with
each network interface three types of user-
visible objects: packet buffers, netmap rings,
and netmap_if descriptors. It is worth noting
that the objects associated to all the netmap-

enabled interfaces are placed in the same memory region, which is allocated by the kernel in a non-pageable
area, and shared by all the user processes. Thanks to this single memory region, it is possible to implement
zero-copy forwarding between interfaces.

Packet buffers have a fixed size and are shared by the NICs and user processes. Buffers for all netmap rings are
pre-allocated when the interface is put into netmap mode, so that during network I/O there is never the need
to allocate them. The metadata describing the buffer (index, data length, some flags) are stored into slots that
are part of the netmap rings described next. As evident from the figure, each buffer is referenced by a netmap
ring and by the corresponding hardware ring.

A netmap ring is a device-independent replica of the circular queue implemented by the NIC, and includes
information such as: (i) the number of slots in the ring, (ii) the current read or write position in the ring, (iii) the
offset between the ring and the beginning of the array of packet buffers, and (iv) an array, in which each entry
contains the index of the corresponding packet buffer, the length of the packet, and some flags used to request
special operations on the buffer.

Finally, a netmap_if contains read-only information describing the interface, such as the number of rings and
an array with the memory offsets between the netmap_if and each netmap ring associated with the interface.

2.4.3 Direct NIC Access (DNA)
Similar to netmap, DNA [14] is a library designed to provide to packet processing applications mainly a way to
efficiently access to the network interface cards, both to receive and transmit packets.

Figure 2.6 - Shared memory area exported by netmap

23 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

In the remainder of this section, in addition to DNA, other two technologies will be briefly presented: PF_RING,
which is the predecessor of DNA, and PF_RING ZC, which represents the evolution of DNA.

2.4.3.1 PF_RING
Briefly, PF_RING is a library that polls packets from NICs by means of Linux NAPI (NAPI is an interface to use
interrupt mitigation techniques for networking devices in the Linux kernel, intended to reduce the overhead of
packet receiving). This means that NAPI copies packets from the NIC to the PF_RING circular buffer, and then
the user space application reads packets from ring. In this scenario, there are two pollers, both the application
and NAPI and this results in CPU cycles used for this polling; the advantage, is that PF_RING can distribute
incoming packets to multiple rings (hence multiple applications) simultaneously.

2.4.3.2 DNA
DNA is a way to map NIC memory and registers to user space, so that there is no additional packet copy besides
the DMA transfer done by the NIC. This results in better performance as CPU cycles are used uniquely for
consuming packets and not for moving them off the adapter. The drawback is that only one application at a
time can open the DMA ring (note that modern NICs can have multiple RX/TX queues thus one application per
queue can be simultaneously started) or, in other words, that user space applications need to talk each other in
order to distribute packets.

As evident from Figure 2.7, to achieve better performance (in terms of throughput), in DNA the circular buffer
containing the packets coming from the NIC used in FP_RING is replaced with a memory ring allocated by the
driver, and which contains pointers to the input packets.

Figure 2.7 - Vanilla PF_RING vs PF_RING with DNA

24 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

2.4.3.3 PF_RING ZC
Recently, PF_RING ZC, a successor to DNA has been released. It implements zero-copy operations, in particular
across threads, applications and for inter-process and inter-VM (KVM) communications.

In this last case, it is possible to forward packets in a zero-copy fashion to a KVM virtual machine without using
techniques such as PCI passthrough, and to create a pipeline of applications communicating across VMs with
zero copy, as shown in Figure 2.8. In other words, this technology puts together both the primitives to get fast
(raw) access to the NIC, and the ones that allow transferring data between (userland) processes in a zero-copy
fashion.

Figure 2.8 - Zero-copy communication between VMs

2.5 Virtual Switching Solutions
As was discussed in D5.1, the Universal Node includes a virtual switching element to support the local traffic
steering. It provides switching of the packets between the physical ports of the node and the virtual ports of
the Virtual Network Functions running on the node. This section presents several existing virtual switch
implementations that can be considered as basis for the implementation of the virtual switching functionality
of the UN.

2.5.1 Open vSwitch
Open vSwitch (OVS) [15] is an open source virtual switch implementation that supports the OpenFlow protocol
(see 2.6.1) as well as various tunnelling and monitoring protocols. It provides a forwarding layer abstraction to
enable support of various software and hardware platforms. On a standard server platform running Linux, it
provides a kernel module that implements the “fast path” for already matched flows. Flows unknown to the
kernel module are deferred to the main user space switch process, ovs-vswitchd, which applies the full set of

25 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

flow rules and downloads the resulting instructions into the kernel module so further packets of the same flow
can stay in the fast path.

Quite naturally, there has been interest in bringing efficient data plane processing technologies, such as those
described in section 2.4, into OVS. One such effort is the Intel DPDK vSwitch, a fork of OVS, which is covered in a
later section.

But the latest standard OVS implementation now has experimental support for DPDK. When this is turned on,
the kernel module is not used and the whole switch runs in userspace using only the ovs-vswitchd process. In
this approach, DPDK support is integrated at the “netdev” OVS interface. This is in contrast to the DPDK
vSwitch project which provides a different implementation starting higher up in the architecture, at the “dpif
provider” interface. The “netdev” interface is simpler because it only deals with network interfaces, not with
OpenFlow switching. With such an approach, all packets however go through the main matching logic in
vswitchd which was originally not designed for the full throughput but only for packets that the underlying fast
path could not match. Improvements in the performance of this part (for example inspired by what DPDK
vSwitch does but applied to the standard ovs-vswitchd code) combined with the new DPDK based OVS netdev
implementation could bring an interesting mix of features and performance.

2.5.2 Intel DPDK vSwitch
The Intel DPDK vSwitch [16] is a fork of the Open vSwitch project that aims at bringing the performance
benefits of Intel DPDK into the OVS forwarding layer. It implements an alternative DPDK-based data path as a
separate user space process running alongside ovs-vswitchd. This project started before DPDK support was
added to the standard OVS code base.

Using DPDK, the user space data path of DPDK vSwitch is based on user IO and poll mode operation and hence
completely bypasses all kernel processing and associated overhead (interrupt and softirq processing, device
layer). OpenFlow switch processing of the packets can be applied immediately to the packets received from
the Ethernet controller. Additionally, the first packets of a new flow don’t have to cross the kernel to user
space boundary anymore since they are already in user space. These advantages are common to this approach
and the standard OVS with DPDK support mentioned earlier.

DPDK vSwitch was implemented as an alternative “dpif provider” in the OVS architecture. This is a lower
interface of the OpenFlow switch layer of OVS where all wildcard rules are exploded as exact-match entries.

As Intel DPDK vSwitch re-implements a complete data path, it can make maximum usage of advanced
optimizations enabled by DPDK (Huge Page usage, lock free and cache aligned structures, etc.) without
affecting the other parts of OVS. The downside is however that Intel DPDK vSwitch must re-implement all data
path features and, as a result, is currently not as feature rich as the standard OVS data path.

26 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

2.5.3 Extensible DataPath Deamon (xDPd)
An alternative to using Open vSwitch is xDPd [17] and the porting of the I/O subsystem to DPDK. This code has
been published, but in its current version is comparable to the “netdev” option described for OVS in the
previous chapter.

xDPd has been developed by BISDN as a user-space implementation of an OpenFlow v.1.0, v.1.2, v.1.3 [18]
datapath. It was designed to run multiple hardware platforms and therefore shows a somewhat cleaner
architecture than OVS. It has a documented internal interface, the Hardware Abstraction Layer (see Figure 2.9),
which is the API between the hardware-independent Control and Management Module (CMM) and the
hardware-dependent Platform Driver.

Figure 2.9 - xDPd general architecture

At the time of writing, the available hardware platforms are x86-gnu-linux, x86-dpdk, Cavium Octeon,
Broadcom, EazyChip, and NetFPGA10G. The availability of the source code for each of the platforms is however
subject to licenses of hardware vendors, and not all of the platform drivers could be made Open Source.

The implementation of the pipeline for different hardware platforms is eased by the availability of a set of
libraries called ROFL (Revised OpenFlow Library). ROFL contains the code for the pipeline (packet classification,
matching, actions) as well as the protocol machine for OpenFlow endpoints and management interfaces. For
this reason, ROFL is also used for the implementation of controllers.

Figure 2.10 shows the functional decomposition of the Control and Management Module of xDPd.

27 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Figure 2.10 - Control and Management Module of xDPd

One of the features of xDPd is the support for multiple Logical Switch Instances (LSI). The LSIs are created
either through a configuration file that is evaluated at startup of xDPd or dynamically through a configuration
interface.

The LSI is bound to network interfaces, and, in the case of multiple LSIs, the network interfaces have to be
exclusively assigned to one LSI. This is a simple way of slicing and a first realization of a virtualization.

2.6 Control Plane – Data Plane Protocols
In legacy “SDN-like” (centralized) networks CP-DP protocols traditionally implement function-specific
approach, e.g. GTP-C.

In a Universal Node environment where functionality is a matter of configuration this approach is not feasible:
if one wants to use a protocol describing a large variety of packet processing tasks, this protocol has to be
generic and abstract enough to describe the many existing and envisioned dataplane tasks, yet it also must
provide good-enough performance and hence should not be too abstract (e.g. a very generic protocol that
carries only user-definable TLVs3)

OpenFlow and ForCES were the two initiatives that were trying to find the sweet spot between high-enough
abstraction level and good-enough performance.

2.6.1 OpenFlow
OpenFlow [18] (OF) was originally developed by researchers at Stanford to enable easy testing on real campus
networks. It enables remote controllers to determine the path of network packets through the network of OF-
capable switches. This separation of the control from the forwarding allows for more sophisticated and
simpler-to-use traffic management than with legacy equipment. Also, OpenFlow aims to allow switches from
different suppliers to be managed remotely using a single, open protocol.

3 Type-Length-Value: the generic way of expressing parameters

28 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Historically OpenFlow (version 1.0) used a large flow table that contained essentially extended ACL entries. This
implied several limitations: e.g. when one wanted to configure non-overlapping L2 and L3 rules it ended up
with a huge rule-set containing the Descartes-product of the eventually independent rules.

In later revisions this serious limitation was removed, now one can use up to 255 tables along with groups
(common actions for many flows, or load balancing or multicast) and meters (traffic policing). This versatility
causes serious problems for hardware switch vendors, while software switches still suffer from constraints
that remained because of the hardware track: e.g. the limitation on the number of tables (255), the fixed order
of tables and groups (no group to table jump is allowed) and the loop-free pipeline (it cannot go “back” to an
already visited table). There are also several limitations on the supported packet manipulation actions, e.g.
tunnelling support is very limited.

2.6.2 ForCES
Forwarding and Control Element Separation (ForCES, RFC 3746 [19]) tried to be an even more generic solution.
It defines a standard framework and mechanism for the exchange of information between the logically
separate functionality of the control and data forwarding planes of packet processing devices. It clearly
separates control plane functionality such as routing protocols, signalling protocols, and admission control
from per-packet activities of the DP such as packet forwarding, queuing, and header editing. It describes
several basic building blocks and their control, but also allows easy extension.

Although it is well-defined in IETF and probably even better engineered than OpenFlow it lacks the momentum
that can be seen around OF. Without entering into religious debates, one reason for that might be that the level
of abstraction that ForCES provides is a bit too high for the data plane community.

2.7 Data Plane Management Protocols
2.7.1 OF-Config
The OpenFlow Management and Configuration Protocol (OF-Config) [20] is a special set of rules that defines a
mechanism for OpenFlow controllers to access and modify configuration data on an OpenFlow switch.

Although controllers use OpenFlow to define how packets are forwarded between individual sources and
destinations in the network, OF itself doesn’t provide the configuration and management functions that are
needed to allocate ports or assign IP addresses. OpenFlow configuration protocols, like OF-Config, help with
this and give network engineers an overall view of every area of the network.

While the OpenFlow protocol generally operates on a time-scale of a flow (i.e. as flows are added and deleted),
OF-Config operates on a slower time-scale. The OF-Config protocol is being developed by the Open Networking
Foundation and is based on NETCONF [21] where the datamodel and RPCs are modelled in YANG [22].

29 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

2.7.2 OVSDB
The Open vSwitch Database management protocol (OVSDB, RFC 7047 [23]) is a protocol specifically designed
to allow programmatic manipulation of the configuration of Open vSwitch. The tasks are relatively similar to
that of OF-Config.

In an Open vSwitch implementation, a database server and a switch daemon are used. The OVSDB protocol is
used in a control cluster, along with other managers and controllers, to supply configuration information to the
switch database server. Controllers use OpenFlow to identify details of the packet flows through the switch.
Each switch may receive directions from multiple managers and controllers, and each manager and controller
can direct multiple switches.

30 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

3 UNIFY overview

3.1 Overall Architecture Overview
The UNIFY overarching architecture follows a three layered model with a narrow waist at the resource
orchestration point, as depicted in Figure 3.1, which also includes the defined reference points. Additionally, a
user or Application layer is considered on the top of the three layered UNIFY architecture.

Figure 3.1 - UNIFY overarching architecture, layers and reference points

• The Service Layer (blue in Figure 3.1) owns the service logic for different kind of services which can be
found as appliances, servers, or VMs, receives Service Graphs as input and translates them to Network
Function Forwarding Graphs (NF-FG) before providing them to the Orchestration layer. This layer also
provides other services related to user registration and user profile, as well as the AAA server for
restricting access to a service to only registered users of the service, etc.

• The Orchestration Layer (red in Figure 3.1) is the core of the system; it is responsible for maintaining a
global view of the network, computing and storage resources together with infrastructure capabilities
as well as for the mapping of service requests to resources in the network. In the UNIFY view, service
request are received as network function forwarding graphs (NF-FG), which are described in the next

31 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

subsection, with their associated deployment constraints. The Orchestration Layer represents the
narrow waist in the UNIFY model because the abstractions on which it acts are restricted to compute,
storage and network resources. The architecture assumes that orchestration can take place at
multiple levels:

o High level (global and possibly regional) orchestrators: split the NF-FG into sub-graphs based
on geographical constraints (e.g. link delays) and high-level resource map. It sees the
underlying UNs or DCs as huge resource pools, the internal details are hidden on this level

o Local or hardware orchestrator: it covers a DC or a UN and does VNFs deployment based on
actual hardware knowledge, e.g. capabilities, resources. It can deal with internal networking
(e.g. backplane, inter-socket links), and can hide these details from the higher level. It is also
the last control node to select an implementation for the given VNF type based on e.g.
capability and performance constraints

Note that the orchestrator can have even more levels if the same abstraction is followed at each level,
so the NF-FG description can be used on the interface and see the underlying nodes as abstract
processing, storage and network resources.

In theory it is also possible to have one huge orchestrator only that would see all details inside DCs and
UNs, but this would probably cause scalability issues – this orchestrator would see basically individual
CPU cores

• The Infrastructure Layer (green in Figure 3.1) is the lowest layer of the overarching architecture and
encompasses all the actual resources (i.e., compute, storage and networking) providing the physical
means to actually deliver services. Besides the Universal Node, other types of resources are also
considered in the scope of the UNIFY project, such as data centres, SDN Nodes and Legacy Nodes.

From this architecture, the service Adaptation Functions, Resource Orchestration, Controller Adaptation,
Controllers and Local Resource Managers are identified as key components and their corresponding reference
points have been defined (see Figure 3.1):

● Us-Sl: between the Users (services) and the Service Layer. The customer can specify its peering points with
the UNIFY network, the requested network services and also the corresponding SLA requirements. These
requests can be specified in multiple ways (e.g. bundled service that is composed of many VNFs and
integrated SLA, service chain where the user specifies the types of VNFs, service chain with user-specified
VNF binaries – and of course also the mix of these with possibly end-to-end SLA requirements, e.g. delay,
bandwidth, “value”).

32 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

● Sl-Or and Or-Or: between the Service Layer’s Adaptation Functions and the Resource Orchestration and
also in between the different levels of orchestrators. This interface relies on Network Function Forwarding
Graphs (NF-FG) as are described in the following subsection. Using the service graph, the service layer
defines VNF types, their connections and the KPIs on both the connections and VNFs.

● Or-Ca: southbound interface of the Resource Orchestration toward an adaptation logic scoping and
interfacing with various controllers. This interface is also based on NF-FGs. The Controller Adaptation
translates the NF-FG according to the northbound interfaces of the infrastructure elements it will
distribute it to, splitting it according to the different concerns of the controllers (compute, networking)
when applicable.

● Ca-Co: Northbound interfaces of controllers. This interface is controller specific and carries control
messages towards the infrastructure (e.g. virtual machine instantiation or removal, switch control).

● Co-Rm: southbound interfaces of controllers. This is most probably some OpenFlow-like interface for
switch control and controller specific for resource control.

3.1.1 Network Function Forwarding Graph
A Network Function Forwarding Graph describes the service requested by a User of the application layer as a
graph where:

● The nodes represent the Network Functions composing the service chain and the Service Attachment
Points (SAP) where the service is provided.

● The edges represent the logical connectivity between the NFs and to the SAPs.

The NF-FG also contains, attached to each of these elements, the Key Performance Indicators for the
resources, specifying how the service has to be delivered. Example KPIs are: delay, bandwidth [bps],
transaction rate [pps], and some value parameter (of course it can be more complex than a simple number) to
express the importance of the given service.

The NF-FG is initially created by the Service layer as a translation of a Service Graph and SLAs requested by the
user. Note that the Service Graph contains essentially the same information but at a higher abstraction level.
As the NF-FG traverses the different layers, it is gradually enriched with the information required by each
layer, based on the information provided by the VNF Repository (repository or catalogue containing the NF
models and decompositions to be used by the different layers).

3.2 Universal Node in the UNIFY Architecture
In the layered model defined in UNIFY, the Universal Node implements functionalities of both the
Infrastructure layer (completely) and the Orchestration layer (partially). The northbound interface of the UN

33 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

regarding the programmability framework corresponds to the Ca-Co reference point with the following
considerations:

● The scope of the input provided by the Controller Adaptation layer to the UN is a sub-graph containing all
the elements to be deployed in the UN.

● The input format will be a NF-FG as handled in the upper layers (Or-Ca) so that no adaptation is actually
required.

So for the UN, the Controller Adaptation layer will not need to perform any adaptation but only the scoping
necessary to provide the UN with the appropriate sub-graph.

Figure 3.2 shows the UN in relation to the global architecture and reference points defined.

Figure 3.2 – UN architecture in relation to reference points

The current working approach in WP5 is a Unified Interface for all resources provided by the UN so it can
optimize the placement of the requested NF-FG in its internal resources. This vision has evolved from the one
presented in D5.1 where the interfaces were split by type of resource and the decomposition of the NF-FG in its
components was done at higher layers.

34 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Finally, regarding the integration of the UN in the overall programmability framework and the scopes of WP3
and WP5, the following decisions have been made:

1. The scope of WP5 is a single UN, any process involving more than one UN will be handled by the upper
level orchestrator (WP3).

2. The scope of the NF-FG handed to the UN is a subset of the global NF-FG containing all elements to be
deployed on that UN (also see 3.2.1):

a. If several NFs of the same NF-FG are deployed in the same UN, the input will be a single NF-FG sub-
graph with the information related to all of them (including internal links).

b. If several NFs of different NF-FGs are deployed in the same UN, the input will be separate NF-FG
sub-graphs with the information related to each of them.

3. Regarding the fulfilment of KPIs, two scenarios are possible:

a. At deployment time, the UN can detect that it is not able to fulfil the requirements and would then
reject the deployment (WP5 -> WP3). Note that this behaviour is only possible in a “resource
reservation” based scheme.

b. At runtime, multiple entities can potentially detect that the requirements are not fulfilled and that a
scale up process should be triggered. These are detailed below.

4. The scaling of the NF-FG may be triggered from different sources:

a. A NF instance may itself realize that its current capacity is being exceeded, or far exceeds the
demand. If it is capable of scaling with support from the local orchestrator (see below), then no
interaction outside of the UN is required. If it doesn’t have this capability or there aren’t enough local
resources available, the application may notify the UNIFY architecture (local orchestrator) or its
management plane, either of which would then proceed with the appropriate scaling actions.

b. If the criteria for triggering the scaling process is monitored by the UNIFY architecture or reported to
the UNIFY architecture, then, when the criteria is met, the Orchestrator can be signalled so
additional resources or instances of NFs can be deployed/removed. In this case, the definition of the
NF-FG must contain the criteria and thresholds that control the scaling process, as well as the action
to be triggered when those are met.

c. If the criteria is not monitored by (or reported to) the UNIFY architecture, then it must be monitored
through the NF management plane (external to the UNIFY architecture) that would then request a
modification of the NF-FG to include additional resources or instances of NFs.

35 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

5. The process of scaling the NF-FG is application (NF) dependant:

a. If the application supports parallel processing with multiple threads, scaling can be done inside the
application – the only thing the application needs is permission to use more resources. This can be
achieved completely transparently to any external entities.

b. If the load to the given application can be distributed without disrupting the application logic, it is
possible to use a generic load balancer and scale the application even if the process that implements
it doesn’t support parallel processing / multithreading. In this case, scaling will be managed by the
UN infrastructure (WP5).

c. If the application load cannot be distributed due to reasons related to application logic, the scaling of
such application will be managed by the upper layers (WP3).

3.2.1 NF-FG as input to the UN
The NF-FGs that are deployed on the UN only include elements that exist within the Universal Node itself. That
is, they are sub-graphs of larger NF-FGs that the upper level orchestrator generates and that implement a
complete end-to-end instantiation of a service throughout the complete network. The UN only receives the
part of the graph that the upper level orchestrator decided to deploy on the UN.

In order to allow the UN to perform internal optimizations of the deployed NF-FG, the scope of the sub-graph
must include both the elements related to the NFs to be deployed and the elements related to the traffic
steering mechanism. That is, the scoping performed on the Controller Adaptation layer for the sub-graphs to
be deployed on a UN must be done according to a domain criteria and not a functional criteria, as exemplified in
Figure 3.3.

36 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Figure 3.3 – Service graph, NF-FG graph and traffic steering

The Global End Points to which the NF must be connected are only known to the upper-level orchestrator
while the UN only knows about its Physical End Points (its network interfaces) and the virtual ports of the
deployed NF ("Logical End Points"). The NF is however part of what gets deployed on the UN. Hence the scoping
done in the Controller Adaptation for the UN must include the elements between the physical End Points,
including the NF(s), as shown by the "Universal Node" domain on the figure, whereas the connectivity between
the Global End Points and the Physical End Points must be delegated by the upper-level orchestrator to
different elements of the infrastructure (e.g. an SDN controller).

The NF-FGs to be deployed on the UN include the following key elements:

● One or more VNFs

● Links between the VNFs

● Endpoints at which traffic enters or leaves the graph

● Return address to connect the control interface ("Ctl_IF" on the figure) of the VNFs to

The VNFs that are part of the graph may be fully specified platform-specific ready to run configurations or,
more often, abstract NF types for which the UN must select, from multiple candidate implementations, the one
that is compatible with its platform and that most closely matches the requirements specified with the graph

37 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

(limits like the number of users or flows, as well as the KPIs must be taken into account). Note that this
interface approach supports creating VNFs running user (3rd party) custom code by referencing a fully
specified VNF instead of an abstract NF type.

Endpoints of the graph include flow space specifications that allow the UN to know which flows the VNFs of the
graph will be processing. This enables the UN to perform optimized placement of the VNFs with regards to
platform topology concerns (e.g. processor sockets). This is one of the main differentiator of the UNIFY UN
approach with more typical cloud deployments where placement of application threads is not as critical.

Similarly, flow space specifications are also attached to the links between VNFs in the graph so that the UN can
set up the desired traffic steering between the functions. These specifications can refer to the source VNF port
and to header fields of the packets. Most VNFs will not be concerned by what happens to the packets that they
send out after processing and will therefore usually output all traffic through a single virtual port. Other
elements of the packets can then be used to split traffic towards multiple next-in-chain VNFs. However, some
VNFs may also perform routing-type of functions, as shown in Figure 3.4. In this case, they will be configured
with multiple virtual ports supporting outgoing traffic and will select the outgoing port on a per packet basis.
Since a routing decision is already taken by the VNF itself, the flow rules specified for the traffic coming out of
those ports will typically only match on the port, even though the usage of other fields is allowed for further
splitting of the flows.

Figure 3.4 – NF-FG with a routing decision in the first NF

38 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

4 Universal Node Architecture

A high-level UN architecture was introduced in D5.1. However, this architecture has evolved, especially in terms
of the interface with the upper orchestration layer with the introduction of Network Function Forwarding
Graphs (NF-FG) at this interface. This section first provides an updated high-level overview of the UN
functional architecture, and then refines the architecture and introduces more concrete architectural blocks
and how they interact with each other.

4.1 Overview
Based on the positioning of the UN within the UNIFY architecture that was presented in section 0, a functional
view of the UN is presented in Figure 4.1.

Figure 4.1 – UN Functional View

39 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

The figure presents a few NF-FGs deployed on the node, connected to the external physical network through a
flow space management function that takes care of directing the flows as specified for the NF-FG endpoints.
All of this is managed by a local orchestration function that is responsible for the complete deployment of the
NF-FGs on the UN.

The figure also shows the three external interfaces of the UN:

● Resource management interface: This interface covers the discovery of resources exposed by the node as
well as possible updates to those resources (such an update may be the result of actions performed
through the other interfaces, or from a reconfiguration of the node) and also reporting to the upper layers
the current availability of resources due to the NF-FGs already deployed in the UN.

● NF-FG management interface: The Universal Node management interface focuses on deploying and
managing Network Function Forwarding Graphs.

● VNF Template and Images repository interface: When the UN is instructed to deploy a NF-FG, it needs to
fetch the detailed specification and the related binaries of the involved VNFs. This constitutes an outbound
interface of the UN towards a central VNF repository.

In the above functional view, the compute, storage and networking aspects are not separated as this is the
intention of handling NF-FGs as primary entities in the orchestration interactions.

40 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

When moving to an architectural view however, the different aspects have to be distinguished as individual
resources have to be managed using their own specific means. This leads to the UN high-level architecture of
Figure 4.2.

Figure 4.2 – UN Architecture Overview

The figure shows the three main functional blocks of the UN: the Unified Resource Manager (URM), the Virtual
Switching Engine (VSE) and the VNF Execution Environment (VNF EE).

The VNF Execution Environment (VNF EE) consists in one or more compute platform virtualization solutions,
including hypervisors and simpler container based approaches (Linux Containers, Docker…).

The Virtual Switching Engine (VSE) implements packet switching on the UN, managing the physical network
interfaces (NICs) and the traffic steering with and within the deployed NF-FGs.

41 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

On top of the VNF EE and the VSE, the Unified Resource Manager (URM) plays the role of a local orchestrator
that has complete and detailed view on the resources available on the node, their topology and related usage
constraints and limitations. It provides the UN interfaces and controls the VNF EE and VSE to fulfil the NF-FG
deployment and management requests.

Having the VNF EE and the VSE control as part of a single high-level resource manager component allows
taking into account the compute resources required by the VSE when configuring certain topologies or
functions.

4.2 UN Components
4.2.1 Host Environment
Typically, the systems on which the UN components execute will include an operating system providing
support for managing and accessing the system resources, spawning and controlling processes, etc. This
constitutes the UN Host Environment.

Depending on the virtualization solution chosen, the host environment may be a standard Linux operating
system, or, in the case of Xen, it may consist of a special management domain (“domain 0”).

In order to achieve high performance packet processing, using technologies such as those described in section
2.4, the host environment and its kernel will be kept out of the packets fast-path.

The host environment will support execution of the other UN components and will be used to control
placement of processes and threads on specific CPU cores.

As many tasks of the host environment as possible as well as the non-performance-critical parts of the URM
and other UN components will share a single reserved CPU core. This will avoid any interference with the
packet processing tasks (on the host or in guest VMs) which will be assigned to other cores.

4.2.2 Unified Resource Manager
The Unified Resource Manager (URM) is the main component of the UN, responsible for controlling the local
resources and interacting with the upper layers. It has three main functions:

● Resource management including discovery and control of the local resources in the VSE and VNF EE and
communication with the upper orchestration layer for notification of the available resources (both the
overall resources of the UN at start up and updates due to errors/upgrades and the instantaneous available
resources due to deployment of NF-FG). For VNFs that are capable of scaling without deployment of
additional instances, the URM will also be involved in this process. The exact interface between the VNF and
the URM and the mechanism by which the URM will be able to allocate additional resources to the running
VNF are future topics of interest to WP5.

42 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

● NF-FG management controlling the whole lifecycle of the NF-FG including deployment, operation,
monitoring and removal. The URM translates the NF-FG received as input into a set of fully specified VNFs,
including their mapping to specific CPU cores and other local resources, instructions for the VSE to connect
the “ports” of the VNFs as specified by the graph and to steer traffic into and through the graph as provided
by the flow space specification attached to the graph endpoints and links.

● Bootstrapping the node on the network after the bootstrapping of the Host environment has completed
until the UN is available for deployment of NF-FGs (establishing basic connectivity and notifying of its
presence so it can be further configured). The main steps are detailed below and its elements are shown in
Figure 4.3:

● Bootloader loads an initial URM and starts execution of the different components. It also loads the
physical ID and credentials of the node (pre-configured in the UN) to support AAA processes.

● Resource Discovery gets the information about the local resources in VSE and VNF EE through the VSE
and VNF management modules.

● Network Configuration provides the mechanism to communicate with the upper level orchestrator.

● Agent communicates with upper level orchestrator to register the UN, detailing its available resources,
retrieves an updated configuration (if required) and determines the communication channel with the
upper layer (Controller Adaptation).

● Once the UN is registered with the upper level orchestrator bootstrapping process is complete and the
Local Orchestrator is ready for the deployment of NF-FGs

43 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Figure 4.3 – Universal Node Bootstrapping Process Elements

Being in control of both the VNF EE and the VSE, the URM contains dedicated control logic for both of these
with an overarching Local Orchestrator that oversees the complete deployment of the graphs:

● The Local Orchestrator (LO) is the part of the URM that will contain most of the intelligence for performing
optimized placement of the VNF threads onto the node CPU topology, taking into account platform specific
constraints, communication costs, etc., as exposed by the VNF Management and VSE Management blocks. It
is expected that the LO will be able to largely re-use the placement algorithm that will be developed in
UNIFY for the upper level orchestrator (WP3). This should be made possible by expressing, from the VNF
and VSE Management components, the compute platform topology in terms of CPU cores connected by
communication links with specific characteristics (bandwidth, latency), similar to what is done for the
external network.

● The VNF Management portion of the URM supports multiple virtualization solutions, most likely through the
use of the Libvirt library. This module will be responsible for exposing the capabilities of the VNF EE

44 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

towards the Local Orchestrator and for all the operations related to the VNFs depending on the VNF type as
described in section 4.2.3.1.

● Similarly, the VSE Management will support multiple back-ends for different Virtual Switching Engine
implementations through the definition of a UN internal interface. This module will be responsible for
exposing the capabilities of the VSE towards the Local Orchestrator, for instructing the VSE to set up the
interconnections between the VNFs according to the deployed NF-FGs and also for the traffic steering of
the inbound and outbound flows of the NF-FGs.

Finally, the URM is also responsible for the run-time monitoring of low-level KPIs and to map those, when
possible, to the KPI goals specified for the NF FG. It will also provide the required support to allow aggregation
and manipulation of the monitoring data and to make the result available to the monitoring solutions being
created in WP4, either locally on the node or to remote systems.

4.2.3 VNF Execution Environment
The VNF EE may include multiple types of compute platform virtualization, from simple containers (LXC) to
complete hypervisors. This will be largely abstracted to the URM through the use of the Libvirt library. The
latter will be enhanced or supplemented where needed to support precise usage of the CPU cores and
assignment of virtual ports as decided by the URM and its Local Orchestrator.

4.2.3.1 Various Types of VNF
As already introduced in D5.1, we envision the need for deploying different types of VNFs on the UN. The
following are the envisioned types, of which not all will necessarily be supported by the UN prototype, classified
based on the execution environment of the VNF:

• VNF Type 1: VNF as a full virtual machine running with the support of a hypervisor. Such virtual
machine includes a separate instance of an operating system and supporting libraries, etc.

• VNF Type 2: VNF as an isolated container running on the same operating system kernel as the host.
Example: LXC, Docker. This type of VNF presents a reduced footprint but does not provide as much
implementation freedom as the type 1.

• VNF Type 3: VNF as an additional process running on the host operating system alongside the other
components of the UN such as the virtual switching engine. The only difference with the Type 2 is that
no virtualization is used and no additional process isolation is provided on top of what the base
operating system offers.

• VNF Type 4: VNF as a plugin to the Virtual Switching Engine. This VNF lives in the same process space
as the switching engine and may be loaded using a plugin mechanism or as a permanent part of the
engine.

45 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

• VNF Type 5: VNF implemented as a switch. This type only exists logically because such VNF relies on
normal operation of the switching engine but is likely to be considered as VNF for some services when
explicitly specified. An example of such VNF is an encapsulation/decapsulation function provided by
the switching engine and invoked as an explicit element of the service being implemented. This type
requires no explicit support from the UN but is listed her for completeness. It may however require
allocation of additional processing resources to the VSE.

4.2.4 Virtual Switching Engine
The VSE supports the deployment of Logical Switch Instances which are independent switching domains
providing traffic isolation. These are then used by the VSE to implement the required traffic steering and the
isolation of the NF-FGs, which effectively provides tenant isolation as well. We foresee the following main
types of LSIs:

● The Base LSI manages the physical ports and implements the traffic steering into the NF-FGs deployed on
the node.

● Then, for each deployed NF-FG, there is an underlying LSI that supports the traffic steering between the
VNFs of the graph (service chaining).

● Finally, there may be NFs that can be implemented by instantiating corresponding LSIs and using advanced
features of the VSE. For example, some firewalls could be implemented by VSE features.

It is the intention of the UNIFY project to experiment with several implementations of the VSE core which will
all plug under the VSE Management part of the Unified Resource Manager. Some of those implementations
may also support various back-ends for different specific hardware platforms (x86 with commodity NICs, x86
with accelerators…).

On x86 hardware, the implementations will be based on – or use similar techniques as – the technologies that
were presented in 2.4.

Only the Virtual Switching Engine backend can determine how much CPU and memory resources may be
required for supporting a specific configuration or specific “advanced” flow mods. The VSE will therefore
communicate with the Unified Resource Manager to allocate those resources and make sure the change is
reflected in the available resources the node exposes.

46 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

5 Universal Node Interfaces

5.1 NF-FG Management Interface
The notations used in this subsection are illustrative only in order to make the description of the content of an
NF-FG more concrete. Actual notation to be used in the UNIFY integrated prototype will have to be agreed
upon with WP3 at a later stage. The one presented here could be considered as an initial proposal.

5.1.1 Network Function Forwarding Graphs

Figure 5.1 – Example NF-FG

An example NF-FG is depicted on Figure 5.1. A possible textual notation for this NF-FG with references to VNF
abstract or concrete types and simple flow space specifications is presented below:

“flow_graph”: {
 “VNFs”: [
 {
 “id”: “firewall”,
“template”: “http://nf_repo.example.com/v1/vnf_specs/0263c411-a3f6-40e4-8e20-
52fa238346e8”,
“param_supported_by_all_implementations_matching_above_template”: 50000
 }, // template defines ports “in” and “out”
 {
 “id”: “NAT”,
“template”: “http://nf_repo.example.com/v1/vnf_specs/d520c572-8125-4f49-a14f-
06a0cc17cc2f”,
 },
 {

47 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

 “id”: “web_cache”,
 “template”: “http://nf_repo.example.com/v1/vnf_specs/bd76a775-4155-4b15-
b901-c5249031e1a3”,
 }
],
 "flow-rules": [
 {
 "id": "00000001",
 "match": {
 "port" : "eth0"
 },
 "action": {
 "type" : "output",
 "port": "firewall:in"
 }
 },
 {
 "id": "00000002",
 "priority" : "10",
 "match": {
 "port" : "firewall:out",
 "tcp_dst" : "80"
 },
 "action": {
 "type" : "output",
 "port": "web-cache:in"
 }
 },
 {
 "id": "00000003",
 "priority" : "1",
 "match": {
 "port" : "firewall:out"
 },
 "action": {
 "type" : "output",

48 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

 "port": "NAT:in"
 }
 },
 {
 "id": "00000004",
 "match": {
 "port" : "web-cache:out"
 },
 "action": {
 "type" : "output",
 “port": "NAT:in"
 }
 },
 {
 "id": "00000005",
 "match": {
 "port" : "NAT:out"
 },
 "action": {
 "type" : "output",
 "port": "eth1"
 }
 }
]
}

Subsequent modifications to the elements of the NF-FG can be achieved by referencing the specific NF-FG
instance (see NF-FG ID in subsection 5.1.4) and the named VNFs (“firewall”, “web-cache”, “NAT”) or flow rules it
contains.

5.1.2 VNF Specification
As mentioned in subsection 3.1.1, the VNF related information contained in the Network Function Forwarding
Graph is enriched as it traverses the different layers of the UNIFY architecture, starting with an abstract
definition of the application at the Service layer and ending with a fully characterized and deployable VNF
image at the UN. As there could be several VNFs matching the initial abstract definition of the application, the
available options must be gradually narrowed down until a specific VNF specification is selected.

49 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

The approach followed for detailing the VNF specification is for the upper layers to leave as much freedom as
possible to the lower layers to decide the specific implementation, only narrowing it down to exclude those not
meeting the defined constraints. Those constraints will mainly originate from the user requirements,
translated to KPIs for the components of the NF-FG, and the characteristics of the placement selected by the
Orchestrator (be it the one on the Orchestration layer or the Local Orchestrator inside the Unified Resource
Manager). This process would be iterative if there are multiple Orchestration layers and will take place again in
the UN.

In the UN, most probably all those VNF specifications still available would match the requirements, but as the
UN has a finer view of the resource details maybe it could make additional discards. In any case, for the
placement decision taken in the UN, a specific implementation will be selected in the Unified Resource Manager
from those available options. The specific criteria and algorithm for this final selection will be defined later on
the project.

Within the NF-FG, VNFs are described by a reference to the logical VNF template, or abstract VNF type, as well
as some concrete values for the template parameters. This is illustrated on Figure 5.2.

50 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

Figure 5.2 – VNF Templates with multiple concrete implementations

The VNF template has a list of template parameters that must be provided when instantiating the VNF.
Concrete implementations reference the template that they implement. Note that a concrete VNF does not
necessarily have to be an implementation of a template. It could instead be a standalone concrete VNF, in
which case it would be referenced directly by the NF-FG without the additional indirection of a template. This is
for example the case of a “user provided” VNF.

Each concrete implementation specifies the platforms that it is meant to support as well as potential limits it
imposes on the template parameter values. These limits should be checked by the orchestrator before
selecting and instantiating the Network Function.

The following elements are also part of the specification of a concrete VNF implementation:

• VNF Type (See 5.2.3.1 Various Types of VNF)

• URI of the VM or code image (as applicable to the VNF Type)

51 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

• Memory size

• Root filesystem size

• Ephemeral filesystem size

• CPU requirements – Different platforms may express this differently. For x86 platforms, the
constraints on the CPU cores topology may be specified.

o Example scheme [socket [(n cores, hyper-threaded=Y/N/NA) …] …] e.g. [[(2, HT=Y), (2,
HT=N)], [4, HT=NA]] means: on one socket 2 HT cores and two non-HT cores and, possibly on
another socket, 4 cores (HT or not).

• Ports – For each port, the following information is provided:

o Direction: In, Out or both

o Type – Defines how the VSE will exchange packets with the VNF. Not all types apply to all VNF
types and port types are largely platform specific. The following are example port types when
using Intel DPDK for the communication between the VSE and the VNF:

 KNI – Packet go through the normal IP stack in a Linux VM.

 IVSHMEM – The application running in the VM instance implementing the VNF uses
DPDK to efficiently send and receive packets.

 Additional port-types may be defined in order to support lightweight virtual machines
(e.g., LXC), appropriately modified to implement an optimized communication channel
with the virtual switch.

• Load balancing scheme – We envision that some VNFs could benefit from a platform provided load
balancing capability that distributes the incoming traffic of a VNF over its multiple packet receiving
threads. Whether an application can scale by increasing its number of threads depends on the exact
workload and the application design. Some application may also have very specific load balancing
schemes that they implement internally instead of making use of this shared platform feature.
However, for applications that can use the platform provided mechanism, the VNF specification should
indicate on which packet elements the load balancer should key (typically a 5-tuple hash but other
schemes could be offered) in order to preserve correct application logic.

Note: This assumes that the UN also supports a local VNF scaling mechanism whereby the local
orchestrator and the application cooperate to dynamically adjust the processing resources assigned to

52 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

the VNF and its number of threads as the VNF load evolves, and this without involvement from upper
level orchestration.

5.1.3 Flow Space Specification
The flow space specification attached to the endpoints and links of a NF-FG consists in match/action pairs
similar to what OpenFlow supports as was illustrated in subsection 5.1.1.

In addition to the support of OpenFlow 1.3 like rules, some extensions would make the switch module a
powerful and flexible packet processing engine. The currently envisioned extensions are described in the
following subsections.

5.1.3.1 L3 Tunneling Support (PPP, VxLAN, GRE, GTP)
In the current OF specification tunnelling support is not part of the switch, but handled by tunnel ports, that are
configured through OF-config. At first glance this seems quite generic, but this is not entirely the case: for L2
OF does have tunnelling support, which is implemented by push, pop and set primitives.

To support the above mentioned tunnels, a generic “push-pop-set bytes at offset” function could be provided.
But, due to the limited number of tunnel types, providing a set of tunnel type specific ones could be sufficient.
The following new push, pop and set primitives would be required:

PPP

● Push-PPP: Encapsulate the IP packet to a PPP frame and set PPP frame header values according to IP
payload (Flag 0x7e, Address 0xff, Control 0x3, Protocol 0x21, Padding if necessary).

● Pop-PPP: Remove PPP framing from the IP packet (header, trailer).

● Set-PPP-FCS: calculates Frame Check Sequence.

PPPoE

● Push-PPPoE: Push a new PPPoE header to the packet and set PPPoE header values according to the
PPPoE session phase (Version 0x1, Type 0x1, Code 0x0, Length based on payload). Also set the Ethernet
type to PPPoE (0x8864). The PPPoE header is always pushed after the outmost Ethernet header.

● Pop-PPPoE: Pop the PPPoE header from the packet.

● Set-PPPoE-Session-ID: Set the session ID in the PPPoE header.

VxLAN

● Push-VxLAN: Push a new VxLAN header to the packet and set the flag to 0x8. The VxLAN header
encapsulates the whole Ethernet frame (meaning that it is pushed before the outmost Ethernet frame).

● Pop-VxLAN: Pop the VxLAN header from the packet.

● Set-VxLAN-VNI: Set the VxLAN network identifier (VNI).

53 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

GTP

● Push-GTP: Push a new GTP-U header to the packet and set the header values accordingly (Version 1, PT
1, Type, Length). The GTP header is pushed before the outmost IP header.

● Pop-GTP: Pop the GTP header from the packet.

● Set-GTP-TEID: Set the GTP tunnel endpoint identifier (TEID).

GRE

● Push-GRE: Push a new GRE version 0 header to the packet and set the header values accordingly. GRE
can encapsulate L2 and L3 packets as well. The best way is probably to always push the GRE header to
the outmost existing header.

● Pop-GRE: Pop the GRE header from the packet.

● Set-GRE-key: Set the security/selector key of the session.

Note that some of the tunnels also require additional external network and transport headers (usually IP, UDP
and Ethernet). Most of these are already known at the time of the Push action, so in theory all external headers
could be inserted at the same time as the Push-<tunnel> action. But because in an “SDN-enabled” network we
probably want to use some non-legacy way of networking, it is suggested to also add generic support for L2
and L3 headers.

Selection between these could be handled by flagging whether we need the “legacy” tunnel, and in this case
push all headers to the packet in one step, while if we don’t see this flag we go for the generic method.

The appropriate actions are:

IP

● Push-IP: Push a new IP header to the packet and set the header values accordingly (Version 0x4, IHL
0x5, Total length according to payload, copy other parameters – Flags, TTL, Fragment Offset – from
internal IP header – if exists)

● Pop-IP: Pop the outmost IP header from the packet

● Set-IP-Dst: Set the destination IP address

● Set-IP-Src: Set the source IP address

● Set-IP-ToS: Set the Type of Service (QoS) field

● Set-IP-Type: Set the type of the IP packet

IPv6

● Push-IPv6: Push a new IPv6 header to the packet and sets the header values accordingly

54 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

● Pop-IPv6: Pop the outmost IPv6 header from the packet

● Set-IPv6-Dst: Set the destination IPv6 address

● Set-IPv6-Src: Set the source IPv6 address

● Set-IPv6-TC: Set the Traffic Class (QoS) field

● Set-IPv6-Next-Header: Set the type of the IPv6 packet

UDP

● Push-UDP: Push a new UDP header, sets Length, sets Checksum to zero

● Pop-UDP: Pop the outmost UDP header from the packet

● Set-UDP-SrcPort: Set the source UDP port

● Set-UDP-DstPort: Set the destination UDP port

For the Ethernet header there are already existing actions for setting its field values. For most of the use cases
that is sufficient. However for some tunnelling setups (typically L2VPN use cases) we need to push external L2
header, which is not supported by the current standard. The following actions are needed:

● Push-Ethernet: Push a new Ethernet header to the packet, sets the type field

● Pop-Ethernet: Pop the outmost Ethernet header from the packet

In this case an example legacy GTP encapsulation would look like:

1. Push-GTP

2. Set-GTP-TEID (user’s TEID on eNodeB)

3. Push-UDP

4. Set-UDP-DstPort (GTP-U well known port - 2152)

5. Push-IP

6. Set-IP-Src (GW Virtual IP address)

7. Set-IP-Dst (eNodeB address) this is updated during handover

8. Set-IP-Type (UDP)

Of course in this case if we had the “legacy-flag”, we could simplify the action set to:

1. Push-GTP (legacy) = push GTP+UDP+IP, set UDP port and IP type

2. Set-GTP-TEID (user’s TEID on eNodeB)

3. Set-IP-Src (GW Virtual IP address)

55 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

4. Set-IP-Dst (eNodeB address) this is updated during handover

5.1.3.2 Consistent Load Balancing Support
Current OF contains a special Group Table for load balancing support which is called “select” group. This group
type executes one bucket in the group, based on a switch-computed selection algorithm (e.g. hash on some
user-configured tuple or simple round robin). The actions in the buckets are typically output actions to the
destination host or process.

Although the standard doesn’t specify the algorithm that is used to select the destination bucket, most
implementations use simple round robin mechanism. This is inadequate for most network functions where it is
required that packets from the same IP flow follow the same path in the system (consistent load balancing).
Implementing consistent load balancer functionality is currently only possible by involving the controller and
installing table rules for each L4 flow. This solution has serious scalability problem. Implementing a simple hash
+ modulo based load balancer as a group seems to be feasible and could solve most of the issues with the
current solution.

This is possible according to the current standard. The only missing element is a parameter for the group-mod
command where the controller could specify the key that is used by the hash function. We recommend using
the already specified ofp_group_mod structure by using 8 bits that is currently defined for padding. This way
the structure would look like the following:

/* Group setup and teardown (controller -> datapath). */
struct ofp_group_mod {

struct ofp_header header;
uint16_t command; /* One of OFPGC_*. */
uint8_t type; /* One of OFPGT_*. */
uint8_t key; /* a bitmask instead of pad */
uint32_t group_id; /* Group identifier. */
struct ofp_bucket buckets[0];

};

The key would flag the different header values as described in the following enum:

enum ofp_group_type {
OFPGK_MPLS_VPN = 0x01, /* use the MPLS VPN label */
OFPGK_ETH_ADDR = 0x02, /* use the src and dst MAC */
OFPGK_L3_TUN ID = 0x04, /* use the outmost tunnel ID */
OFPGK_EXT_IP = 0x08, /* use the outmost src and dst IP */
OFPGK_INT_IP = 0x10, /* use the inner src and dst IP */
OFPGK_5_TUPLE, = 0x20, /* use the inner 5 tuple (default) */
OFPGK_META = 0x80, /* use the OF metadata */

};

56 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

This would allow us to define the behaviour of the selection algorithm in a flexible way. The last value would
allow total flexibility, since there the hash function would use the metadata that is calculated by the switch
during the different lookups. Of course this has additional performance costs, so we would not advise to make
this mandatory.

The OFPGK_TUN_ID would use the outmost tunnel’s ID that depends on the tunnelling technology. We suggest
defining it this way as it is not very usual to use more than one L3 tunnel header on one packet. If this is the
case the outmost tunnel header’s ID is used. The following IDs must be used if the given tunnel header is
present:

● PPPoE: Session ID

● VxLAN: VxLAN VNI

● GTP: GTP TEID

● GRE: GRE key

5.1.4 NF-FG Management Primitives
The UN provides the following primitives to deploy and manage NF FGs:

5.1.4.1 Deploy NF-FG
The request carries the following parameters:

[in] Graph ID Identifies the NF-FG instance. This is assigned by the caller (upper
orchestrator). The UN must maintain internal mapping.

[in] Graph Data Actual NF-FG as described in 0.

The response indicates the outcome of the deployment. It should be noted that the UN may consider that it
doesn’t have the required resources to deploy the graph.

[out] Graph ID Identifies the NF-FG instance.

[out] Result Code SUCCESS
FAILURE_NO_RESOURCE
FAILURE_NO_COMPATIBLE_IMPLEMENTATION
FAILURE_IMAGE_NOT_FOUND
…

57 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

5.1.4.2 Modify NF-FG
This primitive takes the exact same parameters and has the same response as the Deploy NF-FG primitive. The
only difference is that the specified Graph ID must correspond to an already deployed NF-FG.

The modification may fail, for example if not enough resources are available.

5.1.4.3 Delete NF-FG

[in] Graph ID Identifies the NF-FG instance to destroy.

5.1.4.4 Get NF-FG List

[out] Graph IDs List List containing the Graph IDs of the NF-FGs deployed on the node.

5.1.4.5 Get NF-FG Data
By providing a graph identifier it is possible to retrieve the description of the graph.

[in] Graph ID Identifies the NF-FG instance whose description is to be retrieved.

[out] Graph Data Actual NF-FG as described in earlier section 5.1.1.

58 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

5.2 Resource Management
This interface covers the discovery of resources exposed by the node as well as possible updates to those
resources. Such an update may be the result of actions performed through the other interfaces, or from a
reconfiguration of the node. It also covers the periodic notification of the available resources due to
deployment / undeployment of NF-FGs.

Finding the right level of abstraction for this interface will be one of the upcoming research areas in the UNIFY
project. The goal is to avoid exposing too many low-level hardware details while still allowing the upper level
orchestrator to make educated choices when placing functions on nodes. This will result in cases where
expected capacity will not be met and the orchestrator will have to take corrective actions like deploying
additional instances of the function on other nodes, possibly introducing a load-balancer if needed, or simply
raising the amount of resources allocated to the function on the node.

5.2.1 Resource Management Primitives
The interface supports the following primitives:

5.2.1.1 Get Node Info and Capabilities

[out] Total processing
capacity

An abstract representation of the total processing capacity of the system
taking into account the number of CPU cores, their frequencies, possibly their
feature set, etc.

This may mean that some sort of calibration for each type of system may be
needed but this type of abstraction is required so that the upper orchestrator
does not get exposed to details it wouldn’t know how to map to application
requirements.

[out] Total memory Total memory in MB

[out] Local disk capacity

[out] CPU Info • Architecture, model, vendor

• Number of sockets, cores and topology

• CPU features

[out] Platform Tag A tag that identifies the type of platform (different UN classes for CPE,
network edge, etc.) and that can be used e.g. to filter out VNF implementations
that don’t support the platform.

[out] Ports List List of physical ports present on the node with their type or other relevant

59 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

properties.

[out] Flow space
specification
capabilities

Similar to OpenFlow capabilities but applies to the features that can be used
when specifying the flow spaces within NF-FG.

[out] Supported VNF Types Identifies which VNF Types are supported on the node. See 4.2.3.1 for an
overview of the types.

Where relevant, this information may include additional details like the
supported hypervisors, VM container formats, etc.

5.2.1.2 Get Available Resources

[out] Available Processing
Capacity

Remaining processing capacity (see 5.2.1.1) taking into account VNFs already
running on the node and current VSE configuration.

[out] Available Memory In MB

[out] Available Local disk
capacity

[out] Available capacity on
ports

Indication of remaining capacity on each physical port, as required by the
upper level orchestrator to perform the orchestration task.

60 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

5.3 VNF Template and Images Repository Interface
When the UN is instructed to deploy a NF-FG, it needs to fetch the detailed specification and the related
binaries of the involved VNFs. This constitutes an outbound interface of the UN towards a central VNF
repository.

This interface supports at least the following operations:

• Retrieve the list of possible VNF specifications for a given NF abstract type or template as provided by
the upper level orchestrator in the input NF-FG. This is likely in the form of a generic list operation
with a filter on the “NF Abstract Type” attribute. The returned list contains an identifier for each VNF
specification.

• Fetch a VNF specification given its identifier.

• Fetch a binary (e.g. a Virtual Machine image) that is referenced in a VNF specification.

This interface should provide APIs that allow a loose coupling between client and server, allowing retrieving,
uploading and deleting images through simple API calls. An interesting approach is represented by an “Object
Storage” component, where NF specifications and related images could be accessed through URIs and the
proper set of REST API, leveraging the HTTP protocol and JSON format. Moreover, this APIs should be easily
usable by the UN for retrieval of VNF data and by UNIFY management components to populate and manage
the VNF repository. A candidate for such a management component is Glance, the OpenStack image manager.
However it only knows about VM images and would need to be complemented or extended to cover the full
scope of VNF repository management tasks.

In order to match different types of Glance APIs and to have the handiness of an object-like storage, OpenStack
proposes its own object storage component, Swift. This component is supported by Glance as backend engine,
but it also exposes RESTful APIs that can be directly accessed by the Unified Resource Manager, without any
indirection. Furthermore, Swift is designed to be horizontally scalable with no-single point of failure.

Swift exposes its resources through a simple and easily discoverable URI scheme
(http://docs.openstack.org/api/openstack-object-storage/1.0/content/). For instance, a VNF image URI could
be built as https://nf_repo.domain.com/v1/<vnf_guid>/images/<image_guid>/ where nf_repo.domain.com is
the URL of the repository, v1 refers to the API version, <vnf_guid> uniquely identifies the VNF unique ID (in
existing Swift implementation, this URI component however maps to the “account” in the storage), “images” is
a container that regroups different images for the VNF and <image_guid> uniquely identifies the specific image.

It is worth mentioning that OpenStack Swift supports the creation of additional objects that can be associated
with the VNF, which enables to store also additional information such as VNF properties. For instance, this
could support parameters such as the abstract VNF type, the VM image type (e.g., Xen, KVM), or additional

61 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

properties such as the ones needed to instantiate a lightweight virtual machine (e.g., Linux containers or
Docker). Finally, the object model supported in Swift does not force programmers to define, a-priori, the list of
properties that have to be associated to the VNF; any free-form object can be stored and retrieved later, hence
offering the flexibility to add/modify the list of needed objects at any time.

It should also be noted that the VNF repository used by the UN is assumed to be shared with the upper level
orchestrator(s) within the UNIFY architecture, even if it is clear that the data required by both may only
partially overlap. As a result, the interface described here should be seen as an initial proposal that may require
extensions or adaptations to serve the needs of the upper level orchestrator as developed in WP3.

The following paragraphs illustrate the operation of a RESTful API that supports a superset of the operations
required over the interface and mentioned at the beginning of this subsection.

To retrieve the list of possible VNF specifications for a given abstract NF type, the UN issues a GET request to

http://nf-repo.domain.com/v1/vnf_specs/
?nf_abstract_type=<abstract_nf_uuid_from_nffg>

Additional filtering in the query parameters could specify the target platform that the VNF must support. The
UN would set the platform filter based on its own configured Platform Tag. This allows differentiating between
NF specifications for UN and for legacy or fixed function devices but also between Universal Nodes of different
classes, e.g. UNs that are destined as Customer Premise Equipment from those to be deployed in mini
datacentres in the network which would typically have more resources.

In response to the GET request, the repository instance responds with a JSON-encoded list:

{"vnf_specs": [
 {"status": "active",
 "name": "Firewall XYZ for UN_CPE",
 "platforms": ["UN_CPE"],
 "uri": "http://nf_repo.example.com/v1/vnf_specs/8a7e417c-a55f-cd38-386d-
f87a36b200de",
 ...},
 ...]}

The UN then selects and fetches a specific VNF specification from the list by issuing a GET request for the URI
as indicated in the ‘uri’ field in the previously retrieved list:

http://nf_repo.example.com/v1/vnf_specs/8a7e417c-a55f-cd38-386d-
f87a36b200de

62 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

The content of a VNF specification was described in 5.1.2. When it references a Virtual Machine image, the VNF
specification provides the URI at which the image can be fetched and from which additional meta-data can be
retrieved (its size, date of creation, etc.). Example image URI:

http://glance.example.com/v1/images/71c675ab-d94f-49cd-a114-e12490b328d9

Image metadata is retrieved by issuing a HEAD request for this URI whereas the full image is fetched by issuing
a GET request for the same URI.

63 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

5.4 Application Control Interface
Once deployed, NFs need to be configured and parameterized at run time. Consequently, there needs to be a
control interface to the individual NFs, and this interface is inherently specific to the service provided.

Strictly speaking, this is not a UN interface but rather a NF interface and hence could equally apply to NFs
deployed on other infrastructure than UNs. There may however be UN specific aspects to the concretization of
such a control interface.

One may define a transport protocol between the NF and a Control Application that is essentially another NF in
the NF-FG, but one that plays a different role in the workflow of NF-FG deployment. This transport protocol
will be agnostic to the service it controls and may simply be TCP/IP.

Figure 5.3 - Hierarchical rollout of CtlApps

Figure 5.3 shows a hierarchical rollout of CtlApps (blue trapezoid structures) where the lowest level CtlApps
maintain the Application Control Interface (in red) to the VNFs inside the Universal Nodes.

A separation between the Orchestrator that embeds NF-FGs based on topological and resource information
and the CtlApp that ‘knows’ about service specific parameters allows a service-agnostic orchestrator that does
not have to be re-programmed for every new service.

1

2

3 4

5

6

UN1
UN1 UN2

RO

RO

RO

A

B

C

DE

F

f_1(A)

f_UN1(f_1(A))

A

64 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

6 Conclusion

Based on the requirements for the Universal Node data plane that were detailed in D5.1, an architecture and
external interfaces of the UN have been proposed. Based on these interfaces, WP3 can implement the
orchestration functions that are of interest to their research. The definition of the architecture puts WP5 in a
position to start implementing prototypes, or testing existing solutions, for the various components that have
been defined.

Some aspects will however require further attention as the work of the different work packages progresses:

• Resource usage reporting and the corresponding abstractions is a topic that requires further study.
This document makes it clear which resources need to be reported and through which interface this
reporting happens but, for some type of resources (networking), does not provide the specific
abstractions that can be used to allow the upper level orchestrator to perform its placement tasks
without exposing it to too many details or to measurements it wouldn’t know how to interpret. This
future work will also depend on the approach WP3 takes for representing similar resources in other
infrastructure elements than Universal Nodes.

• Details of how control interfaces of the VNFs are returned or set up between VNFs was only briefly
eschewed (see section 5.4) and requires additional investigations which will need to be coordinated
with WP3 as these topics are possibly also relevant to the orchestration of VNFs in data centres. The
concrete realization of these control interfaces, specifically on UNs, will also need to be further
detailed. This will be covered in the future deliverable D5.3.

• Monitoring requirements (WP4) haven’t really been addressed in any detail yet. This is mostly related
to the fact that the work so far has focused on the fundamental elements of the UN platform and that
we do not foresee particular problems in adding monitoring aspects to the external interfaces of the
UN and its internal architecture. Performance implications will of course have to be evaluated during
the prototyping phase.

• Sharing of VNFs between multiple NF-FGs for VNFs that support multiple independent “control”
interfaces per VNF instance (multi-tenant capable applications) has not been addressed yet. It should
however be fairly straightforward to extend the proposed NF-FG description to allow reference to
VNFs already deployed as part of another graph.

65 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

List of abbreviations and acronyms

Abbreviation Meaning

API Application Programming Interface

CP Control Plane

DP Data Plane

GRE Generic Routing Encapsulation

GTP GPRS Tunneling Protocol

KPI Key Performance Indicator

LSI Logical Switch Instance

LXC LinuX Containers

NF Network Function

NF-FG Network Function Forwarding graph

NIC Network Interface Card (often refers to a physical network port regardless of its presence on a card)

NUMA Non-Uniform Memory Access

OF OpenFlow

OVS Open vSwitch

PPP Point to Point Protocol

REST Representational State Transfer

SAP Service Attachment Point

UN Universal Node

URI Uniform Resource Identifier

URL Uniform Resource Locator

URM Unified Resource Manager

VM Virtual Machine

VNF Virtual Network Function

VNF EE VNF Execution Environment

VSE Virtual Switching Engine

VLAN Virtual LAN

VXLAN Virtual Extensible LAN

66 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

References

[1] "OpenStack," [Online]. Available: https://www.openstack.org/. [Accessed 13 February 2014].

[2] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings of USENIX Annual Technical
Conference, Jun. 2005.

[3] [Online]. Available: http://www.qemu.org/. [Accessed 30 April 2014].

[4] [Online]. Available: http://www.xenproject.org/. [Accessed 30 April 2014].

[5] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C. Ferreto, T. Lange and C. A. F. De Rose, “Performance Evaluation of
Container-based Virtualization for High Performance Computing Environments,” Pontifical Catholic
University of Rio Grande.

[6] [Online]. Available: http://criu.org. [Accessed 5 May 2014].

[7] [Online]. Available: https://wiki.openstack.org/wiki/HypervisorSupportMatrix. [Accessed 5 May 2014].

[8] [Online]. Available: http://blog.docker.io/2013/08/getting-to-docker-1-0/. [Accessed 20 May 2014].

[9] [Online]. Available: http://blog.docker.io/2014/03/docker-will-be-in-openstack-icehouse/. [Accessed 20
May 2014].

[10] [Online]. Available: http://blog.docker.io/2014/04/openstack-update-icehouse-release-update.
[Accessed 20 May 2014].

[11] “libvirt - The virtualization API,” [Online]. Available: http://libvirt.org. [Accessed 24 06 2014].

[12] [Online]. Available: http://git.openvswitch.org/cgi-
bin/gitweb.cgi?p=openvswitch;a=blob;f=INSTALL.DPDK;hb=HEAD. [Accessed 20 May 2014].

[13] L. Rizzo, “netmap - the fast packet I/O framework,” [Online]. Available:
http://info.iet.unipi.it/~luigi/netmap/. [Accessed 26 June 2014].

[14] “PF_RING DNA - Direct NIC Access,” [Online]. Available: http://www.ntop.org/products/pf_ring/dna/.
[Accessed 25 June 2014].

[15] "Open vSwitch," [Online]. Available: http://openvswitch.org/. [Accessed 22 April 2014].

67 D5.2 Universal Node Interfaces and Software Architecture 26.08.2014 version 1.0
This is a draft version of Deliverable D5.2. It is subject to pending approval by the European Commission.

[16] “Intel® DPDK vSwitch,” [Online]. Available: https://github.com/01org/dpdk-ovs. [Accessed 22 April 2014].

[17] BISDN, "The eXtensible DataPath Daemon (xDPd)," [Online]. Available: http://www.xdpd.org/. [Accessed
23 May 2014].

[18] Open Networking Foundation, "OpenFlow Switch Specification v1.3.3," 13 September 2013. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.3.3.pdf. [Accessed 10 February 2014].

[19] “RFC 3746,” [Online]. Available: http://tools.ietf.org/html/rfc3746. [Accessed 25 June 2014].

[20] Open Networking Foundation, “OpenFlow Configuration and Management Protocol OF-CONFIG 1.0,”
[Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-
specifications/openflow-config/of-config1dot0-final.pdf. [Accessed 20 May 2014].

[21] “ RFC 6241,” [Online]. Available: http://tools.ietf.org/html/rfc6241. [Accessed 25 August 2014].

[22] “RFC 6020,” [Online]. Available: http://tools.ietf.org/html/rfc6020. [Accessed 25 August 2014].

[23] “RFC7047,” [Online]. Available: http://tools.ietf.org/html/rfc7047. [Accessed 25 August 2014].

[24] "Open vSwitch," [Online]. Available: http://openvswitch.org/. [Accessed 13 February 2014].

	1 Introduction
	2 State of the Art and Related Work
	2.1 OpenStack
	2.1.1 Neutron

	2.2 Platform Virtualization
	2.2.1 QEMU and KVM
	2.2.2 Xen
	2.2.3 LXC
	2.2.4 Docker

	2.3 Libvirt
	2.4 Data Plane Processing on x86
	2.4.1 Intel Data Plane Development Kit (DPDK)
	2.4.1.1 Applications execution models
	2.4.1.2 EAL, lcores, and multi-processes applications
	2.4.1.3 Memory management
	2.4.1.4 Data exchange mechanisms
	2.4.1.5 Executing asynchronous operations
	2.4.1.6 Accessing to the network

	2.4.2 netmap
	2.4.2.1 Overall architecture

	2.4.3 Direct NIC Access (DNA)
	2.4.3.1 PF_RING
	2.4.3.2 DNA
	2.4.3.3 PF_RING ZC

	2.5 Virtual Switching Solutions
	2.5.1 Open vSwitch
	2.5.2 Intel DPDK vSwitch
	2.5.3 Extensible DataPath Deamon (xDPd)

	2.6 Control Plane – Data Plane Protocols
	2.6.1 OpenFlow
	2.6.2 ForCES

	2.7 Data Plane Management Protocols
	2.7.1 OF-Config
	2.7.2 OVSDB

	3 UNIFY overview
	3.1 Overall Architecture Overview
	3.1.1 Network Function Forwarding Graph

	3.2 Universal Node in the UNIFY Architecture
	3.2.1 NF-FG as input to the UN

	4 Universal Node Architecture
	4.1 Overview
	4.2 UN Components
	4.2.1 Host Environment
	4.2.2 Unified Resource Manager
	4.2.3 VNF Execution Environment
	4.2.3.1 Various Types of VNF

	4.2.4 Virtual Switching Engine

	5 Universal Node Interfaces
	5.1 NF-FG Management Interface
	5.1.1 Network Function Forwarding Graphs
	5.1.2 VNF Specification
	5.1.3 Flow Space Specification
	5.1.3.1 L3 Tunneling Support (PPP, VxLAN, GRE, GTP)
	5.1.3.2 Consistent Load Balancing Support

	5.1.4 NF-FG Management Primitives
	5.1.4.1 Deploy NF-FG
	5.1.4.2 Modify NF-FG
	5.1.4.3 Delete NF-FG
	5.1.4.4 Get NF-FG List
	5.1.4.5 Get NF-FG Data

	5.2 Resource Management
	5.2.1 Resource Management Primitives
	5.2.1.1 Get Node Info and Capabilities
	5.2.1.2 Get Available Resources

	5.3 VNF Template and Images Repository Interface
	5.4 Application Control Interface

	6 Conclusion
	List of abbreviations and acronyms
	References

