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Abstract 

This document reports on the results of the SP-DevOps related activities in the UNIFY project. In particular, it has a 
first focus on the final definition and assessment of the SP-DevOps concept. The SP-DevOps concept is realized by a 
combination of various functional components facilitating integrated service verification, efficient and 
programmable observability, and automated troubleshooting. Our assessment shows that SP-DevOps can help 
providers to reach a medium level of DevOps maturity (level 3 on a scale from 1-5) and a reduction in OPEX with 
respect to time investments by 32%-77% by applying our technical SP-DevOps solutions. Secondly, this document 
focuses on the evaluation of the proposed SP-DevOps tools. The set of tools proposed supports operators and 
developers across all stages, with a focus on the deployment, operation and debugging/troubleshooting phases.  
Another focus of this document is on automation of operation tasks, showing how the individual SP-DevOps tools 
and functions can activate automated processes and workflows for verification, observability and troubleshooting in 
software defined environments like NFV. Finally, concrete use cases are presented in order to showcase selected 
processes, which lead to prototyped demonstrators allowing a final evaluation of SP-DevOps in close-to-real 
scenarios. 

 

Reading guide for this report:  

After the introduction and motivation of the SP-DevOps work in Section 1, readers which would like to learn more 
about the scope and previous results of UNIFY as a whole should continue with Section 2. However, readers with a 
main interest in the general ideas behind SP-DevOps are referred directly to Section 3, which gives a high-level 
overview of how and where in an NFV architecture SP-DevOps might solve specific problems and bring benefits in 
terms of OPEX savings. In particular, Section 3.2 acts as an index to Section 4 and points to the detailed descriptions 
and evaluation results for individual SP-DevOps tools in case they are of specific interest for the reader. In other 
words, Section 4 can be omitted by readers with only a general interest in the SP-DevOps concept as a whole. 
Section 5 puts the individual tools into a more concrete context by defining management processes serving 
different purposes, scopes and roles, while Section 6 describes the subset of SP-DevOps processes that have 
actually been implemented together with UNIFY use-cases. Theses sections are of relevance for readers who want 
to get a more concrete understanding of the SP-DevOps processes after the summarized concept in Section 3. 
Finally, the concluding section provides a summary together with the main highlights and lessons learned. To sum 
up, the core of this document consists of Section 1, 3 and 7. The large Section 4 acts as a catalog of the developed 
SP-DevOps tools, as indexed by Section 3.2. Section 5 and 6 are relevant for practitioners who would like to learn the 
details about the definitions and implementation of SP-DevOps processes SP-DevOps workflows and processes 
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1 Introduction 

The current growing interest for SDN and NFV paradigms (actually re-proposing well-known principles as 
decoupling software from hardware and virtualization) is likely motivated by the novelty of the overall techno-
economic context, which is making these paradigms really exploitable and sustainable with the required level of 
performance. In fact, in the last two decades we have witnessed a number of drivers, maturing and converging: for 
example, the impressive diffusion of fixed and mobile ultra-broadband, the increasing performance of chipsets and 
IT/hardware architectures, the ever-growing availability of open source software, the availability of more and more 
powerful terminals and the overall costs reductions (determined also by a shift in how IT services are provided). 

It is argued that thanks to these drivers and due to the emerging techno-economic context, SDN and NFV will soon 
impact not only current telecommunications networks (in all the segments, core, distribution, access) but also 
service and application platforms [1] [2] [3] [4]. In fact, SDN and NFV, together with Cloud, Edge and Fog Computing, 
can be seen as facets of a broad innovation wave (called Softwarization) accelerating the on-going migration of 
“intelligence” towards the Users Equipment (UE). 

 

Figure 1 Softwarization as a systemic trend in Telecommunications and ICT. 

Softwarization will be a radical change of paradigm [5]. Current telecommunications infrastructures have been 
exploited with purpose-built equipment designed for specific functions. In the future, network functions and 
services will be virtualized software processes executed on distributed horizontal platforms mainly made of 
standard hardware resources.   

Softwarization of Telecoms will accelerate the substantial convergence process towards infrastructures supporting 
a wide variety of virtualized network and service functions. This is likely to bring to a split between Operators owning 
and operating the converged infrastructure and the Service Providers. Retailing of traditional telecoms services is 
going disappear, becoming said services packaged with other ones (e.g., voice with Internet access, premium TV). 
Telecoms retailing is likely to join with OTT, while there will be the merging between the wholesale Telecoms 
Providers and Data Centre hosting. 

Control, Orchestration, Management and Policy (COMP) will require solutions based on agile approaches such as 
DevOps allowing to deal with a sheer number of software processes, rather than closed pieces of equipment. In this 
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sense it is strategically important to extend the COMP capabilities across domains (e.g., access and distribution 
networks), both fixed and mobile. In view of this transformation, industries will have to reshape themselves and turn 
into ecosystems that rely on large horizontal platforms. A growing number of these industries will as a consequence 
seek to adopt “agile” operation approaches inspired by DevOps principles, capable of hosting a wide variety of modes 
of production by involving start-ups, social enterprises and communities in creating user-generated content.  

In UNIFY, we took a first step towards agile operations of network services and infrastructure with the development 
of the SP-DevOps concept. The SP-DevOps concept collectively refers to a set of technical components and 
automated workflow definitions in support of integrated and automated operations tasks. The final results 
documented in this report are a natural continuation of the guidelines described in our intermediate deliverable D4.2 
[6]. In this final report, we have given particular focus to the enrichment of specific monitoring, troubleshooting, and 
verification processes, with emphasis on automation. Automation is in fact a must for a proper realization of DevOps, 
as functions and tools should be able to operate without or limited human intervention, clearly for the sake of 
feasibility and scalability. These processes are strictly related to the programmability opportunities and the 
orchestration procedures described in D3.3 [7]. 

The main purpose of this document is to report on the final SP-DevOps concept and the resulting SP-DevOps tools. 
We put specific focus on automation, showing how tools and functions can activate automated processes for 
monitoring, verification, and troubleshooting in software defined infrastructures, exposed to both Developer and 
Operator roles. In order to do that, we define activity workflows showing the specific interactions between the 
available functions and/or the proper modules in charge of handling the provided data. SP-DevOps processes cover 
verification of service graph functionality integrated with the orchestration, software-defined monitoring 
approaches providing key quality indicators with minimal overhead, and developer-friendly troubleshooting through 
an automated debugging processes. We also highlight the benefits of the SP-DevOps concept in terms of 
operational time and cost savings, and sketch possible actions for a gradual exploitation plan. 

Another main target of the document is to report on the final experimental activities. In particular, we cover recent 
developments, the integration work, and final evaluation results of the SP-DevOps concept and its implementing 
tools, also considering the final realization of the public SP-DevOps toolkit. The document also introduces some use 
cases to show real SP-DevOps operation. These are used as final demonstrations of the main SP-DevOps processes 
to further prove the validity and the effectiveness of both the concept and its realization in UNIFY. 

The document is organized as follows. Section 2 describes the relevant developments in other UNIFY workpackages. 
Section 3 presents the SP-DevOps concept in its final form, considering its functional components and highlighting 
its benefits and some possible actions for a gradual exploitation plan. Section 4 contains details about each individual 
SP-DevOps tool and function. This includes a summary of the research problems and resulting concepts behind the 
tools, as well as the final evaluation results. Section 5 covers the final definition and description of SP-DevOps 
processes, highlighting how the individual SP-DevOps tools can be combined to create automated processes with a 
wide range of scopes and purposes. Section 6 reports on the use-case scenarios and prototype implementations 
used to demonstrate one selected process for each category of verification, observability, and troubleshooting. 
Finally, Section 7 concludes the document, also highlighting some possible future work. 
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2 Overview of UNIFY and relevant developments in other WPs 

As discussed above, the overarching goal of UNIFY is to break up traditional, rigid network control approaches, which 
limit the flexibility and manageability of speedy service creation [8]. For instance, it is not unusual that an average 
service creation time cycle exceeds 90 hours, whereas given recent advances in virtualization and Softwarization 
(including technology advances such as SDN and NFV), one would be interested in service creation times in the 
order of minutes [9] if not seconds. The UNIFY project pursues full network and service virtualization to enable rich 
and flexible services and operational efficiency, thereby overcoming today's limits in flexibility of service creation. In 
four technical work packages, we research, develop and evaluate means to orchestrate, verify, observe and deliver 
end-to-end services from home and enterprise networks through aggregation and core networks to data centres. 
While focusing on enablers of this unified production environment, we 

 develop an automated, dynamic service creation platform, leveraging software defined networking 
technologies; 

 create a service abstraction model and a service creation language, enabling dynamic and automatic 
placement of networking, computing and storage components across the unified infrastructure; 

 develop an orchestrator with novel optimization algorithms to ensure optimal placement of elementary 
service components across the unified infrastructure; 

 research new management technologies (Service Provider DevOps (SP-DevOps)) and operation schemes to 
address the dynamicity and agility of new services; 

 and evaluate the applicability of a universal network node based on commodity hardware to support both 
network functions and traditional data center workloads. 

Before this deliverable will document the main results of SP-DevOps, we use the following subsections to briefly 
summarize the results of the other parallel activities performed in UNIFY. 

 

2.1 Summary of Use Cases and Architecture  
As part of these project wide activities, we first collected and categorized requirements for modern service creation 
from the perspective of service providers and consumers. Second, we designed the architecture of the UNIFY 
framework based on the discovered requirements. Third, we defined various use cases that sketch examples of 
creating network services or handling potential issues (e.g., scalability). Fourth, we integrated prototypes 
implemented by other partners to a large integrated demonstrator (IntPro), including the outcomes of the SP-
DevOps prototyping activities (DevOpsPro). Finally, we performed a techno-economic analysis of the UNIFY 
framework. This section summarizes developments made within these activities in the order of the resulting 
deliverable. 

D2.1 [10] defines the important design principles of the UNIFY framework and provides the initial proposal of the 
UNIFY architecture based on the review of the state-of-the-art with over 30 aspects that support the development 
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of UNIFY, identification of 46 requirements collected from the technical work packages, and 3 wider use-case 
groups (including 11 detailed use-cases). Furthermore, D2.1 identifies 6 fundamental processes that describe the 
behavior of the UNIFY architecture, i.e., boot-strapping, programmability, verification, observability, troubleshooting, 
and VNF development. As the result of putting these identifications and definitions together, the initial proposal of 
the UNIFY architecture was described in two steps in D2.1, i.e., overarching architecture and a functional architecture. 

D2.2 [11] mainly addresses the detailed interface definitions of the architecture. The deliverable describes use cases 
and presents the reference architecture by illustrating the main components, abstract interfaces and primitives, 
which reflect the priorities of design, functional and business requirements. In order to create a resilient, trustworthy 
and energy-efficient architecture supporting the complete range of services and applications, the UNIFY 
architecture supports the full flexibility of NFV, isolation among service requests (Section 3.2.7 in D2.2), policy 
enforcement per service consumer (Section 3.2.8 in D2.2), embedded monitoring services (Section 3.2.9 in D2.2) to 
provide enablers for Quality of Service (QoS) support, and service resilience at any level of the virtualization 
hierarchy. 

For the validation of UNIFY’s techno-economic efficiency, a simulation-based cost analysis in different business 
environments is performed. More precisely, the cost of creating a IP VPN service by network function chaining using 
the state-of-the-art solutions is assessed and to be documented in a forthcoming deliverable [12]. 

The project has developed and demonstrated a prototype integration platform that is built on a set of existing 
operating system and development tools such as Mininet, Click, and NETCONF and POX components, namely, the 
Extensible Service ChAin Prototyping Environment [13]. Currently, we are working towards implementing the 
integrated prototype (IntPro) and validating the cost efficiency of the UNIFY system, which will be documented in 
another forthcoming deliverable [14].   

 

2.2 Summary of results on Service Abstraction, Programmability and Orchestration 
One UNIFY workpackage focused on describing a programmability framework and defining the necessary 
functionalities at this framework. A subset of this framework and functionality is selected and implemented as the 
Service Programming, Orchestration and Optimization Prototype. 

The work has started by analyzing the existing resource description languages, open source APIs, protocols such as  
OpenFlow, ForCES, NETCONF and languages such as Frenetic/NetCore, HILTI and Nettle to map their functionality to 
the initial framework in order to identify the missing parts. Based on this gap analysis, a service programmability 
framework with relevant process flows, interfaces, information models and orchestration functionality for the 
UNIFY architecture was proposed [15]. UNIFY programmability is focused on the interface between different layers 
in the architecture, i.e., the Service Layer and the Orchestration Layer. The heart of this programmability model is 
the Network Function-Forwarding Graph (NF-FG) which is used for i) exposing (virtualized) network and cloud 
resources and ii) mapping a service request to the exposed resources. 

As a next step, the functional description and algorithms which were required for the UNIFY orchestration 
framework were identified [16]. These identified challenges were in different areas: 1) programmability interfaces 
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and data models, 2) service decomposition, 3) orchestration algorithms, 4) VNF scalability and resiliency, and 5) a 
scalable orchestration framework.  

The initial NF-FG model was updated based on the feedback from prototyping and the ongoing work of other 
projects. The service decomposition is the process of breaking down a high-level service into more elementary 
(atomic) blocks to better utilize the resources and simplify the construction of new services. A detailed analysis of 
pros and cons and possible trade-offs of service decomposition was performed in which the atomic blocks could be 
as: i) hardware, ii) executable-based software, or iii) Click modular router components. Initially a service request is 
represented as a service graph which in transformed to an NF-FG which needs to be mapped to the infrastructure 
resources. However, embedding an NF-FG on the available resources is not a trivial problem. Different approaches 
including optimal solutions (ILP-based algorithms in particular) and heuristic approaches with/without combining 
the embedding with the decomposition were proposed. Oriented towards elastic, scalable and resilient network 
services, a distributed state transfer mechanism was proposed which resulted in substantial gains in migration time 
and required bandwidth [16]. 

The programmability framework for the UNIFY architecture was updated to be in line with the other work packages, 
i.e.  SP-DevOps and the Universal Node [7]. All relevant components of the service programming and orchestration 
framework have been implemented in ESCAPE, the main proof of concept prototype for orchestration [17]. ESCAPE 
relies on Mininet, Click, NETCONF and POX which implements all 3 layers of UNIFY architecture (i.e., Service Layer, 
Orchestration Layer and Infrastructure Layer). ESCAPE was designed for both intra and inter-workpackage 
integration which supports efficient integration of different modules and the easy re-use and integration of available 
tools. To have the integrated prototype, it supports the orchestration on top of Universal Node and the integration of 
SP-DevOps verification, monitoring and troubleshooting tools. A specific use case, Elastic Router, was selected to be 
demonstrated in ESCAPE while it is orchestrated in the Universal Node and different tools of verification, monitoring 
and troubleshooting are used [18].  

 

2.3 Summary of Universal Node development and benchmarking 
A final workpackage was focusing on the development of the Universal Node (UN) to enable the design of a flexible 
and easily programmable network. The UN aims to provide this by designing a software architecture optimized for 
executing dataplane-oriented workloads on standard high-volume servers, such as Intel-based blades.  Depending 
on the specific use case, applications can either be executed on bare hardware or through lightweight virtualization 
primitives such as Linux Containers or Docker, as well as in a fully virtualized environment. This technical approach 
opens up wider possibilities not only for reducing OPEX and CAPEX but also for building up new services or 
reengineering existing ones with a far more flexible approach.  

The work was started by assessing the requirements for the UN and the impact on the key aspects of the data plane 
with respect to network virtualization and resource sharing, as well as switching and traffic steering [19]. In parallel, 
the first functional specification of the UN data plane involving three modules for management, control and 
execution was introduced. A more detailed and mature UN architecture was presented early in the project in terms 
of more concrete definitions of architectural blocks and their interactions [20]. The key element of the UN 
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architecture is the Universal Resource Manager (URM), where compute and networking resources are commonly 
managed. Discussions between the SP-DevOps and UN teams have included issues about the architectural support 
for locally deployed Monitoring functions (MFs) and access to various data sources (e.g. counters) on the UN. This 
has led to an extension of the UN architecture in terms of a Monitoring Management Plug-in (MMP). The 
introduction of the MMP essentially enables the orchestrator to interact with the control plane of a particular MF and 
observability point (OP) through a uniform interface, which is crucial for achieving increased observability in a 
scalable manner. Section 4.2.3.1 of this deliverable includes a discussion of the architectural aspects of the MMP, 
while Section 6.2 provides an overview of the MMP implementation for the Elastic Router demo and describes how it 
is used for the observability process of the elastic router realized on a UN. 

As a next step, UN prototyping implementation details and phases activities have been described [21]. In this context, 
the implementation details of the MMP have been discussed between SP-DevOps and UN teams as part of the work 
towards a project-wide integrated prototype with the aim of showcasing aspects of the SP-DevOps concept (i.e. 
Observability and Troubleshooting processes, see Section 5.3 and 5.4). The actual UNIFY Universal Node prototype, 
which finally implements the architecture defined in D5.2, was documented in D5.5 [22]. The prototype includes  as 
main components the local orchestrator with different computing and network plugins, the softswitch, and the 
northbound interface implementing the NF-FG as defined by the service abstraction work. The UN architecture is 
modular and supports different execution environments and different softswitches. This enables to exploit different 
technologies and to adapt to the necessity of different use cases. In the demo scenarios for SP-DevOps observability 
and troubleshooting processes (section 6.2), a UN version with Docker as VNF Execution environment and OVS for 
the virtual switching environment has been selected. 

In terms of UN Benchmarking activities, there have been two major results during the final year of the project. First, 
an initial benchmarking documentation [23] presented the results of the UN performance characterization and 
development activities. Specifically, the initial results characterize the performance of the major individual building 
blocks of the UN, i.e. virtual switching engines, hypervisors, as well as first complete test setups. Second, a final 
deliverable was presenting UN performance characterization on the actual UN prototype [24].The results include 
benchmarks on VNFs realized by different virtualization methods (VMs, Containers, DPDK processes, native 
functions), different softswitch versions (OVS, ERFS; xDPd), different host/VNF interfaces (KNI, IVSHMEM, virtio, 
vhost-user, SR-IOV, PCI-PT), as well as VM-to-VM communication.  
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3 Final SP-DevOps concept 

In this section we present the final SP-DevOps concept, evolved from the previous iterations documented in D4.1  
[25], M4.1 [26] and D4.2 [6]. Recall that SP-DevOps derives from DevOps, a concept born by the fast software 
development practices of major software companies such as IBM and HP.  

Through a number of tools and support functions, generally referred to as the SP-DevOps tools, the UNIFY SP-
DevOps framework maintains the deployment and re-deployment cycle of production through four major processes, 
namely VNF Developer support, Verification, Observability, and Troubleshooting.  These four processes are mapped 
on the general service lifecycle of UNIFY as shown in Figure 2. They are effectively dealing with the four crucial 
principles of the general DevOps concept (i.e., monitoring and validation of the operational quality, development and 
testing against production-like systems, reliable and repeatable deployment, and amplifying feedback loops) [4]. 
These four SPDevOps processes have been described in D4.1. Since then, however, less emphasis has been put on 
the VNF developer support, since we concluded that this process is to a large degree supported by a combination of 
the remaining three processes. We thus provide more detailed descriptions only for concrete Verification, 
Observability, and Troubleshooting processes supporting different purposes in Section 5, while actual 
implementations of these three process categories for selected use-cases are documented in Section 6. 

 

Figure 2 SP-DevOps processes mapped on the UNIFY service lifecycle. 

In the following section, we will first map individual SP-DevOps tools onto the UNIFY architecture to indicate how 
integrated workflows through UNIFY deployment and orchestration functions and the SP-DevOps tools will 
naturally emerge. After a brief introduction of the five main categories of SP-DevOps functional components, we will 
discuss whether the final SP-DevOps concept reaches the desired DevOps maturity model level specified in [25].  
Finally, the actual business benefits of applying SP-DevOps in a UNIFY scenario are assessed with the help of several 
recent surveys regarding operator business and operations practices. 
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3.1 UNIFY SP-DevOps concept 
In this section, we will give an overview of how the SP-DevOps framework operates in the functional architecture 
presented in D2.2 [11] and describe the key components forming SP-DevOps processes. The UNIFY functional 
architecture is depicted in Figure 3, including service layer, (recursions of) orchestration layers, and infrastructure 
layer, which consists of domain specific controllers and the actual infrastructure resources (e.g. an SDN controller 
with OpenFlow switches; a Universal node with Local Orchestrator; or an OpenStack controlled datacentre). 

Figure 3 Architectural mapping of functional components of SP-DevOps (yellow) on the UNIFY architecture. 
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In this figure, we superposed the architecture with SP-DevOps components in yellow colour, to give a global 
overview of their architectural mapping and their interaction within a service lifecycle.  Verification functions for 
service programming are integrated in all layers above the infrastructure resources, depicted by the yellow boxes on 
the left hand side of the figure. Cross layer programmability features for observability are realized as annotations to 
the NF-FGs definition crossing the interfaces Sl-Or and Cf-Or, as well as Ca-Co. Additionally, Service-, Orchestration- 
and Controller sublayers require integration of modules to handle these annotations alongside any manipulations 
done to the NF-FG, such as decomposition or scoping of VNFs (not shown explicitly in this figure). The Monitoring 
Function (MF) subsystem in the infrastructure layer as depicted on the lower right-hand side in the figure is 
realizing monitoring and verification functions for the actual infrastructure and VNF resources. Efficient distribution 
of observability data is supported by messaging and querying systems both within MFs, but also cross-layer, allowing 
dissemination of aggregated monitoring results all the way up to the service layer (depicted by yellow components 
on the right part of the figure). Finally, automated troubleshooting is supported by a modular framework which can 
instrument both UNIFY and 3rd party monitoring, verification, or debugging tools. In the figure, these supporting 
functions are depicted as service layer components, available for both developer and operator roles. 

 

3.2 Functional components of UNIFY SP-DevOps  
In the following, we will give a short overview of the main functional components of UNIFY SP-DevOps, grouped by 5 
functional categories: 

3.2.1 Integrated verification of service programming  
Many important properties of services expressed as graphs can be verified before actual deployment, which is an 
essential task in environments where reconfiguration of services is expected to be triggered frequently. As in any 
development process, identification of problems early in the service lifecycle can significantly reduce times and 
costs spent on complicated debugging and troubleshooting processes. Misconfiguration of (V)NFs, violation of 
specified network policies, or artificial insertion of malicious network functions are just examples of issues that an 
automated services deployment solution should handle in order to ensure service uptime and preserve network 
integrity and reliability. In UNIFY SP-DevOps, functions supporting continuous verification of service programming 
instructions and configurations are integrated into all layers above the actual infrastructure resources.  

SG and NF-FG pre-deployment verification: In the Service Layer (SL), a module verifies the Service Graph 
(SG) topology against basic reachability properties. In the Orchestration Layer (OL), first an NF-FG topology 
verification step takes place in order to guarantee that required topology properties are still satisfied after the 
translation of the SG into the richer NF-FG representation. This basic verification step if followed by a novel 
verification of the actual VNF configuration, which considers reachability properties in conjunction with all the 
constraints imposed by the complete model of the network, including each VNF forwarding behavior and its 
configuration. More details about the verification modules integrated into SL and OL for pre-deployment verification 
can be found in Section 4.1. 

Consistent network updates: For the networking part, the verification toolset includes also controller-level 
verification functionality ensuring consistent network updates. Specifically, policy updates from Controllers to 
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OpenFlow switches are guaranteed to experience synchronicity and consistency, thereby avoiding out of order 
updates and ensuring waypoint enforcement and weak loop freedom. More details about our consistent network 
update algorithms can be found in the section about verification of path functionality (Section 4.2) 

Network policy watchpoint:  UNIFY SP-DevOps proposes a watchpoint function supporting network policy 
enforcement by intercepting control traffic events on a Co-Rm interface realized by OpenFlow. The Watchpointer 
tool is able to catch policy violations (e.g. in the form of conflicting OpenFlow rules) and trigger various actions, such 
as notifications, packet drops, etc. Note that the watchpoint tool can also be used as a debugging and 
troubleshooting tool for network configuration. The Watchpointer tool has been demonstrated in the first-year 
UNIFY review as well as at IM’15 [27]. It is documented in its final form in D4.2 [6]. 

3.2.2 Programmability of observability  
A crucial part of SP-DevOps is to support programmability of monitoring and verification functions across the UNIFY 
architecture. Specifically, UNIFY makes two contributions in this respect: a generic, high-level programming 
interface of programming observability features for software defined infrastructures; and a standardized data-
model for common interfacing of legacy OAM tools within the infrastructure resources. 

Cross-layer programmability of observability: These functions and their interface definitions enable 
automated deployment and configuration of MFs by translating high-level KPI and requirement definitions into 
concrete MF instances including placement, configuration and data aggregation. Specifically, we propose MEASURE 
for expressing measurement intents, states and reactions as annotation to NF-FG definitions on Sl-Or, Ca-Co and 
Cf-Or interfaces. The MEASURE language and the respective handling functions in the various architecture layers 
are described in Section 4.3.  

Programmability of legacy OAM tools: As the adoption of programmable nodes will increase over time, the 
transition from current infrastructures to software-defined infrastructures and networking requires interfaces 
capable of bridging the gap between legacy equipment and programmable network entities. In this respect, most 
legacy devices (router, switches, etc.) have some OAM capabilities like BFD, LSP Ping, TWAMP, etc., that are usually 
configured rather statically via proprietary interfaces, which limits flexible and dynamic instantiation across diverse 
infrastructures.  As part of UNIFY, we therefore have been involved in a standardization action in order to define a 
common TWAMP data model as an instance of standardized support for increased programmability of legacy OAM 
tools. More details on the data model and the mapping of TWAMP into the UNIFY monitoring function concept can 
be found in Section 4.4.  

3.2.3 Infrastructure and VNF Monitoring and Verification 
In UNIFY, we refer to monitoring and verification capabilities for infrastructure resources and VNFs collectively as 
Monitoring Functions (MFs). In the spirit of DevOps, these functions can be instrumented by both operator and 
developer roles not only for continuous observability, but also for troubleshooting purposes. 

MFs typically implement functionality for collecting IT resource (e.g., CPU, memory, and storage) and network 
performance metrics (e.g., bandwidth, delay, jitter, and packet loss), but can also implement management tasks 
beyond pure monitoring, such as verification of configurations, etc. MFs may not only collect data, but also pre-
process monitoring information (e.g., aggregate, filter, etc.) from other MFs across one or several infrastructure 
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domains (e.g.  UNs, SDN, or OpenStack domains). An MF subsystem is implemented as one or several Observability 
points (OP) and an MF control app. The following components form one MF (see Figure 3, Monitoring functions 
subsystem box): 

 An MF control app is the software defined monitoring equivalent to SDN control apps, i.e., a logically centralized 
control application taking care of the configuration of one or multiple OPs and parts of the MF-related 
processing operations. 

 An OP is a MF component that runs locally on an infrastructure node. In general, the implementation of OP 
capabilities encompasses measurement or verification mechanisms, node-local aggregation and analytics, 
depending on the type of the MF (for instance, node-local operations are not necessarily performed by all types 
of MFs). An OP operates in terms of the local control plane (LCP) and local data plane (LDP), and is managed by 
an MF control app. 

o An LCP is splitting certain control functionality from the MF control app for scalability and resource 
consumption purposes. It reflects essentially a local monitoring controller which provides functions for 
retrieving data from the LDP; processes obtained data; and controls the monitoring behavior (e.g., 
measurement intensity).  

o An LDP is basically any kind of data source in the UN (e.g., statistics from logical switches, resource 
metrics from the VNF executing environment, hardware counters, meters, injected packets, log data, 
etc.), retrievable from the virtualized environments (VNF execution environment (EE) or virtual 
switches environment (VSE)), the UN operating system, or specific monitoring VNFs.  

UNIFY SP-DevOps provides a set of example implementations of MFs, including both observability as well as 
verification purposes. The tools and their purposes are briefly summarized below: 

Scalable and efficient network observability: Introducing a split control between MF control app and LCP 
offers the operator a trade-off between monitoring fidelity on one hand and monitoring overhead on the other 
hand. We provide concrete examples of MFs utilizing LCPs in Sections 4.5 to 4.7 in the form of scalable network 
performance measurement tools, i.e. novel methods to estimate network rate, delay and loss metrics. 

Service specific QoS monitoring: As an example of a service specific monitoring function, UNIFY SP-DevOps 
includes an IPTV service quality monitor tool (Section 4.8). The IPTV Quality Monitor extracts relevant parameters 
(e.g., video/audio codecs, bitrates, timestamps, etc.) from IPTV traffic in order to indicate the quality of the service in 
terms of packet losses, startup delay and estimated audio/video quality experienced by the user. 

Run-time network verification: Since verification actions after the deployment are typically performed in 
the infrastructure layer, we realize run-time verification tools inline with the MF concept. One example of a MF with 
applicability in verification processes is AutoTPG (see Section 4.9). AutoTPG checks the correctness of flow tables by 
actively probing the FlowMatch part of OpenFlow Rules. Another example of a run-time verification tool is the path 
verification tool (Section 4.2), which applies efficient tagging and sampling mechanisms for verification of 
configuration and policies in the data plane during service operations time. 
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3.2.4 Cross-layer observability data distribution  
In this subsection, we introduce support functions that allow monitoring data to be disseminated within the 
infrastructure domain as well as towards receivers in higher layers (service and orchestration layers) in an efficient 
manner, once observability and verification results are created. 

Fast and transport agnostic monitoring API: UNIFY SP-DevOps proposed DoubleDecker (DD) as a messaging 
system to enable information exchange between LCPs within one domain and between LCPs and their MF control 
apps. In DD, clients only need to have a minimal knowledge of the actual architecture, but need to follow a 
standardized protocol to communicate with the messaging system and have to define their own sub-protocol to 
communicate with other clients. While it is based on the popular existing ZeroMQ, it provides several required 
carrier-grade features. More details about the technology choices behind the DoubleDecker messaging system 
developed in UNIFY can be found in Section 4.10.  

Recursive querying of monitoring data:  UNIFY SP-DevOps includes a query engine that interprets a specifically 
defined query language to efficiently collect and aggregate monitoring information from distributed software-
defined infrastructure. This allows both developer and operator roles to query monitoring metrics on high level of 
abstraction, corresponding to NF-FG and SG abstractions in higher layers of the UNIFY architecture. The queries are 
resolved by the query engine in a recursive way (following NF-FG definition throughout the hierarchical UNIFY 
architecture) until primitive infrastructure metrics are available in actual monitoring databases residing in 
infrastructure domains. More details on the recursive query language can be found in Section 4.11. 

3.2.5 Troubleshooting automation 
This category includes a function that supports automated troubleshooting through the definition of troubleshooting 
workflows, thereby instrumenting virtually any type of UNIFY or 3rd party monitoring, verification, or debugging tools 
(including most tools and functions from the four categories above). 

Troubleshooting framework: UNIFY’s EPOXIDE is a troubleshooting framework that enables integrating and 
automating troubleshooting tasks by troubleshooting graphs. It enables the developer to define sequences of tools 
to be used for debugging particular problems with the network or simple virtual network functions, while having the 
results presented in the same terminal window. Details about EPOXIDE can be found in Section 4.12. 

 

3.3 Assessment of the UNIFY SP-DevOps concept  
With the UNIFY SP-DevOps concept, we set out to define a first set of tools to support specifically service providers 
in their adoption of DevOps principles. In the following subsections, we will first assess how the results of the SP-
DevOps work at the end of the UNIFY project can be positioned on DevOps maturity models introduced in D4.1 [25]. 
We will then provide a model based on publicly available reports and numbers, allowing us to assess the potential 
savings to be gained by SP-DevOps assuming technologies as outlined in our research results would be hardened 
and implemented on a wide scale on software-defined infrastructure. Finally, we reason about required actions to 
realize gradual exploitation of SP-DevOps at Operators. 
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3.3.1 SP-DevOps maturity level 
In D4.1, we outlined the ambition of the UNIFY SP-DevOps work to achieve an overall “Defined” level of the HP 
DevOps maturity model [28]. Defined is the 3rd level of this model, which describes five different levels of DevOps 
maturity. For each level, three dimensions are examined, i.e. Process maturity; Automation maturity; and 
Collaboration maturity. In summary, we argue that we have successfully shown the way for a Service Provider to 
achieve a Defined maturity level in terms of DevOps. Below, we provide our qualitative assessment by discussing 
what UNIFY SP-DevOps provides in terms of functional components and process definitions with respect to each of 
the three dimensions of the HP DevOps maturity model. 

Process maturity:   In a Defined level, “Processes are well characterized and standardized across projects. These 
standard processes are used to establish consistency throughout the organization” and “the organization needs to 
be able to establish end-to-end release processes eliminating the silos, and avoiding the duplication of functions” 
[28]. In D4.1, we interpreted release management as ability that “enables successive improvements of service graphs 
in a UNIFY production environment. Such improvements result by defining new categories or classes of services that 
include certain constraints or policies by default, or changing the composition of the service graph to include newly-
developed virtual functions”. 

The final UNIFY SP-DevOps concept supports this aim by: 

- Components allowing integrated verification of service programming. Specifically, SP-DevOps provides pre-
deployment verification of service chains integrated with orchestration, verification algorithms ensuring 
consistent network update, and network policy watchpoints (Section 3.2.1). 

- Components allowing programmable observability, specifically automated deployment and configuration of 
monitoring and verification functions (Section 3.2.2). 

- Advanced components for infrastructure and VNF Verification in form of novel run-time network 
verification tools (Section 3.2.3). 

 
Automation maturity:  In a Defined level, “there is central automated infrastructure that supports overarching 
enterprise processes built for the overall organization, instead of silo automations tailored for specific application or 
services, environments, or even tasks” [28]. In D4.1, we envision identical self-service one-click automated build, 
orchestration and deployment processes in all environments (development, test, production).  

Eventually, the final UNIFY SP-DevOps concept supports this aim by: 

- Components allowing programmable observability, specifically automated deployment and configuration of 
monitoring and verification functions (Section 3.2.2). 

- Supporting functions for cross-layer and cross-environment data distribution of monitoring and verification 
results in an efficient manner (Section 3.2.4). 

- A troubleshooting framework allowing both Dev and Ops personnel to create automated workflows 
(Section 3.2.5). 

 

Collaboration maturity:  In a Defined level, “Collaboration is established between the teams. It becomes an essential 
part of the established processes and tool chains enabling idea sharing, better visibility and faster feedback.  All team 
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members belong to a single system with shared accountability, frequent communication and mutual trust” [28]. In 
D4.1, we pointed out that in the scope of UNIFY we will address this area only through technical means, i.e.  through a 
common tool chain by providing tools that could be used by cross-functional team members addressing both 
development and operations scope. 

Finally, the UNIFY SP-DevOps concept supports this aim by: 

- Components allowing programmable observability, specifically for automated observability workflows that 
can be defined for production environments (primarily Ops), but also test/debugging slices (primarily Devs) 
(Section 3.2.2). 

- A troubleshooting framework allowing both Dev and Ops personnel to create automated workflows 
(Section 3.2.5). 

- Set of tools with interfaces friendly for both Dev (mainly REST APIs) and Ops (mainly CLI and/or GUI), 
including integrated verification tools as well as infrastructure and VNF monitoring functions (Sections 3.2.1 
and 3.2.3). 

- Monitoring, troubleshooting and verification processes for various purposes, scopes and receivers (Sec. 5). 
 

3.3.2 OPEX saving potential of SP-DevOps 
A 2015 survey from PuppetLabs (arguably one of the most popular survey in the DevOps community with almost 
5000 respondents worldwide) indicated that enterprises that are high performers in implementing DevOps would 
typically have the ability to recover from about 52% of the incidents in less than one day, but only about 15% of the 
incidents are recovered in less than 15 minutes [29]. This is in contrast with the low performing enterprises that are 
able to recover from only about 5% of incidents in less than 15 minutes and about 22% of incidents in less than a 
day. This is consistent with DZone’s 2015 Continuous Delivery Survey [30] that reports mean time to recovery 
between 0-2 hours for 38% of the respondents, while the mean time between incidents was reported to be less 
than 24 hours for 25% of the 900 respondents. Given that we do not have inside knowledge on the PuppetLabs 
survey methodology, we observe that the characteristics indicated for high performance enterprises seem to be 
equivalent to the “Measured” maturity level from the HP model.  

Today, very few telecom operators implement DevOps current infrastructures. However, due to the stringent focus 
on high-availability, incidents appear to be handled faster using current technology and operational practices. A 
HeavyReading survey [31] performed in 2015 on more than 70 operators showed that 54% of the respondents 
encounter “often” incidents that require less than 15 minutes for solving, while incidents with duration between 4 
and 24 hours are “rarely” seen by 59% of the respondents.  

Could the ongoing transformation, virtualizing many of the network functions, automating a significant portion of 
the operations and introducing some of the DevOps techniques in telecom networks improve the situation such that 
operators may answer “rarely” to 15-minute incidents and “never” to 4-24 hours-lasting incidents to such survey 
questions in the near future? On the other hand, a reduction of the recovering time of incidents is just one of the 
potential capabilities of DevOps for reducing outages. 

The HeavyReading report [31] identifies network congestion as the second most common cause of outages and the 
most common cause of service degradations. Configuration issues are also occupying a forth position as most 
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common cause of outages and is classified third when it comes to service degradations. 24% of the respondents 
indicate that significant costs are associated to dealing with congestion in their networks. Operational expenses to fix 
the problem is only the second most important component of the cost, while an increased rate of subscriber churn 
comes on the first position. This indicates that it is important to first prevent congestion and when it occurs that the 
situation is identified and fixed as soon as possible in order to minimize the number of affected subscribers. 

The RateMon congestion predictor (Section 4.5) would address the congestion problem in a unified cloud and 
transport network infrastructure. When coupled with additional aggregation features of the UNIFY monitoring 
system as shown in our paper [32], the method makes it possible to predict (with a network overhead of only a few 
MBits/s) even short transient congestions that are difficult to detect otherwise on infrastructures that scale to 
hundreds of thousands of ports. Assuming that the unified infrastructure automation may be able to react to such 
congestion indication (for example, Ericsson mobile core network functions handle signalling storms to keep 
congestion under control [33], automated scaling as shown in the UNIFY Elastic Router (Section 6.2), etc.), 
significant operational costs and lost revenue could be saved. 

An IT administrator of virtualized workloads in a data center environment is able to handle 3 – 10x [34] [35] more 
workloads or servers than in the case of an IT administrator working with physical servers. This is partly due to 
automation via DevOps tools such as Chef and Puppet and partly due to the inherent automation features that come 
with orchestration software such as OpenStack (for VMs) or Kubernetes (for containers). The combined WP3 and 
WP4 work in UNIFY shows the way operators may use orchestration and DevOps-inspired technology in their 
networks. There is no indication that the gains might be less, although due to the spatial distribution of the nodes it is 
likely that the increase in the number of nodes handles by an operations person might be at the middle range of the 
spectrum for the most remote nodes (mainly in the RAN) while typical datacenter rates are likely to apply for the 
mobile core network nodes as well as nodes that support Cloud RAN functions. 

Alcatel-Lucent argued in [36] that the use of the Cloudband platform in conjunction with a virtualized network 
function would reduce the healing process by 88% on average for application and operating system failures 
compared to a traditional management process that involves many tools and several people to identify and solve the 
problem. When translating the scenario in a UNIFY environment, we observe that arguably similar scaling 
capabilities together with integration of SP-DevOps components for verification, programmable observability, and 
automated troubleshooting with orchestration are available. Furthermore, if we assume that a business interface 
between the Operator and Developer of the network function exists that allows our troubleshooting framework 
(Section 4.12)  to be deployed and troubleshooting workflows executed, the solving of both application and OS 
failures could be performed significantly faster, probably in a matter of minutes instead of the hour-level intervals 
of Cloudband.  

In the annual ENISA survey of significant telecom network incidents [37], 44% of the incidents with the Mobile 
Internet service were caused by software bugs, 19% by network overload, and 10% respectively by each of faulty 
software changes or updates and faulty policies or procedures. We use these percentages as well as the average 
duration of the incidents reported in the study for a modelling exercise that tries to determine the impact of SP-
DevOps assuming technologies as outlined in our research results would be hardened and implemented on a wide 
scale on software-defined infrastructure. The data from the study is incomplete with respect to the precise root 
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causes. Therefore, we assume in the following that the average duration of the incidents could be shortened 
between 10% and 80%. In D2.3, we include a discussion of the cost savings as part of the techno-economic analysis 
report. In this deliverable, we keep the discussion related to technical parameters. Figure 4 a) shows the baseline 
incident durations from the ENISA report and Figure 4 b) shows the results of our modelling of potential gains in 
terms of incident lifetime. 

 

Figure 4 (a – left): Average incident duration per category; (b-right): Potential gains per category. 

To estimate the potential for reducing the total amount of incidents, we define two mixes of savings per-type of 
incident. This corresponds to staged deployments (where gains would be partial and concentrated on the newer 
technology). It also allows us to discuss different assumptions with respect to how many of the incidents could 
actually be avoided by using the SP-DevOps technology. Not knowing for sure the exact cause of the incidents and 
what other characteristics (such as automatic handling of overload) might be implemented in the various network 
functions deployed it is very difficult to make definitive statements in this respect. However, the two scenarios we 
consider allow us to determine certain limits for the potential savings. The two mixes of savings are defined as 
follows: 

Conservative mix: SP-DevOps could allow the operator to avoid 10% of the software bugs, 50% of the overload, 30% 
of the faulty software changes and 30% of the faulty policies 

Optimistic mix: SP-DevOps could allow the operator to avoid 20% of the software bugs and 80% of each of the 
overload, faulty software changes and faulty policy incidents 

Figure 5 shows a comparison of a normalized number of incidents in the original ENISA study [37] as well as our 
Conservative and Optimistic mixes. 

We observe that the Optimistic mix might permit the operator to avoid about 50% of the incidents, while the 
Conservative mix might allow to avoid about 25% of the incidents. The remaining incidents in these three categories 
would also have their lifecycle shortened in line with the discussions from Figure 4.  
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Figure 5 Modelled savings in incident occurrence. 

We further define two models for mixing the amount of reduction in incident times in line with Figure 4: 

 Conservative mix: 20% reduction on average incident duration for all overload, faulty software change and 
faulty policy and no time reduction for software bugs 

 Optimistic mix: 60% reduction on average incident duration for faulty software changes, 80% reduction for 
overload and faulty policy incidents and 10% reduction for software bugs 

Figure 6 shows results for the combined models for incident reductions both in terms of occurrence rate and 
duration. The conservative mix would provide about 32% savings, while the optimistic mix would translate onto 
about 77% of savings in terms of time spent handling incidents. 

 

 

Figure 6 Combined modelled savings in incident occurrence and duration. 

It should also be mentioned that. another area where SP-DevOps may attract growing attention is the increase of 
flexibility in service developments and provisioning and the consequent reduction of the Time To Market (TTM). 
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3.3.3 Gradual exploitation scenarios  
Softwarization will be a radical Digital Business Transformation for Service Providers. It is likely that Softwarization 
will be exploited by Service Providers by adopting two alternative strategies: inertial and a bi-modal strategy, 
through two innovation cycles: The former is one relatively smooth, looking at a seamless introduction of some 
SDN-NFV features into current network infrastructures; the latter is much faster and disruptive, where 
Softwarization will pave the way to the deployment of a new parallel integrated Network and Service software 
virtualized platforms.(e.g., AT&T project CORD). In this last case, the innovation produces a radical transformation in 
the Operations, by exploiting approached a la DevOps. 

These two cycles strategies will probably even co-exist for some time bringing to the deployment of “sandboxes”, 
operated with IT-style processes and capable of providing specific end-to-end services. These “sandboxes” will be 
interconnected also through legacy interconnection links. In this sense, a key point will be interoperability, which 
should be pursued since the beginning, by design. This is very challenging but fundamental. 

It is argued that “sandboxes” should embed interoperability features and capabilities. Orchestration, management 
and control should be “external” but recursively embedded into the “sandboxes”. An interesting first approach in this 
direction is being pursued, for example, by the EC funded project FELIX [38]. 

Flexibility and automation of the Operations processes in these “sandboxes” will dramatically reduce the Time To 
Market (TTM) compared to the legacy infrastructures. In these domains it will be possible, for certain classes of 
services, to embrace full adoption of the API-economy paradigms (e.g., pursuing automatic provisioning and services 
transactions). When standardization efforts will not be fast enough (e.g., due to lock-in and disagreements) to 
support this fast exploitation, then “standards-de-facto” will emerge and be adopted, upon markets requests and 
dynamics. 

The ways SP-DevOps could be exploited will follow the two main strategies being adopted by Service Providers for 
their Digital Business Transformation. SPs adopting the bi-modal strategy will deploy DevOps in a parallel to 
virtualised Network and Service platform. This will produce a radical transformation in the Operations (and the 
culture of the Company), whilst keeping a certain level of interoperability with the legacy infrastructure to provide e-
to-e services (i.e., across sandboxes). On the other hand, SPs adopting the inertial strategy will gradually deploy 
DevOps in the legacy infrastructure being virtualised. This process will be slow as it will be delayed by a deeper 
integration of DevOps processes with legacy OSS/BSS ones. 
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4 SP-DevOps tools and functions 

In the following subsections, we provide the final development and integration status of the SP-DevOps tools. How 
these individual components relate to the SP-DevOps concept has been outlined above (Section 3.2), and will be 
discussed in more details in Section 5 with respect to processes defined in support of integrated verification, 
programmable observability and automated troubleshooting. The relation of the tools with respect to the original 
project objectives and the research challenges defined in D4.1 is summarized in Annex 1. Note that the Watchpointer 
tool is considered to be finalized and has not been further developed since its documentation in D4.2, thus it will not 
be described in a separate subsection. This section closes with a description of the open-sourced SP-DevOps toolkit 
based on a subset of all our tools. Table 1 summarizes the tools and serves as index into the individual subsections. 

 

Table 1 : Summary of SP-DevOps tools. OpenSource tools are marked as being part of the SP-DevOps toolkit, 
whereas “public” indicates code available in a non-finalized state. 

SP-DevOps Tool or Function Problem solved Section Availability 

VeriGraph Formal verification tool for complex networks containing active NFs. Able to 
automatically verify NF-FGs and their configuration within a matter of few 
seconds (1.2 sec in our evaluation scenario). 

4.1 Part of toolkit 

Path Verification and 
Consistent Network Updates 

Verification of the operational dataplane paths by a tagging approach, popularly 
known as traceback approach. An additional tool is able to guarantee either 
waypoint enforcement or loop freedom with limited update latency overhead. 

4.2  

MEASURE Automatic deployment and configuration of monitoring functions as well as 
local aggregation points for increased scalability of the observability system.  

4.3 (Public) 

TWAMP Data Model Data model to support cross-vendor and cross-technology programmability of 
legacy OAM tools.  

4.4 Part of toolkit 

Ramon Provides precise statistical estimates of link utilization in a distributed manner 
to offer congestion indications.  

4.5 Part of toolkit 

Probabilistic delay monitoring Capable of self-adaptively setting the appropriate number of samples for 
detecting changes. Can capture changes with an expected probability while 
keeping the false alarm rate as low as required. 

4.6  

EPLE An efficient packet loss estimator for SDN based on OpenFlow. Induces zero 
dataplane overhead, and reduces even control and management plane 
overhead significantly compared to active measurement tools. 

4.7  

IPTV Quality Monitor A standardized IPTV quality monitoring mechanism (ITU P.1201.2). We show that 
such service specific functionality can be realized as a virtualized function (i.e. 
VNF) deployed as part of a NF-FG. 

4.8  

AutoTPG A tool that actively probes the FlowMatch part of OpenFlow rules to identify 
bugs in the forwarding path when aggregate flow descriptors are used. For 
networks where bandwidth availability is high, verification can be achieved in 
time intervals of a few seconds 

4.9 Part of toolkit 

DoubleDecker A flexible, carrier-grade communication services between virtual monitoring 
functions and controllers, orchestrators, and network management systems. 

4.10 Part of toolkit 

Recursive Query Language An engine (RQE) that interprets the recursive query language (RQL) to 
efficiently collect and aggregate monitoring information from distributed 
software-defined infrastructures. 

4.11  

EPOXIDE Enables integrating and automating troubleshooting tasks by troubleshooting 
graphs. Allows developers to define sequences of tools to be used for 
debugging particular problems with the network or VNFs.  

4.12 Part of toolkit 

Network Watchpoints Intercepting control traffic events on an OpenFlow interface. Able to catch 
policy violations and trigger actions. Can also be used as a debugging and 
troubleshooting tool for network configuration. 

D4.2 [6]  
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4.1 VeriGraph - Pre-deployment Verification 
4.1.1 Purpose and problem statement 
VeriGraph aims to check certain properties related to the UNIFY service models (e.g., network node reachability, 
node isolation and node traversal) before the actual service deployment, so as to reduce the risk of introducing 
critical and erroneous network configurations. In order to achieve this goal, the verification process is based on 
formal methods, i.e. mathematically founded methods that can be used to prove that the involved models (SG, NF-
FG, middleboxes configurations) fulfil certain properties. Such formal techniques should allow the verification 
process to be completed in a reasonable amount of time and with fair processing resources (e.g. CPU, memory and 
so on). Given these requirements, we decided to explore Satisfiability Modulo Theories (SMT) based techniques since 
they seem to be more promising than traditional model checking methods [39] [40], which usually suffer memory 
scalability problems. We considered in particular networks that contain active network functions implemented as 
VNFs, i.e., functions that dynamically change the traffic forwarding path according to local algorithms and an internal 
state based on traffic history. Examples of those active functions (or middleboxes) are NATs, load balancers, packet 
marking modules, intrusion detection systems and more. Those are not well supported by the state-of-the-art 
verification tools (see [25] and [6] for more details) and hence require proper attention in the research work in this 
area. 

4.1.2 Brief technical description 
The verification process exploits an approach similar to the one recently proposed at UC Berkeley [41]. In order to 
achieve high performance, the verification engine exploits Z3 [42], a state of the art SMT solver, and also addresses 
network scenarios with multiple active network functions connected together to form a complex network graph. Z3 
is instructed by VeriGraph to solve reachability problems thanks to the translation of these problems into SAT 
problems. The model of all the involved middleboxes and the overall network behavior are represented as a set of 
first order logic formulas and completed with other formulas that express the properties to be verified, for example 
reachability properties between two nodes in the network, in such a way that the satisfiability of the formulas 
implies the truth of the specified properties. See [6] for more details on the VeriGraph internals and for some 
network modeling and verification examples. 

4.1.3 Recent improvements concerning the tool implementation 
As already mentioned in the previous Deliverables, various verification processes take place in the Unify architecture 
before deployment: 

 Service Layer (SL) verification on the Service Graph (SG) topology: basic reachability properties1 are verified 
by only looking at the given topology; 

 Orchestration Layer (OL) verification on the NF-FG topology: when the SG is translated into a richer 
representation, another topology verification process takes place in order to guarantee that certain required 
topology properties are still satisfied. This step is needed since topology level errors could be detected early 
in this stage without the burden of a complete verification with Z3; 

                                                                    
1  In this section we use the terms property and verification policy interchangeably. 



  

22 D4.3 14.10.2016 version 1.2 

 OL verification on the NF-FG at flow-level: when the NF-FG is ready to be deployed with all the VNFs 
attached to it, the corresponding configurations must be properly defined for each VNF. For example: an 
ACL for a firewall or the list of blocked domains for a DNS filter and so on. When all these configurations are 
available, we run another complex verification task, which considers reachability properties in conjunction 
with all the constraints imposed by the complete model of the network, including each VNF forwarding 
behavior and its configuration. 

The whole pre-deployment verification process is performed by the synergistic collaboration of different modules 
that interact with one another by means of well-defined interfaces, according to the verification workflow (see 
section 5.2). Since the whole verification process is split into multiple sub processes, we designed a modular 
architecture to dispatch and execute the work accordingly. In order to modularize the design of the overall tool and 
ease the integration with the reference prototype implementation of the Unify architecture (Escape v2 in [7]), we 
designed the components shown in the Verification Module in Figure 7 to perform the above-mentioned tasks. 

 

 

Figure 7 Verification Tool Architecture. 

As it can be seen, an externally exposed RESTful interface offers access to a set of services able to perform different 
types of verification. The two components named Neo4JManager and VeriGraph, are responsible for the following 
activities: (i) Neo4JManager provides an API to easily store, manage and delete network graphs into the Neo4J 
database. In this context, a graph is a set of network nodes connected by directed arcs. Included in its API, the 
component exports methods to test, for example, topological reachability from one point to another in the graph 
and also to compute all the paths from a source to a given destination node. This operation is particularly useful for 
other steps of the verification process, as we will describe in the following; (ii) VeriGraph, which is the front-end of 
the verification tool based on a SMT solver. It provides a service to perform the NF-FG verification, including all the 
involved VNF configurations. This task is run by considering not only the topology but also a model for the 
forwarding behavior of each VNF. This model is expressed by means of first-order logic formulas that represent 
both the network (including the models of the VNFs) and also the reachability properties to be checked, as already 
reported in D4.2 [6]. In order to exhaustively verify all the possible service chains available in a given NF-FG, 
VeriGraph exploits Neo4JManager to store a graph on the Neo4J database and to extract all the paths from the 
source node to the destination node. After that, VeriGraph generates a model for each extracted chain, including the 
configurations, and performs a complete verification step. 
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To be more specific, we document the most important REST methods exposed by Neo4JManager for managing SGs 
and NF-FGs and for performing path searches in the graphs: 

1. METHOD: POST  
URL:  ${BASE_URL}/graphs 
DESCRIPTION: This method creates a new resource representing the provided graph 
REQ. BODY: Representation of the graph 
RESP. BODY: In case of success, the service replies with an OK message and the ID of the newly created 
graph 
 

2. METHOD: GET 
URL:  ${BASE_URL}/graphs/{graphId}/topologyProperty 
DESCRIPTION: This method checks whether the topological property specified by means of query 
parameters is satisfied or not 
PARAMETERS: type -> a string specifying the type of properties. It can be: REACHABILITY, ISOLATION or 
NODE_TRAVERSAL 
sourceNode -> the source node, 
destNode -> the destination node, 
middleBox -> the node that must be traversed (used if type is NODE_TRAVERSAL or ISOLATION) 
RESP. BODY: The verification results 
 

3. METHOD: GET 
URL:  ${BASE_URL}/graphs/{graphId}/paths 
DESCRIPTION: This method retrieves all the possible paths from one node to another. 
PARAMETERS: sourceNode -> the paths root, 
destNode -> the destination node 
RESP. BODY: An array containing all the paths between the two nodes 

For what concerns VeriGraph, the following API has been defined to expose the verification service: 

1. METHOD: POST 
URL: ${BASE_URL}/graphs 
DESCRIPTION: This method creates a new graph 
REQ. BODY:  Description of the graph 
RESP. BODY: In case of success, the service replies with an OK message and the ID of the newly created 
graph 

2. METHOD: GET 
URL: ${BASE_URL}/graphs/{graphId}/nodes 
DESCRIPTION: This method returns all the nodes of a single graph 
RESP. BODY: List of available graphs 
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3. METHOD: GET 
URL: ${BASE_URL}/graphs/{graphId}/nodes/{nodeId}/neighbours 
DESCRIPTION: This method returns the neighbours of a given node 
RESP. BODY: List of neighbours 

4. METHOD: GET 
URL: ${BASE_URL}/graphs/{graphId}/property 
DESCRIPTION: This method checks whether the property specified by means of query parameters is 
satisfied or not 
PARAMETERS: type -> a string specifying the type of properties. It can be: REACHABILITY or ISOLATION 
sourceNode -> the source node, 
destNode -> the destination node, 
middleBox -> the node that must be traversed (used if type is ISOLATION) 
RESP. BODY: The verification results 

Concerning operation 2 of Neo4JManager and operation 4 of VeriGraph, only the reachability policy has been 
implemented. On the other hand, instead, the node traversal policy can be obtained by slightly extending the existing 
tool, while the isolation policy can be trivially obtained as the negation of the node traversal property. 

An important aspect that has been improved w.r.t. previous deliverables, is that the internal modules of VeriGraph 
performing the translation of a given network verification problem into equivalent FOL formulas, have been 
completely improved and rewritten from scratch in the Java programming language, thanks to the Z3 Java API 
bindings. In this way, the previous core of the tool, based on the Python library developed at Berkeley, has been 
completely eliminated from our tool.   

It is worth noting that VeriGraph can perform different kinds of checks. In particular, we distinguish two classes of 
properties, namely Topology-level and Flow-level properties. These two classes are verified through the 
aforementioned tools (i.e., respectively, Neo4JManager and VeriGraph). For any property that has to be checked, the 
verification tool must know two nodes in the graph, namely source and destination nodes, plus a middlebox in case 
of isolation or node traversal properties.   

Topology-level properties are verified by looking at topology aspects only, i.e. by exploiting graph theory. 
Neo4JManager implements these verifications and offers, through its REST API, the possibility to check three kinds 
of properties in both the SG and the NF-FG: 

 Reachability: the tool checks that at least one path exists between the source and destination nodes. 
However, the satisfiability of reachability properties at topology-level does not imply that all packets from 
the source are correctly forwarded in the path to the destination. Hence further verification processes are 
needed in order to be sure about graphs correctness; 

 Isolation: the tool checks that no packets between source and destination nodes can pass through a certain 
middlebox in the graph (e.g., packet from a web client to a web server must not traverse an anti-spam 
function). Neo4JManager implements the isolation property verification by checking that all the paths 
between the source and destination nodes do not contain the undesired middlebox; 
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 Node-Traversal: this property is the opposite of the isolation property, because it is satisfied when all 
packets between source and destination nodes traverse a specific middlebox (e.g., all packets from client A 
to server B must traverse a firewall). Here Neo4JManager can verify that all paths that connect the source 
and destination nodes include that middlebox. 

On the other hand, Flow-level properties consider the way each middlebox in the graph processes and forwards 
traffic. VeriGraph implements these verifications and offers, through its REST API, the possibility to check almost 
the same properties available at the Topology-level, but of course, they have a different meaning: 

 Reachability: the tool builds a formal model of each middlebox involved in the path between source and 
destination and checks if at least one packet from the source node can arrive at the destination. In this case 
we are sure that if the reachability property is not satisfied, there is no connection between the two nodes 
in the graph; 

 Isolation: the tool checks that no packet that goes from source to destination passes through a certain 
middlebox. In practice, this is equivalent to verifying that the source cannot reach this middlebox in all the 
paths toward the destination node. 

It is worth noting that Flow-level properties cannot be verified on the Service Graph, due to its nature of high-level 
graph, where tenants do not have the vision on which middleboxes compose the graph. Hence VeriGraph must 
verify such properties on a Network Function – Forwarding Graph, thanks to its peculiarity of being a middle-level 
graph in the UNIFY architecture. 

Further investigations have been done to improve the potential of a pre-deployment verification. In particular, from 
additional analysis of the current literature, other formalisms have emerged for the definition of the network 
services offered to the final users (i.e., SGs and NF-FGs). For example, forwarding policies are an alternative to 
describe how traffic flows (identified by means of a set of network fields) should be forwarded into the network, by 
traversing different Service Function Chains. In this context, it is possible to verify further types of properties, in 
addition to the afore-mentioned ones. 

In particular, we can distinguish several classes of properties to be checked before deploying a graph in order to 
verify the correctness of the required service when forwarding policies are used instead of SGs or NF-FGs. For each 
of these classes, it is possible to define a set of properties that will be checked against a set of forwarding policies. In 
particular, these classes are: 

 Single-Field policies check the presence of errors that involve one network field in a single forwarding rule 
(e.g., VLAN identifier is greater than its maximum values);  

 Pair-Field class involves two network fields of the same forwarding rule (e.g., source and destination IP 
addresses are equal). 

 The Node Ordering policies aim at verifying an ordering constraint on all the service function chains that a 
flow could potentially traverse in the graph. In particular, such ordering constraints are related to the 
position of the network functions within a SFC in a forwarding rule (e.g., a user would verify that his web 
traffic always traverses a firewall as last node of the chain). 
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 Chain Constraint properties are related to the case that a traffic flow is allowed to traverse more than one 
path in the graph. Let us consider an NF-FG containing a load-balancer to distribute mail traffic on multiple 
anti-spamming instances: in this case, at run-time, each packet will traverse only one of the outgoing paths 
after the load-balancer, based on the forwarding choice taken by the function. In this context, it could be 
useful to verify whether each possible network path of the mail traffic does not violate a specified condition 
(e.g., each path must contain a monitoring function). 

 Sub-Optimization policy class regards those forwarding policies that refer to different sets of packets, 
which are forwarded to the same SFCs (e.g., in case of forwarding rule duplication). In this case, we will not 
have traffic forwarding errors at run-time, but an under-optimized exploitation of the network resources 
(i.e., memory usage in network nodes). 

 Conflicting policies are two forwarding rules that manage the same traffic flow but they refer to different 
set of chains, generating forwarding errors at run-time. 

More information about this approach can be found in [43]. The verification of these classes of properties is not 
integrated into the pre-deployment verification framework developed within UNIFY, since the formalism of 
forwarding policies is not integrated into the UNIFY architecture, because final-users are allowed to define their 
network graph by exploiting the well-known formats of SG and NF-FG rather than forwarding policies. Future work 
beyond UNIFY may implement this alternative approach. 

4.1.4 Recent improvements concerning the tool integration 
We integrated the already described components and their logic within the ESCAPEv2 framework. In order to 
accomplish this integration, we exploited the extensibility features of ESCAPE. Specifically, we implemented our 
custom AbstractMappingDataProcessor2 where the under deployment graph undergoes the verification 
stage in the overriding of the pre_mapping_exec() method. The verification related operations of the pre-mapping 
phase can be summarized in the following way: 

1. receive a NF-FG as input from ESCAPE; 

2. receive some policies to be checked from upper layers; 

3. store the graph and all of its nodes into VeriGraph by means of the REST API (the NF-FG database creation 
sub-process in Figure 9 and Figure 10); 

4. extract all the possible chains to/from the nodes involved in the provided policies (NF chain extraction); 

5. generate a verification scenario for each chain extracted, including all the necessary FOL formulas to model 
the encountered middleboxes (VNF chain formula creation); 

6. run all the verification tasks generated in the previous step (Z3 running); 

7. raise an exception if any error occurred during the previous step. 

                                                                    
2 https://sb.tmit.bme.hu/escape/util/mapping.html#escape.util.mapping.AbstractMappingDataProcessor 
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In order to test the complete verification workflow and its integration within ESCAPE we setup a comprehensive 
demo to show the described modules in action. Further details can be found in Section 6.1.  

4.1.5 Evaluation results and conclusions 
In Section 5.10.4 of D4.2 [6] we defined a possible scenario to validate our verification approach. The presented 
results were mainly obtained by feeding the Z3 SMT solver with the proper formulas to model the considered graph 
and the corresponding policies. In this section, we further refine our validation by considering the newly 
implemented components, i.e. VeriGraph with Neo4JManager and the complete toolchain including the automatic 
chains extraction and verification scenarios generation. The aim is to understand the impact of each phase of the 
verification on the overall verification. To do this, in Figure 8 we briefly report the scenario already presented in [6]. 

 

 

Figure 8 VeriGraph verification scenario. 

Basically, we have a graph where two types of traffic are handled and correctly forwarded over two different 
sequences of middleboxes: 

 Chain 1 is designed to handle the mail traffic and contains an antispam function; 

 Chain 2 is designed to handle the web traffic and contains an HTTP cache. 

Notice that the NAT and Firewall functions are included in both chains so that they can be shared. In order to 
characterize the runtime behaviour of our tool, we perform a verification task by configuring the functions in such a 
way that a reachability property from the client to the server is successfully checked. This can be easily obtained by 
disabling filters on the Antispam and on the Firewall.  

In the case of Chain 1, the obtained results show that the verification modules take an overall time of 3.824 seconds 
(evaluated on 5 test runs). This total execution time has been split also into the partial times required by the 
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different subtasks performed by VeriGraph, as depicted in Figure 9. The reported results are expressed as a 
percentage over the total verification time. 

 

 

Figure 9 VeriGraph phases (Chain1). 

As it can be seen, a large part of the computation is done by Z3 to actually solve the FOL problem (about 70%) and 
by Neo4JManager (about 20%) which has the important task of analysing the provided graph to extract the paths 
needed to check the required policies (the VNF chain extraction sub-process). 

Similar results are achieved in the verification of the Chain 2, which are shown in Figure 10. The total execution time 
elapsed for verifying the correctness of the second chain is 1.576 seconds, evaluated over 5 test runs. Also in this 
verification scenario the retrieval of the second chain (i.e., implemented by the Neo4JManager sub-process) and the 
execution of the SMT solver are the most expensive sub-tasks of the verification module. 

 

 

Figure 10 VeriGraph phases (Chain2). 
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4.2 Verification of Path Functionality 
4.2.1 Purpose and problem statement 
Over the last years, much research went into the development of formal methods to ensure a correct and “safe” 
operation of virtualized and programmable distributed systems, like targeted in UNIFY. In particular, the ability to 
formally specify, verify and compose policies is arguably one of the key benefits of Software Defined Networking 
(SDN): unlike failed “innovative” networking paradigms like Active Networking, where packets carry arbitrary code 
and are hence hard to verify, SDN’s match-action paradigm gives us a principled approach which naturally allows for 
a formal reasoning. 

However, today, most work focusses on offline resp. deployment time verification in the control plane (or 
middleware), e.g. through programming languages like Frenetic and Pyretic [44]), and verification schemes like 
VeriFlow or the UNIFY pre-deployment verification tool VeriGraph, as described in Section 4.1. Much less is known 
about how to perform verification of network policies or service chains at runtime. To fill this gap, we are exploring 
mechanisms that allow us to verify functionality in the data plane during run-time. In particular, we aim to verify 
network flows and paths. 

There are many reasons why verification in the control plane and at deployment time need to be complemented by 
run-time verification methods: 

● A programmable network is essentially an asynchronous distributed system: the installation of new policies 
as well as the update of existing policies need to be communicated from the control plane to the dataplane 
elements (switches, universal nodes, appliances, etc.). This transmission is performed over an asynchronous 
and unreliable network, and hence, updates may actually arrive out of order. 

● Errors: There are many reasons why an update or flowmod may not have the effects it was expected to 
have. For example, different switches from different vendors may react differently to certain events, or 
may not support all the expected features, or not in the expected form. 

● Misbehavior: over the last years, hackers have repeatedly demonstrated to be able to hack into routers. 
Without verification, a misbehaving router or network function may have negative consequences. 

● Long runtime: often, after deployment, a network runs for many years, and runtime verification is the only 
possible solution. 

We have hence also put efforts in developing a run-time path verification framework. This includes a) mechanisms 
to verify consistent network updates, i.e. whether the intended network changes actually took effect (e.g., using 
barrier requests) and network operation and updates are consistent, despite the fact that commands from the 
controller are transmitted over an asynchronous network; and b) an implementation of a tagging and efficient 
sampling mechanism for run-time verification of datapath forwarding behavior. 

The novelty of our approach not only lies on the runtime verification and dataplane focus, but also in that it takes 
into account the specific needs introduced by network function virtualization: while classic verification techniques 
like trajectory sampling work fine in network, in the presence of middleboxes and NFVs, as well as service chains, 
these classic solutions cannot be applied: as middleboxes often change the header fields. 
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This is a challenge indeed: implementation of the configuration and policies need to be verified on the data plane 
level as well. With the advent of NFV, there has been the nice possibility to dynamically scale out the network 
functionality like Router, Firewall, Load Balancer, IDS etc and at the same time with a lot of placement flexibilities. 

4.2.2 Brief technical description 
Our run-time path verification framework consists of two complementing approaches, i.e. ensuring consistent 
deployment of the paths configured for individual service chains during network updates; and verification of the 
resulting, operational dataplane paths by a tagging approach, popularly known as traceback approach. 

Consistent Network Updates: Based on the update scheduling algorithms namely Wayup and Peacock presented in 
[45] and respectively, we divide the policy updates from controller to OpenFlow switches in the form of rounds. Each 
round culminates in the controller sending the Barrier requests to each OpenFlow switch receiving updates in that 
round and waits for acknowledgement in the form of Barrier reply. Once done with receiving all Barrier replies, the 
controller initiates the next round of policy update. Therefore, we ensure there is synchronicity and consistency 
avoiding out of order updates and ensuring waypoint enforcement [45] and weak loop freedom [46]. More work on 
multiple policies can be found on [47] and [48]. This tool will be demonstrated in [49] and [50]. 

Path verification: The basic idea for our path verification tool is to tag the packets to save path information on the 
packets. This information is carried in the form of unique per link tag stored in the available Layer 2 (MPLS or VLAN 
ID field) or Layer 3 (DSCP bits) space in packet in such a way that it does not alter the data plane behavior of the 
packet. There are two possible approaches for path verification: either use the controller application or it can be 
done directly in the data plane by the OpenFlow switches. 

a. Controller application approach: The traffic hits the first switch and is mirrored and sampled i.e. 1 out of n 
packets (using sflow or Netflow) and then sent to controller application for inserting unique tag in into 
MPLS, VLAN or DSCP bit (whichever does not cause change in behaviour of traffic) based on inport, outport 
and switch number (uniquely identifies a link). Then, the tagged packet is re-injected to the datapath and 
follows the same procedure until it encounters a link to a middlebox where a copy of the packet is sent to 
the data plane collector which parses the packet and assigns them to a queue for analysis. This way, we 
prevent the mangling of inserted tags or header because of post-traversal flow re-association problem of 
middleboxes. At the collector level, analysis can be done on the tags to determine the trajectory of the 
packet of a particular flow. As depicted in Figure 11, the controller application residing the SDN controller 
tags the packets. 

b. Data plane approach: The traffic hits the first switch and there is rule with a soft configurable timeout that 
has action push unique tag into MPLS, VLAN or DSCP bit (whichever does not cause change in behavior of 
traffic). The unique tag is based on inport, outport and switch number so it uniquely identifies a link. As soon 
as the tagged packet is about to go to the middlebox, it is duplicated with the help of group table and sent to 
the collector for similar treatment like mentioned previously in controller application approach. As shown in 
Figure 11, the switches S1, S2 and S3 tag packets. 
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Figure 11 Depiction of controller application and data plane approach for tagging. A Controller application on top of 
the SDN controller tags packet in the former whereas the switches (S1-3) tag packets in the latter approach.                    

4.2.3 Evaluation results and conclusions 
4.2.3.1 Consistent network Updates Tool 
In terms of consistent network updates, we have implemented a prototype in mininet based on a RYU controller. We 
have implemented wayup [45] and peacock [46] algorithms successfully and have been running our evaluations 
with respect to the update time of flow tables in OpenFlow switches. As shown in Figure 12, the test setup for 
consistent network updates tool consists of reference single network update round for both Wayup and Peacock 
algorithms. The topology consists of 12 nodes or OpenVswitches in mininet. From Figure 12 to Figure 17, the edges 
having a solid line, build the old route through the network. The edges having a dashed line, build the new route 
through the network.  

For Wayup, the node filled with black colour i.e. S6 is the waypoint. 

 

Figure 12 Wayup and Peacock reference setup with single network update round. 

 

Figure 13 Wayup2 with two rounds of network update. 
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Figure 14 Wayup3 with three rounds of network update. 

 

Figure 15 Wayup4 with four rounds of network update. 

 

Figure 16 Peacock3 with three rounds of network update. 

 

Figure 17 Peacock5 with five rounds of network update. 

Results Wayup: As shown in Figure 12, the Wayup Algorithm in the consistent network update tool was conducted 
with original one round update named as reference, Figure 13 shows 2 round update (Wayup2), Figure 14 shows 3 
round update (Wayup3) and Figure 15 depicts four round update (Wayup4). The corresponding update duration in 
seconds is depicted in the Figure 18 shows that time taken for network update in more than one round is more but 
allows waypoint traversal. The duration of the update performed during this measurement consists of time taken by 
the controller to parse the REST request, calculate an update schedule, send the OpenFlow messages to the 
switches, the OpenFlow messages need to travel to the switches, the switches need to apply the new forwarding 
rules and the Barrier Reply messages need to travel back to the controller. The results show the tradeoff between 
update duration and consistency property of network update which is waypoint traversal. The update duration is a 
bit more than standard one round network update which is expected but ensures consistency in network update. 
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Figure 18 Update Duration of Wayup Algorithms. 

Results Peacock: As shown in Figure 19, the Peacock Algorithm in our consistent network update tool was 
conducted on same topology with original one round update named as reference and then with 3 round update 
(Peacock 3) and five round update (Peacock 5). The corresponding update duration in seconds is depicted in the 
Figure 12 where Wayup algorithm with four rounds of updates is mentioned as Wayup4. The results show the 
tradeoff between update duration and consistency property of network update which is loop freedom. The update 
duration is a bit more than standard one round network update which is expected but ensures consistency in 
network update. 

The demo video of consistent network updates can be found at http://tinyurl.com/zf4v7qo. 

 

Figure 19 Update Duration of Peacock Algorithms. 

4.2.3.2 Path Verification tool 
In terms of path verification, we implemented the above mechanism in the RYU controller, and a first test was 
successful as tags were detected by a wireshark packet sniffer. The future work involves mirroring of the traffic and 
sending the mirrored traffic to controller application to avoid disruption of regular production traffic. There is also a 
decision being taken on the sampling mechanism e.g., sending one in every one thousand packet to controller 
application for tagging (probabilistic tagging). We are also looking for ways to limit the number of mirrored packets 
being sent to the controller. 



  

34 D4.3 14.10.2016 version 1.2 

As shown in Figure 20, our test setup consisted of a traffic generator h1 that generates traffic. The traffic with 
destination port 23 is supposed to be forwarded to the port 3 of the switch that goes into middlebox h3, h1 is the 
generic host and h4 is the collector of tagged packets on the data plane. The tag is inserted in the DSCP bit of IP 
header and tag inserted has value zero and is a unique tag for the link between switch s1 and middlebox h3 and is 
based on inport: port1, outport: port 3 and switch number: s1.  

                                       

Figure 20 Testbed topology. 

Results: As shown in Figure 21, the untagged packet is received at the middlebox h4.  The group tables have actions 
to tag the packet with tag 0 and send it to the collector. As shown in Figure 22, the DSCP tags are collected at the 
data plane collector with the tag 0 in place. Moreover, the tags did not cause any alteration in the data plane 
behavior of the packet. 

These results were according to the expectations and show that the tagged packets with all path information are 
collected at the collector just before entering the middlebox as a middlebox normally is a layer 4 to layer 7 device 
and it modifies the layer 2 or layer 3 header. The packets are duplicated and duplicated packets are tagged by group 
table rule so that there is no altering or latency introduced in the production traffic. The reason for using the group 
table is to avoid duplicate actions and reducing rule complexity, we need to keep track of fewer rules. The group 
table and flow table entry of switch s1 is depicted in Figure 23.   
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Figure 21 Untagged packets received at Middlebox. 

 

Figure 22 Tagged packets received at Collector. 
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Figure 23 Flow table and Group table entries in the switch s1. 
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4.3 MEASURE – Expressing Measurement Intents, States and Reactions 
4.3.1 Purpose and problem statement 
The MEASURE language was introduced in M4.1 [26] as a way of providing:  

"Machine-readable descriptions of the capabilities and their configuration parameters need to be 
developed. They specify which measurement functions should be activated, what and where they 
should measure, how they should be configured, how the measurement results should be 
aggregated, and what the reactions to the measurements should be." 

The MEASURE concept is at the core of programmable observability work envisioned by SP-DevOps. It supports SP-
DevOps observability to be more reactive, more automated and easier to maintain. One of the main overall goals of 
UNIFY SP-DevOps is observability of heterogeneous and dynamic environments. Several monitoring or verification 
functions are available but they need to be instantiated, configured and the results exploited in terms of appropriate 
(re)actions. To do so in a generic manner, we introduced MEASURE for Measurements, States and Reactions. At the 
core lies the MEASURE annotation, defined by a simple grammar to define the metrics to be monitored, information 
about the expected values and what to do it those values reach pre-defined thresholds (see Figure 24 for an 
example). To be more specific, the Measurements part defines the metrics and a minimum set of parameters to 
configure them. States are defined as zones - as long as the value of one metric or a logical combination of several 
metrics stays in the interval, the zone remains the same. A state-machine like mechanism reacts to the migration 
form one zone to another and contains information on the reaction to adopt, e.g. notify an orchestrator or control 
entity that resources are running short. 

The MEASURE language contains three main sections: 

1. Measurement definitions describe which measurement function to activate, and where the particular 
measurement should be taken, and how the measurement should be configured. These are defined like 
functions in a programming language, with parameters for measurement locations (e.g. a particular port or 
VNF), and MF specific parameters such as measurement frequency, identifiers etc.  

2. Zone definitions that specify how to aggregate measurement results  as well as thresholds for the aggregate 
values. Zones definitions result in variables that are either true of false. Zones represent an abstract state of 
the system according to measurement above defined. 

3. Reactions that specify what actions to trigger when moving between zones, moving to and from zones, and 
while staying in a zone. Generally, actions consist of sending notifications, aggregated measurement results, 
and configuration to other components in the UNIFY architecture.  
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Figure 24 Example MEASURE description: expected metrics are latency and CPU load of NF-FG components; the 
aggregation logic for the metrics are given with temporal averages; reactions to zone movements are specified. 

 

MEASURE typically annotates a NF-FG, specifying how monitoring for this particular service should be performed. 
However, MEASURE could also define infrastructure monitoring by replacing the virtual components of a NF-FG 
(such as virtual ports and links) with their infrastructure counterparts. 

Within the MEASURE description, the components to monitor are referred to by abstract entities, such as nodes, 
ports, links or NF instances as specified in the corresponding NF-FG (NF-FG format see D3.3 [7]), rather than to 
what they are finally instantiated as in the infrastructure (e.g. a VXLAN tunnel or a Docker container). This allows the 
system to remain agnostic of the actual components it has to monitor until they have been instantiated. Once 
instantiated, the orchestrator informs the system about the mapping from abstract entities to actual 
implementations, which then configures monitoring functions accordingly. 

The main goal of the local aggregation system is to increase scalability of network management by reducing the 
overhead of monitoring processes. We achieve this in two ways: i) by utilizing the hierarchical DoubleDecker 
messaging system (described in section 4.1, and ii) by aggregating data as locally as possible. For this reason, a local 
Aggregation Point receives raw monitoring results from MFs. The monitoring controller dynamically configures the 
aggregation logic, based on the MEASURE description (specifically the Zones and Reactions parts). Acting as a sink 
for monitoring results, an aggregator continuously evaluates the results and upon traversing the defined zones 
sends or published events to interested components, typically local network functions, orchestrations or control 
layer modules, or network management systems. It is then up to these entities to take appropriate response, e.g. by 
requesting additional resources or handling failures 

4.3.2 Recent improvements concerning the tool implementation 
The work on MEASURE is still actively ongoing and in planned to be continued beyond UNIFY in a national Swedish 
project involving two UNIFY partners. The work on MEASURE is relating to all technical UNIFY work packages: WP3 
to understand how to integrate the monitoring framework within the NF-FG definition and how it will be 
decomposed through all the layers, WP4 for the integration with monitoring functions, and WP5 for a practical 
deployment within the Universal Node (UN) domain. 

measurement { 
m1 = oneway_latency(SAP1, SAP2); 
m2 = cpu_load(FW1);

} zones { 
z1 = Avg(m1, '5 minutes') > 10.0; 
z2 = Avg(m1, '5 minutes') < 10.0; 
z3 = Avg(m2, '1 minute') < 90%; 
z4 = Avg(m2, '1 minute') > 90%; 

} reaction {
z3->z4: Publish(topic=alarm, msg="Warning CPU"); 
z2->z1: Publish(topic=alarm,msg="Warning latency"); 

}
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We have currently developed four components, depicted in Figure 25, as a reference implementation of the 
MEASURE concept in an UN. These components are: 

i) A monitoring management plug-in (MMP) acting as a monitoring controller in an UNIFY UN, performing 
actions according to MEASURE intents required for the Elastic Router use-case. 

ii) A parser for the MEASURE annotation (MEASUREParser), capable of producing a parse-trees as Python 
data structures, as XML, as JSON, and as YAML. 

iii)  A Monitoring Function - Information Base (MF-IB) to catalogue MF implementations for various domains 
and allowing translation from metrics to associated functions providing the metrics. MFs must be 
registered in this database, which contains what configuration parameters and their types are expected, 
and what metrics the MF produces, and the data types of these metrics. 

iv) An in-stream processing Aggregator to demonstrate the efficiency of local aggregation of monitoring data. 

 

Figure 25 Developed components in the MEASURE system. 

The MMP uses the DoubleDecker as its main messaging system, however, the MMP is also connected to the local 
deployment system, e.g. in the case of a Universal Node this component is the Docker daemon. The MMP supports 
JSON-RPC for receiving mapping information from the local Orchestrator, together with the MEASURE descriptions. 
This is called whenever an NF-FG is deployed, modified, or removed, in order to instantiate, update, or remove the 
associated monitoring functions.  This triggers the MMP to parse the MEASURE description, using the 
MEASUREParser described below. The first step is to lookup the appropriate Monitoring Function to generate the 
requested metric; this is done by querying the MF-IB on the current node. The MMP then generates configuration 
commands, which implements the Zone aggregation logic described in the MEASURE description, and sends them to 
the Aggregator, The next step is to start the Monitoring Functions if not already running or re-configure them 
otherwise. This step is very domain dependant; the process to start a virtual function being very different in all the 
domains considered in UNIFY. As an example, in the Universal Node this process involves the creation of new Docker 
containers using the Docker daemon interface. The MMP has to configure the containers at start-up for some 
parameters but also send runtime parameters via the DoubleDecker once the containers are running. 

The MEASUREParser is a module implementing a parser for the MEASURE description. This parser takes the 
MEASURE annotation provided as meta-data along with the NF-FG and produces several outputs suited for each 
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target. These different outputs are used to transform the MEASURE description in to a data model, or to configure 
the local monitoring data aggregation. This is a key component to the MEASURE prototype as it defines the syntax 
used for expressing monitoring intents in the service layer and gives a total abstraction of the actual deployment in 
the infrastructure layer. 

The Aggregator is a generic component used at several layers to aggregate monitoring data, following the recursive 
architecture envisioned in UNIFY. It can be deployed locally to aggregate data as close as possible from the 
monitoring functions and reduce the amount of data to be transmitted to higher layers. This is even more important 
as the number of monitoring functions deployed for a NF-FG is increases and each MF generates multiple metrics in 
high frequency. A discussion of the potential overhead savings of local aggregation can be found in [32]. An 
aggregator furthermore has the utility to trigger automated reactions based on zones defined for compound 
metrics. The aggregation rules are generated by the MMP, which extracts the semantic meaning of the MEASURE 
annotation and then transformed into arithmetic operations that the Aggregator can execute. If several aggregators 
are connected through several layers the aggregations rules will be different at each layer, each layer presenting a 
more abstract view of the resources usage. 

The MF-IB provides a mechanism to resolve which tool can provide a certain metric. These tools are registered in a 
local database and are domain specific. The MMP queries the MF-IB for a specific metric to obtain the list of available 
tools and their configuration parameters. It allows the decoupling of the metric from the implementation of a 
monitoring function, a tool can provide several metrics and one metric can be provided by several tools; the MF-IB 
provides the mapping. The MF-IB can be centralised and provide the same monitoring functions to several nodes 
independently. This is where the monitoring process becomes intent-based as the initial request doesn’t have to 
include the exact implementation but only the desired metric.  

4.3.3 Recent improvements concerning the tool integration 
The integration of MEASURE is an ongoing process, benefiting from the Elastic Router use-case (more on this use-
case in Section 6.2). We used the concrete work done with other partners on the integrated prototype to improve 
MEASURE and test it in a real environment. The integration work was divided in two main tasks, the integration of 
the MEASURE components with each other and the integration with the other prototypes and the environment 
itself. 

As described earlier, MEASURE takes the form of four major independent components. They all have to 
communicate with each other so it was our first step of integration. The MMP is the central point; it receives the NF-
FG with the MEASURE annotation and needs to, in order, understand it, configure the monitoring functions and 
finally configure the aggregation points used as destination for the monitoring data. The MEASUREParser is used 
directly inside the MMP and extracts the semantic meaning. Once this is done, the MMP has to effectively exploit this 
information. The MEASURE annotation consists of a list of metrics to be collected, intervals of values for those 
metrics which define states of the system and actions to be taken when the state of the system changes. The first 
step is to create the functions to collect those metrics. To do so the MMP queries the MF-IB and decides which 
function to use. We had to design a protocol to communicate between those two components and a transport 
mechanism. The obvious solution for the transport was to use the DoubleDecker. It allows a good abstraction of the 
network so the MF-IB can be located on a remote node but still accessible as easily as if it was local. For the protocol 
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we agreed on using JSON-RPC for querying the available tools. JSON-RPC woks similarly to a REST API with 
commands and parameters except that no exposed IP address is needed, the commands can be sent via the 
DoubleDecker. One the MMP knows the available monitoring functions it can start and configure them. The 
aggregator is then configured to receive the monitoring data. The MMP has to make sure all the components are 
connected to the DoubleDecker. 

The integration of MEASURE with other components mostly happened within the work on the integrated prototype 
and the elastic router use-case. This scenario is envisioned to take place is an Universal Node, result from WP5, 
which is based on a Docker containers running environment. We had to adapt the MMP to start and configure 
Docker containers and communicate with the Docker daemon to retrieve runtime data. In the case of a different 
domain, the same work would have to be done according to the execution environment. Within the UN, the MMP has 
to communicate with the local orchestrator to exchange information about the NF-FG and its mapping in the 
infrastructure. Again, the DoubleDecker was chosen to be responsible for the transport. The MF-IB was configured 
to expose the monitoring functions used in this scenario: cAdvisor [51] and the Rate Monitoring (section 4.5).  These 
two monitoring functions can be configured at both start-up and run-time so we had to integrate these capabilities 
in the MMP. The aggregator also had to be modified in order to support the two databases used in the scenario, 
namely OpenTSDB and PipeDB. 

4.3.4 Evaluation results and conclusions 
Our current integration has been tested in the scope of the Elastic Router demo with the Rate Monitoring and 
PipelineDB (see Section 6.2). The goal was to deploy the Rate Monitoring and an aggregator, collect raw data and 
apply arithmetic calculations to reduce the volume of data to be stored or send to other components. The key 
problem is to provide a code to perform the calculation that is generic enough to handle any sort of raw data. The 
aggregation rules come from the MEASURE annotation, transformed by the parser, but the parser does not create 
directly executable code. The aggregator has to be able to create its own code and extract information from the data 
send by the monitoring function to perform the aggregation. We have demonstrated this possibility using PipeDB, a 
stream based DB. The aggregator creates insert rules as in a SQL INSERT, but this insert contains rules to aggregate 
the data combining arithmetic functions such as max, min or average and temporal filtering e.g. data received in the 
last 10 minutes. The results obtained so far with the Rate Monitoring are very promising as we can greatly reduce the 
amount of data after aggregation while still sampling at a high rate. Not reducing the sampling allows for instance 
more accuracy in case of problem; one of the reactions defined by the MEASURE annotation can be to reduce the 
level of aggregation in some cases. 

The implementation of the MEASURE concept is still recent and needs more maturity to be evaluated in details. 
Besides the elastic router, we considered applying MEASURE also the UNIFY FlowNAC use case (D3.5 [18]), which 
revealed several shortcoming of the current MEASURE language. Specifically, the current MEASURE definition lacks 
the possibility to define non-observed metrics or messages as a condition, and furthermore does not allow to 
integrate MFs that are not under direct control of the monitoring controller (i.e. MMP), like VNF internal states 
published through the VNF itself.  

In the FlowNAC demo, monitoring results, which represent the number of connected End Users, are not generated  
by an MF but by the VNF itself. Monitoring result variables in MEASURE are defined as variable = metric(parameters), 
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for example m1 = delay(from=port1,to=port2). When processed this triggers the start and/or configuration of an MF 
able to provide the metric, for example an MF performing ping, this needs to be extended to support the case of 
VNFs generating monitoring results. One solution could be to define a special metric keyword that refers to a VNF in 
the NF-FG associated with the MEASURE description, together with a description of the generated monitoring result. 
This could for example be m1 = fromVNF(VNF, {'users':'int'})  showing that VNF will generate results containing the 
integer metric, 'users'. This information would be enough for the MMP to resolve the name of the instanced VNF and 
configure the aggregation point. No other change to MEASURE would be needed to support VNFs that generate 
monitoring results. 

The FlowNAC demo also relies on heartbeats to indicate that a VNF is alive, reactions are triggered when no 
heartbeats are received within a certain time. MEASURE on the other hand assumes that reactions should be 
triggered based on the data arriving in monitoring results. One way to remedy this would be way to express 
temporal aspects as part of MEASURE's zone logic which describes when a metric has moved into a separate zone, 
which in turn can have reactions associated with it, and logic in the Aggregation point to maintain message arrival 
times.  The MEASURE description of this solution could be as shown in Figure 26, to the right. 

 

Figure 26 Liveness solution with an external liveness MF (left), and with an internal age parameter (right). 

We plan to work on integration with other prototypes to continue exploiting the results and learning in other 
NFV/SDN related projects. The challenging part of MEASURE is to provide a very generic mechanism but with 
meaningful aggregation adapted to any metric. According to the SP-DevOps concept, service providers should be 
able to develop their own VNFs and MFs and simply plug them in the architecture. This can only happen if the 
interfaces are clearly defined but not too restrictive. 

 

4.4 TWAMP – Legacy OAM protocol support 
4.4.1 Purpose and problem statement 
As explained in D4.2 [6], SP-DevOps can benefit from programmability enablers to existing protocols and 
implementations, such as standardized data models. A case in point introduced in [6] is the standardization of a 
YANG data model for the Two-way Active Measurement Protocol (TWAMP) thus complementing other SP-DevOps 
tools and mechanisms, such as RateMon and EPLE, with programmable active network measurements using an 
existing standard protocol. 

measurements { measurements {                               
m1 = liveness(from=FNC_1, param = m1 = fromVNF(FNC_1, {'users':'int'});      
{'users':'int'}, timeout=30s); } zones {                                    

} zones {                            z1 = m1.age > 30s;                         
z1 = m1 > 0;                      z2 = m1.age < 30s;                         
z2 = m1 < 1;                       } action {                                   

} action {                           z2 -> z1 = Publish(alarm,..);              
z1->z2 = Publish(alarm,..);        }                                            

} 
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4.4.2 Brief technical description 
Sections 5.4.1 and 5.4.2 of [6] introduce the TWAMP YANG model and map it to the UNIFY functional architecture. In 
short, the TWAMP functional blocks Control-Client and Server are mapped to the Local Control Plane (LCP) of the 
TWAMP instance Observation Point (OP), while the TWAMP Session-Sender and Session-Reflector are mapped to 
the Local Data Plane. The standardized TWAMP data model [52] facilitates the management and administration of 
active network performance measurements by decoupling the protocol implementation from its vendor-specific 
management platform. In effect, a UNIFY SP-DevOps platform will be able to automate pertinent active 
measurements from deployed equipment with TWAMP support and feed the results to the distributed monitoring 
DB for further use e.g. by the recursive query engine (RQL). 

4.4.3 Recent improvements concerning the tool implementation 
The first version of the TWAMP data model was introduced in the IP Performance Metrics (IPPM) working group 
(WG) in March 2015, based on the work of an author team from UNIFY and major vendors. Since then, the document 
was updated and presented in IETF 93 and IETF 94 as an individual draft (draft-cmzrjp-ippm-twamp-yang). During 
this period, this line of work received significant commentary and support on the mailing list as well as during the 
IPPM meetings. In consultation with the WG Chairs and the Area Director it was deemed that the current WG charter 
permitted the addition of a new milestone document which could be addressed by the proposed data model. As a 
result, the IPPM WG issues a call for adoption which ended successfully in favour of the draft. As a result, further 
updates based on the call for adoption call review round were addressed and the new WG-adopted document was 
issued (draft-ietf-ippm-twamp-yang) and presented at IETF 95. We note that the intended status of the draft is 
Standards Track. 

4.4.4 Evaluation results and conclusions 
Performance measurements related to the YANG model are beyond the scope of UNIFY. Interested readers will find 
in the corresponding IETF datatracker page [53] the history of the TWAMP data model as well as the results of the 
official IETF YANG model validation results (affirmative as of March 2016).  

 

4.5 RateMon – scalable congestion detector 
4.5.1 Purpose and problem statement 
The link utilization and rate monitoring MF is aimed at implementing a scalable congestion detector [54] based on 
the analysis of the traffic rate distribution on individual links at different time scales. 

4.5.2 Brief technical description 
As described in D4.2 [6], we employ a statistical method for node-local analytics based on the use of two byte 
counters for storing the first and second statistical moment (s1 = 1   , 2 = 2 ) observed under  time 
intervals Δ . Assuming a log-normal distribution ( , ) for the observed rates, the parameters  and  of the 
distribution can be estimated from the statistical moments and used for representing the observed traffic rates in a 
compact form. By inspecting the percentiles of the cumulative density function ; ,  corresponding to the link 
capacity , we can assess the congestion risk, 1 ; , .  When applied at short intervals (seconds or 
milliseconds), we argue that this metric is significantly more informative compared to the common practice of 
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assessing the 5-min average traffic rates, in which short congestion episodes cannot be observed [55], [56] [57]. 
Further, we have theoretical results indicating the benefits of node-local congestion analytics in terms of a total 
message reduction of a factor of at least 3000 compared to when using a similar monitoring function based on 
SNMP [32]. 

4.5.3 Recent improvements concerning the tool implementation 
Since D4.2 [6] we have refined the congestion detector by implementing an autonomous sampling frequency 
scaling mechanism that samples the empirical rate distribution at high rate, only when there is an elevated risk of 
congestion. The underlying estimation method is the same as described above, but since the accuracy of the 
estimate depends on the number of samples used to produce each estimate, and we aimed for a mechanism which 
reports congestions based a highly accurate risk estimate but whished to reduce the sampling cost as much as 
possible, we decided to go for detector with variable frequency. 

For any given (e.g. initial) sampling frequency, we maintain one distribution estimate, but inspect two risk levels, one 
to indicate the congestion itself, normally the risk of observing rates above the link capacity over any periods longer 
than one or a few buffer depths, and one used to scale the sampling frequency up or down depending on the risk of 
exceeding another threshold, e.g. 90% of the link capacity estimated at the current frequency.  

We have identified a single continuous function (see Figure 27) that maps observed risks to sample intervals in a 
range of 10ms to 300s that works well as an autonomous scaling mechanism. The mechanism contributes to 
achieve high detection rates while keeping the sampling cost (i.e. the number of samples) low during a monitoring 
session. The function itself is modelled on the distribution function of a bounded Pareto distribution with three 
parameters: upper and lower bounds, and slope. . The upper bound corresponds to the longest allowable interval, 
the lower to the shortest and the slope parameter  how quickly the period decreases with elevated risk levels.  In 
practise the lower bound has minor impact, as long as it is shorter than, and on the same order of magnitude, as the 
buffer depth. Exploration of the parameter space of this function, which we believe is a representative selection of 
real world packet trace, together with randomly generated traffic simulations has allowed us to determine a small 
range of parameter values that appears to be robust for almost all studied cases.  The only remaining trade-off is 
between sampling cost at very low risks, and the ability to scale up fast enough to capture very short isolated 
congestion events. 

 

Figure 27 Mapping risks to sampling intervals, Log scale on X-axis. 

Note that the initial approach based on using only a single counter mentioned in [58] was abandoned as it turned 
out to be too inaccurate for estimation purposes. . However, a single bit modelling approach has been introduced for 
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compensating for measurement jitter caused by partially arrived packets, as the raw byte counters are normally 
updated at packet rate, rather than bit rate. For land lines with fixed nominal buffer read-out rates and the total flow 
on such links, this problem can be remedied by (conceptually) observing the momentary rates at a duration 
corresponding to the time taken to transfer a single bit [59].   

4.5.4 Recent improvements concerning the tool integration 
The self-scaling mechanism is implemented as an extension to the prototype described in [54] [6] [60] [27], but has 
not been integrated into the released version of the rate monitoring function (also known as RAMON) as part of the 
SP-DevOps toolkit. The latter is under integration with other SP-DevOps tools for demonstrating aspects of the 
outlined monitoring and troubleshooting processes [58]. 

4.5.5 Evaluation results and conclusions 
The evaluation includes assessment of detection rate for different congestion buildup times T, and values of the 
slope parameter  (Figure 28) and sampling interval upper bounds hb in milliseconds (Figure 29) and sampling cost 
(relative to a sample interval corresponding to a buffer depth of 30ms) and  =1.8 (Figure 30). In general, larger slope 
parameter settings can improve the detection ratio but at a higher sampling cost. This is because the estimation 
period scales down faster with a larger ζ, and thus can adapt quicker to increased risks. This is most obvious for the 
fast case (T = 10s), where the detection ratio is enhanced by 6% with the increase of ζ from 1.2 to 3.0 (Figure 28 
and Figure 30). Specifically, in Figure 28 we can see that increasing ζ above 1.8 yields only minor improvement for 

all but the very fast T. Moreover, the larger the upper bound (hb), the longer the ”sleep” period of the congestion 
detector, and thus the higher possibility of missing short term congestion events (Figure 29). From the perspective 
of sampling cost, we can see in Figure 30 that increasing ζ from 1.8 to 2.4 and 3.0 significantly increases the 

estimation cost, especially with slow T. 

 

Figure 28 Detection ratio for different slope mapping function slope parameter  and congestion buildup times T in 
seconds. Upper bound (hb) 30 seconds. 
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Figure 29 Detection ratio for two different upper bound (hb) and congestion buildup times T in seconds for =1.8. 

To conclude, a robust, scalable and efficient congestion detection mechanism based solely on throughput 
measurements has been implemented as a monitoring function that is well suited to integration into the UNIFY 
framework. The mechanism is distributed so that high rate operations are performed on or close to the monitored 
network element, and lower rate operations based on can be centralised, or distributed as required by the 
deployment scenario. The full details of the detection mechanism and the evaluation can be found in [59]. 

 

 

Figure 30 Sampling cost relative to sampling interval corresponding to buffer depth for different slope mapping 
function slope parameter  and congestion buildup times T  in seconds.  Upper bound 30 seconds. 

 



  

47 D4.3 14.10.2016 version 1.2 

4.6 Probabilistic delay monitoring 
4.6.1 Purpose and problem statement 
Effective automation and autonomicity in large-scale networks require efficient ways of configuring the 
management functions at a higher abstraction level. Usually deterministic low-level and fixed thresholds are applied 
to control the network. For data-driven methods, applying thresholds directly on the data at hand requires more or 
less exact domain knowledge to be effective and is less robust to short-term variations in the data. A better 
alternative is to employ probabilistic approaches for data modelling as well as triggering of management functions 
and automated processes based on probabilistic requirements 

Probabilistic approaches offer efficient ways to set detection thresholds and triggers by the means of configuration 
parameters normalized over the data. Increasing the configurability and controllability of the next generation 
networks is one of many challenges to address, where the employment of probabilistic approaches play an 
important role for various aspects of SP-DevOps and orchestration support, such as detection of service 
degradations and network faults, as well as resource management. 

Based on our previous work reported in D4.2, we elaborate on the idea of probabilistically configurable monitoring 
functions for the purpose of conditional observability and troubleshooting support. Here, we report an extended 
probabilistic self-adaptive monitoring approach capable of varying its measurement intensity for modelling link 
delays and detecting changes given probabilistic precision and detection requirements.  The benefits of both 
approaches encompass increased configurability, measurement efficiency and a normalized way to statistically 
profile changes that are of interest to detect based on probabilistic requirements. 

For the purpose of obtaining a computationally efficient approximation of the underlying delay distribution, the 
approach is based on estimating the parameters of a parametric density function using a statistical moments 
estimation method. For both probabilistic precision and change detection, the work is focused on the case when the 
delay follows a Gamma distribution - however, the principles of the approach can be adapted to other delay 
distributions observed in the literature, such as log-normal or Weibull [61] [62] [63].  Parametric models, when 
applicable, often provide better and more complete models of the underlying statistical process and can in many 
cases also be estimated at a low computational cost, compared to non-parametric models. 

4.6.2 Brief technical description 
In the following, we describe the principles for probabilistic precision and change detection. 

4.6.2.1 Probabilistic precision 
A specific subtask of network monitoring is the design of probing strategies. One of the aims of these strategies is to 
autonomously adjust the probing intensity or measurement session to meet requirements on precision of the 
measured values, without specifying the exact number of measurements. Applying such a strategy means that the 
probing intensity will vary in time and from one link to another to meet the given precision requirement. The 
advantage of conditional observability based on a statistical precision requirement is two-fold. First, the obtained 
probabilistic model is guaranteed to fulfil the specified precision requirement without the need of specifying the 
exact number of samples, which effectively eliminates the risk of oversampling or undersampling the link delay. 
Second, the approach allows for predicting the number of samples required to obtain a probabilistic model fulfilling 
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the precision requirement, which allows for better planning of the deployment of monitoring functions and the 
resources needed for monitoring. 

The principle of our probabilistic precision mechanism is described as follows: let x be a random variable and θ be a 
measurement (E.g. mean or variance) of x. Let θ be the estimated measurement of a set of sample data D from x. 
We define the precision of an estimated measurement θ by using a pair p, c , where p is the precision probability 
and where the real number c is the precision value, such that, for some given method to construct a precision 
interval I based on a set of samples D and the interval size | |, we have:  

∈       ∈       
2

,    
2

 (1) 

The precision value c is regarded as the relative interval size. The larger precision probability p we have, for a 
constant precision value c, the higher precision. Similarly, the smaller precision value c we have, for a constant 
precision probability p, the higher precision.  

In order to guarantee the precision of an estimated measurement, we need to have enough samples. The number of 
required samples depends on random variable from which the samples are sampled as well as the precision 
requirement. In the case of link delay monitoring, link delay is often a Gamma distributed random variable. Thus, the 
needed number of samples H for acquiring the estimated mean delay with a precision p, c  can be derived from 
the following formula:  

ceil 2
2

 erf  (2) 

The δ is approximated to  

round log 2 2  (3) 

M and S are the sample mean and sample standard deviation of an initial set of samples Dinit, respectively. We 
developed an adaptive on-line algorithm to decide the number of required samples H and get the estimated 
measurement θ satisfying the precision requirement. Based on this principle, we designed an algorithm can find the 
appropriate number of samples to estimate a link self-adaptively.  The algorithm first use an initial set of samples to 
calculate the required number of samples . Then it takes  samples to make the estimation.  

4.6.2.2 Probabilistic change detection  
For change detection, we propose a monitoring function that implements sophisticated detection mechanisms 
based on controllable requirements on the detection certainty for changes in the observed link delay. This allows for 
detecting changes with a certain profile (gradual or abrupt development) and magnitude specified by the operator 
and with probabilistic detection requirements. The advantages with the probabilistic approach of specifying desired 
changes to detect encompass alarm filtering and simplified configuration with less detailed knowledge needed 
about the data at hand. The idea is that the observed delays are generated by a statistical distribution which in 
periods is stable, i.e. it does not change, and in periods is unstable (during a change). Given this view of delay, the 
change detector detects changes in the delay distribution. The change detector designed by us is concerned with 
changes in the mean and in the variance of the delay distribution.  
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We assume that the delay data consist of a series of batches of delays. We let D1, D2, … denote the batches and xi, j 
the individual delay measurements, such that Di x , , … , , . We let Mi and Si2 be the sample mean and 
sample variance of batch Di, respectively. The concept of change presented here is governed by following two 
principles or requirements:  

1. False alarm rate The false alarm rate is less than a given probability  
2. Minimum change If a change of at least a given magnitude occurs in the delay distribution, then the chance 

of detecting that change must be larger than a given probability 

The idea is to derive the number of sample needed to fulfil the first and second requirements above for the purpose 
of reporting a potential change with the specified certainty requirements. In the case of mean value change 
detection, by the false alarm rate requirement, the chance of detecting a change must be smaller than a given 
probability 1 - pM if there is no change in the delay distribution. Therefore, we construct an interval IM around the 
mean Mi, if there is no change in the delay distribution from Di to Di+1, then  

∈  (1) 

Let μ , σi
2 be the mean and and variance of the delay batch data Di. By a change of magnitude |cM –  1| in the mean 

value for Di 1 with respect to Di is meant that | |/  |cM –  1|. By the minimum change requirement, 
the chance of detecting a change must be at least equal to a given probability ( ), if a change larger than a certain 
magnitude |cM   1| occurs. We assume that a change in the mean is detected whenever Mi 1 ∉ IM, where IM is the 
same change detection interval for the false alarm rate requirement in equation (1). Then the mean value minimum 
change requirement, on the number of samples ni and ni+1 is that, if the change magnitude is larger than |cM   1| 

∉    (2) 

In the case that the delay data is Gamma distributed, we can derive that  

,   (3) 

where t is defined by  

1
2

 

and where 1 is the inverse cumulative distribution function for the t-distribution for n degrees of freedom. The 
n  and is derived as the follows:  

ceil
2

1
 (4) 

for  

′
′

1
2
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where 1 is the inverse cumulative function for the normal distribution.  

Similarly, for variance change detection, we can also construct an interval I  around the variance Si  and find the 
number of samples n to satisfy both the false alarm rate requirement P , as well as the variance minimum change 
requirement qS2 , cS2 . 

4.6.3 Recent improvements concerning the tool implementation 
The link monitoring function described in D4.2 [6] performs successive end-to-end measurements for the purpose 
of deriving intermediate link delay and loss, without the need of explicitly measuring each link individually. In [64] we 
evaluated the estimation accuracy of the method compared to the ground-truth link delay and loss in a simulated 
network environment in NS2. Moreover, we showed that the method, compared to a SDN-controller based link 
monitoring approach, can reduce the measurement overhead by the order of . 

Since D4.2, we have focused on developing the statistical precision mechanism for controlling and configuring 
conditional observability points in a network with focus on delay measurements. Moreover, we developed a 
probabilistic approach for change detection in observed delays. Both cases have so far been evaluated in OMNET++ 
for single links. The approaches can currently be applied to cases where individual links are monitored (e.g. physical 
one-hop links or for monitoring service performance end-to-end), but is extendable to the successive end-to-end 
measurements as described in D4.2 [6]. . Details about the precision mechanism and the probabilistic change 
detection approach can be found in [65]and [66] respectively 

4.6.4 Evaluation results and conclusion 
The delay monitoring function is not part of any integration activity within the UNIFY project. The described 
functionalities of the monitoring function developed since D4.2 [6] have been evaluated in a stand-alone framework 
implemented in OMNET++. 

4.6.4.1 Probabilistic precision 
We refer our probabilistic precision method as the ad, since it can adapt the number of required samples for an 
estimation to a precision requirement and sample distribution. We compare the results of using this method to 
reference methods using a fixed number samples per estimation, and refer to such methods as ref n for any given n 
number of samples.  

In the comparison we use hit rate and sampling cost as metrics for our evaluation. The sampling cost is defined as 
the average number of samples used per estimation.  In our experiments, the delay of a link is a Gamma distributed 
random variable with two parameters: shape and scale.  For each random variable and under each precision 
requirement, we repeatedly use our precision mechanism to estimate the mean for 2000 times.  Hit rate is the 
number of the estimations that satisfies the precision requirement over the total estimations. Ideally, it should be 
equal to the  of a precision requirement , . 

Firstly, we test our method on link delay of different Gamma distributed random variables. We fixed the scale and 
vary shape parameter from 1 to 500. We compare the results with reference methods ref  10 and ref  100, 
respectively. From Figure 31, we observe that the hit rate of the ad method varies in a small range 0.89,0.92  
when shape is below 100. This shows that the estimations made by our method can satisfy the required precision 
requirement p = 0.9,c = 0.1 with statistical significance. We also observe that with the ad method the sampling cost 
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varies for each random variable. The method adapts the sampling rate to the link delay distribution that as the shape 
parameter increases, and the sampling cost decreases. For the reference methods, the sampling cost remains 
constant (10 for ref 10 and 100 for ref 100.). As a result, on one hand, too few samples are used when shape values 
are small, resulting in hit rates far below the desired precision. On the other hand, when the shape values are large, it 
does fulfil the precision requirement but often to a higher degree (and higher sampling cost) than required.  

 

Figure 31  Hit Rate of different models with different shape (sh) parameters for the delay distribution. Two reference 
models are used, ref  10 and ref  100. The annotations are the sampling costs of the ad model. 

Secondly, we apply our MF in variant networks of different sizes (from 26 links to 4090 links) generated by using 
Brite Barabasi model. As Figure 32 indicates, the total number of samples used to estimate all the links inside a 
network increases as the network size grows. For example, as Figure 32a shows, at a precision requirement 
(0.90,0.10), ref  100 is the most costly one, while ref  10 has the lowest cost. Our ad method falls between them, 
which means the sampling cost of our ad model is less than 100. In practice, 100 samples per estimation are very 
small cost. Probe tests are often much longer than that. However, our ad model can provide accurate estimations 
with less than 100 sampling cost. 

 

 

Figure 32 Sampling costs in networks generated by Brite Barabasi model (p = 0.90,c = 0.10). 

In conclusion, our self-adaptive monitoring function is capable of estimating the parameters of Gamma distributed 
delays while fulfilling specified requirements on the model precision. This facilitates configuration as only the 
precision requirements are needed. The probabilistic design of the monitoring function provides means to control 
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the monitoring result in a scalable and resource efficient manner across large-scale networks than can be done with 
most monitoring functions operating by a fixed number of measurements. The experiments illustrate that fixed 
monitoring functions deployed with identical configuration across a network will produce parameter estimates of 
highly varying precision, and with a higher total monitoring overhead (up to 22 times) compared to the suggested 
probabilistic monitoring function.  

4.6.4.2 Probabilistic change detection 
We implemented our probabilistic change detector in Omnet++ to monitor the delay of a link, which is a Gamma 
random variable. For evaluation, we randomly make changes on the shape and scale parameter of the Gamma 
random variable, in order to vary the mean between 0.02s and 1s. The time interval between two neighboring 
changes is uniform randomly distributed with an average of 500s. We setup our change detector to catch changes 
larger a required magnitude c in every 50s. We classify those random generated changes into three categories:  

 Valid changes are changes that are larger than the magnitude c and happen during the ”ready” state of the 
change detector. For valid changes, our detector is supposed to catch them with a probability larger than pM.  

 Small changes happen during the ”ready” state of the change detector, but with magnitudes smaller than 
the magnitude c. For those changes, the behavior of our detector is undefined. It may or may not detect 
those changes.  

 Invalid changes are the changes apart from valid changes and small changes. They happen during the 
”training state” of our change detector. They are supposed to be ignored by our change detector. 

Correspondingly, we also classify the detections of our detector into three categories.  

 Valid detections are the detections for valid changes. A valid detection should occur within 100s after a valid 
change happen.  

 Small change detections are the detections for small changes. A small change detection may occur after a 
small change within 100s.  

 False detections are detections made by our change detector when there is no change. False alarm rate is 
defined as the number of false alarms over the number of total estimations. 

Detection 
requirements 

Test traffic properties Detector performance 

   Total 
changes 

Valid 
changes 

Small 
changes 

Valid 
change 
detection 
rate 

Small 
change 
detection 
rate 

False 
alarm 
rate 

Avg. 
Samples 
per 
estimation 

0.95 0.99 0.05 1999 1676 85 100.0% 71.8% 2.3% 3721.3 
0.95 0.99 0.10 1999 1713 177 99.9% 71.2% 2.1% 1262.6 
0.95 0.99 0.50 1999 1129 182 99.8% 66.1% 3.8% 66 
0.95 0.99 1.00 1999 475 1447 99.8% 75.6% 8.6% 25 
0.99 0.99 0.05 1999 1614 55 100.0% 68.8% 0.4% 4766.3 
0.99 0.99 0.10 1999 1703 117 99.9% 65.7% 0.4% 1610.2 
0.99 0.99 0.50 1999 1119 462 99.4% 57.2% 0.6% 96 
0.99 0.99 1.00 1999 480 862 98.5% 60.9% 2.1% 36 

Table 2 Test results of the change detector with different detections requirements. 
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As Table 2 suggests that our change detector has a very good detection rate for valid changes. Besides this, the false 
alarm behaviour of our detector is as required. The average required samples per estimation vary with the detection 
requirement. The higher the false alarm rate, the smaller the magnitude the larger cost. 

In summary, our change detector is capable of self-adaptively find out the appropriate number of samples for 
detecting changes. It can capture changes larger than a required magnitude with an expected probability while 
keeping the false alarm rate as low as required.  The sampling cost varies with the detection requirement and false 
alarm requirement. 

 

4.7 EPLE – efficient SDN loss monitoring 
4.7.1 Purpose and problem statement 
EPLE is a monitoring function that estimates packet loss for aggregated flows in SDN-based networks. For most 
practical applications of SDN in both transport and cloud domains, we expect extensive usage of aggregated (i.e. wild 
carded) flow entries in forwarding devices (in the current implementation OpenFlow switches), as opposed to fully 
specified microflows without wild-carded match fields. As a prominent example, traditional routing is based on 
flow-rules aggregated by destination addresses or address ranges (i.e. subnets). We thus identified proper 
performance measurements of aggregated flows in an SDN environment as an interesting and relevant research 
challenge [25]. Furthermore, our goal is to perform these measurements in a manner that is efficient from both 
data- and control plane perspectives. 

4.7.2 Brief summary of concept and design choices 
As outlined in D4.1 [25], our work was inspired by FlowSense [67] for low-cost monitoring and DevoFlow [68] in 
terms of using an automated devolving mechanism. In EPLE, we realize overhead efficiency of the measurement 
method by not requiring any additional probe packets and piggybacking signaling traffic and measurement results 
on OpenFlow messages. Furthermore, EPLE relieves the controller from analyzing each individual flow contained 
within an aggregated descriptor. Specifically, EPLE addresses the shortcomings with respect to network 
performance measurements (specifically packet loss as a first example) of existing methods by: 

 supporting aggregated flows 

 providing a policy-steered selection of flows to be devolved, as well as a timer and policy-based mechanism 
for selecting which flows should be communicated to the controller as candidate flows 

 using a policy-steered timer that forces expiration of a flow from the table (through setting the 
hard_timeout parameter in the OpenFlow ofp_flow_mod structure associated with the devolved flow), thus 
forcing the transmission of a OFPT_FLOW_REMOVED message even while a long-lived flow is still being 
active in the network (note that this feature is optional is not supported in the current prototype) 

EPLE calculates a simple packet loss estimate based on plain reading of packet counters at the expiration of a 
devolved flow. In the default setting, the counters are read at the ingress and egress points of the flow, although 
intermediary measurement points can also be configured in case more detailed investigations are desirable. The 
details of EPLE and more motivations for its design choices are described in D4.2 [6] and a concept paper [69]. 
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4.7.3 Description of prototype implementation 
The monitoring function has three major components: 

 A monitoring application that installs measurement policies, estimates packet loss based on packet counter data 
received from the nodes and publishes loss results:  

The monitoring application is running as a feature on the chosen controller platform (OpenDayLight Lithium 
(ODL)). Two MD-SAL models have been defined: one for specifying the aggregated policies and the other 
for publishing loss results.  

The monitoring application implements three ODL listeners. As a DataChangeListener, it listens to the 
aggregated policy changes and calls the ODL REST API to add/delete aggregated flows to/from the 
switches. As an ODL PacketProcListener, it listens to the Packet-In message with reason ‘devolve’ from the 
ingress switch. In such a message, the selected microflow match is included, and the monitoring application 
uses the information to build/install a same-match microflow on the egress. An egress switch can be 
defined in the devolve policy by a user or if not defined, it can be calculated. The monitoring application 
uses the ODL topology service and calculates egress based on the microflow destination mac address. 

Finally, as an ODL SalFlowListener, the application listens to the flow expiration messages from which it 
gets the packet counts and calculates loss. Two flow expirations, one from ingress and the other from 
egress, are expected before a loss calculation. In order to match the expired microflows, the monitoring 
application implements a microflow repository that maintains the states and matches between the 
microflows. A flow is identified by a unique flow-id in ODL, but in OVS, there is no such identifier. We thus 
use cookie field for uniquely identifying the microflows from the OVS side. There are two parts of a cookie, 
devolve flow id and time stamp. The first part identify the devolve rule, and the second part identifies the 
microflow generated based on the devolve rule. The first part is set by the monitoring application when it 
installs the devolve rule on the ingress switch. The second part is provided by the ingress switch when the 
microflow is generated. The same microflow installed on ingress and egress shares the same cookie. 

Once a result is calculated, the monitoring application will act as an MD-SAL provider that publishes the 
measurement results. Any consumers that subscribe to it get notifications when the results are available. Figure 33 
shows the overall design of the monitoring application. 

 Extended ODL implementation supporting additional messages:  

The ODL OpenFlowPlugin and OpenFlowJava packages were extended to support a devolve action and as 
well as packet-in with ‘devolve’ (OFPR_DEVOLVE) as a reason. The new devolve action is implemented as a 
vendor extension. Devolve policies (such as the microflow idle-timeout value) are encoded into the action 
body.   
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Figure 33: EPLE control app and extensions to ODL. 

 Extended virtual switch supporting for specific functionality in the flow tables that allow automatic creation of 
individual packet flow rules:   

The chosen software switch (Open vSwitch 2.4 (OVS)) was extended to support a devolve action as well as 
packet-in with ‘devolve’ as a reason (see Figure 34). The devolve function generates an exact match 
microflow when a devolve rule applies, and consequently send packet-in to controller. The microflow 
generated is set to a priority higher than the devolve flow. This ensures that the next coming packets match 
the microflow instead of the devolve flow.   

 

Figure 34 EPLE extensions to OVS. 

4.7.4 Evaluation results and conclusions 
In the following subsections, we first validate the method with respect to the correctness of the results. We then 
assess the actual efficiency from both data- and control plane perspectives, which have been the original 
requirements leading to the design of EPLE. Specifically, we investigate how the method trades-off compared to 
competing active measurement methods with respect to dataplane and control plane traffic volumes as well as 
computational overhead. 

Devolve function 

Devolve action 
extension 

Packet in reason 
OFPR_DEVOLVE 
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4.7.4.1 Validation 
The EPLE PoC has been verified on a setup with two VMs, each with 4 x 2094 MHZ CPUs and 8GB memory. Both VMs 
run Ubuntu 14.04. On one of the VMs, we installed the extended ODL controller and the monitoring application, and 
on the other, we run Mininet integrated with the extended OVS datapath elements. 

                                 

Figure 35: Mininet test network setup. 

We have validated EPLE via various flow samples retrieved from real network traces that were captured on the 
border between a campus network and Internet [70]. We simulated the network with Mininet and play the traffic 
from a host connected to the ingress switch. The simulated network setup is shown in Figure 35. From the 
validation tests, we observed that EPLE was capable of estimate the loss for ICMP, TCP and UDP microflows.  The 
loss estimation is 100% accurate if the interarrival time of the first two packets in a flow is larger than the microflow 
installation delay on the ingress switch, larger than the link transmission latency between the ingress and egress 
switch, and also larger than the egress microflow installation latency (which includes the sum of the ingress and 
egress switch control channels latencies and the processing latency at the controller). All of these latencies typically 
are in the range of few up to maybe a few hundreds of milliseconds. Selecting flows with sufficiently large initial 
packet inter-arrival time can thus be feasibly achieved by providing a policy for devolving rules to only auto-devolve 
microflows that typically show characteristics that meet these packet interval requirements, e.g. ICMP flows (often 
coming from ping operations with 1sec packet inter-arrival times) and new TCP connections, starting with slow start 
phases3 (identifiable by the occurrence of SYN flags in the TPC header of the initial TCP packet). 

In Figure 36, we can see an examples of loss rate estimates by single microflows generated by the EPLE monitoring 
application. It shows the frequency distribution for 1000 ICMP flow samples. The flow samples include on average 
with 195 packets (8190 bytes) per flow, with an average packet rate at 930 kbps. Using Linux netem [71], we 
emulated 10 % of random packet loss on the link between ingress and egress switches.  In this case, the devolving 
rule configured on the ingress switch selected all ICMP microflows for loss estimations. We can see that loss rate 
calculated complies with the actual packet loss generated by the netem tool following a normal distribution 
centering around 10%, as expected. In fact, this particular set of samples has a mean loss estimate of 9,95% with a 
standard deviation of 2,08.   

                                                                    
3 Packets in one direction during a TCP slowstart phase (SYN or SYN/ACKs) are roughly spaced by 1 RTT, corresponding to 
approximately 2 times the one-way delay between the endpoints. Being only a sub-segment of the path between TCP 
endpoints, the EPLE ingress to egress latency is always less or equal to the TCP one-way delay, and has thus at least a safety 
margin of 1 one-way-delay compared to the RTT. 
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Figure 36: Frequency distribution of loss rate estimates by 1000 flow samples. 

4.7.4.2 CPU and Memory overhead for devolving function 
In this section, we present the measurement result for the devolvement processing overhead introduced on the 
ingress switch. The measurement method is described as follows: we create traffic traces with different numbers 
(10, 100, 300, 600 and 1000) of ICMP microflows and in each trace, with all the microflows having the exact same 
timestamp. This simulates concurrent packet flow arrivals.  

The traces are run and compared with three configurations on the ingress switch: i) auto-devolving of all the 
microflows belonging to a wildcard flow match; ii) forwarding all the packets to next hop according to a wildcard 
flow match without auto-devolving of microflows; iii) and sending all the packets to the controller. This allow us to 
compare the extra switch resource overhead of EPLE (case i) compared to both a standard proactive OpenFlow 
usage (case ii) and a standard reactive OpenFlow usage (case iii), which could be used to setup microflows by the 
controller instead of an autonomous auto-devolve action on the switch. In each scenario, we measure the average 
and peak CPU and memory usages. In each measurement, we record the CPU and memory in a 10 second period 
and 0.1 second sampling interval.  

Figure 37 and Figure 38 and illustrates the CPU related measurements, once as  metric averaged over 10 seocnds, 
and once as a metric averaging over only 0.1 seconds, which we use to estimated peak CPU utilization values.  We 
can see that for devolving up to 100 concurrent microflows, EPLEs auto-devolve action causes no significant 
processing overhead on the ingress switch. However, there is an increase of processing overhead between 100 and 
300 concurrent flows, consuming up to 40% of the CPU load at peak time. On the other hand, the number only 
increases by 3% on average in 10 second periods. From 300 to 1000 microflows cases, the CPU usage is levelling out 
at around 5% on 10 second average and 35% at peak.  

We believe that the EPLE devolve processing overhead is reasonable because in real cases, it is unlikely to selecting 
more than 100 concurrent microflows on one specific ingress switch for loss measurement. And even if it would be 
the case, a 3% of CPU increment on average and the 35% CPU peak usage on a relatively weak hardware setup as in 
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our test machine indicates that the additional resource consumptions for running EPLE on a soft-switch are within 
reasonable boundaries. 

 

Figure 37 Switch CPU overhead by devolving function - peak values. 

 

Figure 38: Switch CPU overhead by devolving function - values averaged over 10 sec. 

In Figure 39 and Figure 40, we illustrate the resulting memory overhead. We can see that for devolving up to 600 
concurrent microflows, there are no significant changes in memory usage compared to the average memory usage 
when the switch is not handling traffic at all. There is a small amount of memory usage increment for 1000 
concurrent microflows. However, we observe no significant difference between the ‘with’ and ‘without’ devolving 
cases. We can conclude that the devolving function does not cause much memory overhead in a pure software 
implementation of a switch. 
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Figure 39 Softswitch memory overhead by devolving function - values averaged over 10 sec. 

 

Figure 40: Softswitch memory overhead by devolving function - peak values. 

4.7.4.3 Control Plane Overhead Evaluation 

For evaluating the control plane overhead of EPLE, we consider two alternative ways of determining packet loss 
based on existing standard tools. While neither of these alternatives was designed particularly for SDN networks, 
they are widely used today from an operational perspective and comparing the control plane overheads allows us to 
determine whether a SDN solution such as EPLE may provide advantages beyond relieving the data plane overhead. 

The first alternative is OWAMP [72], a one-way active measurement protocol that estimates both packet loss and 
delay at the IP layer. An implementation is publicly available in the toolset offered by Internet2 [73]. The second 
alternative is TWAMP Light [74], a version of the two-way active measurement protocol that estimates several 
metrics while removing the control plane part of the complete TWAMP protocol. We based our comparison on an 
existing internal Ericsson Research implementation of TWAMP Light. 
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For OWAMP, we used the following command lines for the server and client: 

Server: owampd -a O -P 21000-25000 -S 192.168.100.4:10002 –Z 

Client: owping -c number_of_packets -A O -P 21000-25000 192.168.100.4:10002 

The command lines disable the authentication for each of the measurement sessions, because we did not 
implement authentication in EPLE. The server and client were executed each on its own virtual machine, on network 
interfaces that carried no other traffic. Since we intend to also evaluate the overhead of the control and 
management plane, this is a realistic environment that allowed us to easily capture and isolate the control and 
management traffic using the well-known tcpdump tool. The number of packets parameter on the command line 
of the Client represents the number of active measurement probes that are generated by the tool during one test 
session. This is equivalent with the length of the microflow selected by EPLE. We used the following values to 
represent both very short lived and longer-lived microflows: 10, 100, 1000, 10000.  

The probes are sent at constant time intervals – the implementation would also allow specifying exponentially-
distributed inter-probe times, but this is not relevant for determining the control and management plane overhead 
as such option would be included in the first packet that is sent anyway. In the calculation of the management 
overhead on the control channel, we ignore the TCP SYN/ACK and FIN/ACK packets that open and close the 
connection of the measurement session. This is because we assume that in a real deployment both EPLE and 
OWAMP would keep measurement sessions open when operated in a pro-active mode. Figure 41 shows the 
management and control overhead of OWAMP as reflected in the traffic traces, for a situation when one 
measurement session is active. The EPLE overhead is constant for one microflow, composed of: 

- At the ingress node: one OpenFlow Packet_In message, one OpenFlow Flow_Mod message, one OpenFlow 
Barrier Request and one OpenFlow Barrier Reply, and one OpenFlow Flow_Removed message (in total 854 
bytes for our OpenFlow 1.3-compliant implementation) 

- At the egress node: one OpenFlow Flow_Mod message, one OpenFlow Barrier Request and one OpenFlow 
Barrier Reply, and one OpenFlow Flow_Removed (in total 576 bytes for our OpenFlow 1.3-compliant 
implementation) 

 

 

Figure 41: OWAMP management/control overhead on control channel. 
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The owamp tool, line with the specification of the standard, provided more information than EPLE. For example, 
results from one-way delay measurements are included. No packet loss was present in these measurements. The 
traffic comes in two bursts, one at the beginning of the measurement session that negotiates the parameters of the 
session and another burst at the end of the session for transferring the results from the server to the client. We 
repeated the OWAMP measurements when a 10% random packet loss was introduced on the measurement path 
using NetEm, similar to the scenario described for EPLE. We observed no significant change in the overhead of the 
control channel that would account for the reporting of the lost packets for the sessions length (up to 10000 probes) 
that we measured 

For TWAMP Light, the implementation we used required no control plane. The following parameters were 
transmitted over the command line: 

Server: reflIP reflPort 

Client: sendIP sendPort reflIP reflPort sessionStart pktIntvl nPkts fwdTOS fwdTTL fwdPktSize 

Probes were sent one packet a time with a pre-defined packet interval between them. Results are presented on the 
standard output of the terminal. Assuming that each command line parameter is represented by a managed object, 
and each managed object is configured and read using either the SNMP or Netconf protocols in line with the findings 
of Hedstrom et al [hws11], the overhead is shown in Table 3. The length of the requests and replies is indicative, and 
depends on how exactly the data model would be represented in an SNMP MIB or in a YANG description. We further 
assume that each parameter is read using one snmpget call, and written with one snmpset call using the Linux 
SNMP implementation (using snmpwalk would potentially reduce the read overhead). 

 

Table 3: Protocol overhead comparison of EPLE with SNMP and Netconf, based in [75]. 

Protocol Get [packets] Set [packets] Get [bytes] Set [bytes] 
SNMP TWAMP Light 10 server, 2 client 20 server, 4 client 90 2688 server, 13440 

client  
Netconf TWAMP 
Light 

- 49 server, 50 client - 8500 server, 10475 
client 

OpenFlow - EPLE 1 ingress, 1 egress 4 ingress, 3 egress 
 

202 ingress, 202 
egress 

650 ingress, 374 
egress 
 

 

In conclusion, the control and management plane overhead of EPLE is competitive compared to both OWAMP and 
TWAMP Light. While OWAMP provides additional information (such as delay measurements, which our current 
implementation of EPLE does not support), we note that adding one-way delay measurements would mean 
introducing a timestamp value in the Flow_Removed message which adds 4 additional bytes of overhead. 
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4.7.4.4 Data Plane Overhead Evaluation 

One of the main advantages of EPLE is actually its efficiency with respect to data plane overhead. As the method is 
designed to use existing traffic as samples for performance estimates, the dataplane overhead introduced zero. To 
contrast this to the dataplane overhead introduced by active methods, Figure 42 illustrates the dataplane overhead 
of OWAMP and TWAMP light. In our configuration, OWAMP generated 60 byte sized probe packets, and TWAMP 
used 92 byte sized packets for the direction from the client towards the reflector. These were the default values for 
the packet size parameter. We decided to keep them in order to illustrate the simplest possible usage. For TWAMP 
Light, the graphs show the overhead for measurements in one direction in order to be able to compare with both 
OWAMP and EPLE which are uni-directional. 

 

 

Figure 42 Data plane overhead of OWAMP and TWAMP light 

 

4.7.4.5 Conclusions 
EPLE was designed as a tool to meet a specific research challenge identified in D4.1, i.e. RC3 – “Low-overhead 
performance monitoring for SDN”. With respect to the design goals specified, EPLE got a long way, but we still 
identify open issues which EAB plans to work on in internal project beyond the duration of UNIFY:  

 RC3 design goal: Accurate determination of link and flow performance (i.e. loss, delay, throughput) 

 The current EPLE PoC can only estimate loss metrics for links and flows. However, the EPLE design 
allows for one-way delay measurements only by introducing a timestamp value in the 
Flow_Removed message. Furthermore, we are working on further ideas and concepts for 
additional fault and performance functions, but these are not published and implemented yet. As 
future work, Ericsson is working on expanding EPLE into a full-fletched assurance framework 
providing both performance and fault measurement functions for SDN. 

 RC3 design goal: Scalability with respect to signalling and data-plane overhead  

 As shown in the evaluation section above, EPLE successfully reduces overhead on both control 
plane (signalling) and dataplane compared to competing active methods. This comes with a very 
modest cost in terms of additional compute requirements for the modified softswitch 
implementations. 
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 RC3 design goal: Generic, technology independent solution based on the existing SDN components  

 As described above, EPLE was implemented as add-ons to publicly available SDN components, i.e. 
OpenDayLight as controller, OvS as switch, and OpenFlow and control channel protocol. Utilizing 
the flat namespace of OpenFlow, it allow a generic way to assess loss metrics irrespective of the 
exact forwarding technology used. 

 RC3 design goal: Effectiveness against granularity of flow definitions and flow-deployment mode  

 As shown in our evaluation, EPLE can estimate loss even in configurations with pre-deployed 
(proactive) aggregated flows. Obviously, using re-active mode of OpenFlow in the presence of 
microflows works well with native OpenFlow switches even without the auto-delolve action 
implemented.  

 RC3 design goal: Programmable interfaces to facilitate automation (e.g. for troubleshooting purposes)  

 Right now, EPLE functionality is programmed (or rather configured) through the OpenDayLight 
REST interface. Testing this interface for usefulness in the scope of automated troubleshooting or 
on-demand monitoring purposes is subject of future work, to be done within Ericsson internal 5G 
integration activities outside the scope of UNIFY. 

 

4.8 IPTV Quality Monitor 
4.8.1 Purpose and problem statement 
Today’s Internet traffic is dominated by multimedia traffic which contributes more than 40% and 60% in Asia-
pacific/European regions [76] and in America [77], respectively. A large fraction of this traffic is delivered over IPTV 
technologies and it shows a growing tendency since the Internet infrastructure bandwidth makes the delivery of 
multimedia content cheaper, clearer, and more reachable than ever before. It is undeniable that the IP-based 
infomediary will soon dominate the way of the content consumption if it did not happen yet. 

However, the condition of a network may drastically change over time and thus the quality of content is highly 
dependent on it. Therefore, the measurement of the network performance is an important task not only for the 
network infrastructure owners, but also for those who provide service platforms and content delivery.  

However, when it comes to the assessment of the audiovisual quality of multimedia content, it is no longer in a 
frame of the network performance evaluation since the value of the payload is different from one packet to 
another. Therefore, more application-specific network functions are essential to maintain the quality of the 
multimedia delivery within telecom service platforms. To this end, we introduce the IPTV Quality Monitor which is 
specifically designed network function in order to evaluate MoS (Mean Opinion Score) of IPTV Service Quality by 
taking packet-level Internet traffic as input.  

To see the development history of the IPTV Quality Monitor, we refer to D4.2 [6] (Section 5.9)  
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4.8.2 Brief Technical description 
The IPTV Quality Monitor is proprietary software that implements the standardized IPTV quality monitoring 
mechanism (ITU P.1201.2: Parametric non-intrusive assessment of audiovisual media streaming quality). DT has 
acquired a special license to use this software for the purpose of the research and demonstration. The software is 
originally intended to run in a separate hardware and to monitor the audiovisual quality of the IPTV playback from 
the viewpoint close to end-users (e.g., between a residential gateway and set top box). However, it can be used as an 
independent network function at any point of a network service when it is deployed in a virtualized environment 
(e.g., virtual machine). 

ITU P.1201 series is a parametric quality assessment mechanism based on the various protocol headers (including IP, 
UDP, RTP, and MPEG-2 headers). Especially, ITU P.1201.2 model focuses on the analysis of audio and video codecs, 
e.g., H.264, AAC-LC, HE-AAC, MPEG1-LII, and AC3, which are typically used for the IPTV service. The model takes the 
quality impact of (audio/video) compression and transmission errors into consideration to assess the overall 
audiovisual quality. A detailed and mathematical description of the model can be found in the study of Garcia et.al. 
[78]. 

The IPTV Quality Monitor is intended to be used as a monitoring application (i.e., a VNF in the catalogue), but it can, in 
principle, be integrated in a Universal Node (UN) of the UNIFY framework as a Monitoring Function. In this case, the 
major role of the IPTV Quality Monitor would be to periodically inform the performance (e.g., performance 
degradation period, duration, MoS, and/or loss rate) of multimedia traffic to the higher layers.  

A potential mapping scenario of the IPTV Quality Monitor to Universal Node (UN) is described in D4.2 (Section 5.9) 

4.8.3  Recent improvement 
The IPTV Quality Monitor is proprietary software and thus its modification is highly limited. Therefore, adapting this 
software for other service platforms was the major challenge from the beginning. Recently, the developers of the 
software have provided DT with the core of the software as a service-platform-independent library, thus it allowed 
us to integrate the tool into a stand-alone test-bed. 

4.8.4 Evaluation results and conclusions 
The performance of the model (ITU P.1201.2) is thoroughly studied in Garcia et. al. [78]. Their experiment was 
conducted within standardized test rooms (ITU-R BT-500, ITU-T P.800/P.910) by using professional equipments. 
Performance degradation factors such as compression (audio/video codecs and bitrates) and transmission errors 
(random and bursty packet losses) were emulated in the experiment. The authors (the actual developers of the core 
software) report in their paper that the experiment results show 0.435 of RMSE (Root Mean Square Error) on 5-
point scale and 0.911 of Pearson correlation based on 3190 test samples.  

Besides, it is planned to perform an experiment using commercial IPTV service within a managed test-bed. Our goal 
in the experiment is to observe the correlation between the general network condition (e.g., throughput) and the 
audiovisual quality (e.g., in MoS) extracted by the IPTV Quality Monitor. 

This tool will not be publically available due to its closed license, however virtualization of this network function will 
show a potential for an application-specific monitoring function within the scope of a modern service creation 
framework such as UNIFY. 
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4.9 AutoTPG - Verification of Flow Matching Functionality 
4.9.1 Purpose and Problem Statement 
AutoTPG is an OpenFlow based tool that performs verification of matching of incoming packets with the Flow-
Match Header of a Flow Entry. These errors occur when matching of a packet with the Flow-Match Header gives an 
incorrect result (i.e., a packet gets matched with the Flow-Match Header which it should not, or a packet does not 
get a match although a matching Flow-Entry is present in the FlowTable).  There can be two causes of incorrect 
matching of packets: (1) bugs in OpenFlow switch implementation and (2) errors in FlowTable configuration. Bugs in 
OpenFlow switch implementation may be caused by bugs in the hardware or software part of switches. The errors 
in FlowTable configuration may be caused by: (1) bugs in controller software for the addition of a Flow Entry and/or 
(2) presence of a high priority error-prone Flow Entry (added manually or by a controller) that gives a match with 
the incoming packets. The objective of verification is to find this incorrect matching and hence, to find the packet-
headers that cannot be matched or are matched incorrectly with the Flow-Match part of a Flow Entry. Without such 
verification, it is difficult to find which packets cannot be delivered or are wrongly forwarded by a switch. 

Most of the existing verification tools such as HSA (Header Space Analysis) [79], Anteater [80], and VeriFlow [81] 
detect matching issues by analysing configuration of switches. However, without sending real packets, it is difficult 
for these tools to find software or hardware issues in flow matching. Recently, the automatic test packet generation 
(ATPG) tool [82] is proposed to verify the network by transmitting test packets. ATPG verifies only one (or some) of 
the packet headers that gives a match with a wildcarded Flow Entry, whereas matching of all the other packet 
headers remains untested. Therefore, we implement AUTOmatic Test Pacekt Generation (AutoTPG) tool for 
verification of matching of all packet-headers with the wildcarded flow of a Flow Entry. 

Our mechanism transmits test packets to verify that all the packet-headers match correctly with the Flow-Match 
Header or not. However, if test packets have to match with the Flow Entries of data packets, these would need 
additional bandwidth to be reserved for test packets on the links corresponding to the outgoing actions of the 
matched Flow Entries. To overcome the challenge (additional bandwidth requirement), we forward the test packets 
through duplicated Flow Entries, which either drop or forward the test packets to the controller (instead of 
forwarding these on the outgoing links). The details of the design choices of AutoTPG and types of bugs it can find 
have been described in D4.2 [6] and in the paper [83]. 

4.9.2 Brief Technical description 
The tool performs three steps for verification: (1) flow duplication, (2) test packet generation, and (3) matching 
errors identification. In the flow duplication step, the tool duplicates the Flow Entries from a FlowTable to another 
FlowTable (the reason of duplicating Flow Entries is explained in the previous subsection). In the test packet 
generation step, the tool generates and transmits test packets that can match with the Flow-Match Header of 
duplicated Flow Entries. In the matching errors identification step, the tool calculates the matching errors either by 
reading the counters (statistics) of the duplicated Flow Entries or by comparing the sent and received test packets.  

For flow duplication step, our tool uses a header field such as EtherType (or VLAN ID) for differentiating test packets 
from data packets and assumes that this header field (e.g., EtherType) is wildcarded in the Flow-Match Header part 
of Flow Entries. Therefore, test packets can be forwarded from a FlowTable (under verification) to another 
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FlowTable (containing duplicated Flow Entries) by adding an entry in the FlowTable (under verification) to redirect 
all the test packets to another table. 

Our tool can be run from the controller or from a virtual machine (VM) establishing an OpenFlow session with 
OpenFlow switches. Therefore, test packets can be transmitted to OpenFlow switches through packet-out 
messages. 

For matching error calculations, our tool either: (1) runs the binary search algorithm on the counters incremented in 
the statistics field of Flow Entries or (2) receives test packets (transmitted) back after matching Flow Entries. In the 
former case, the method is called binary search method, while in the latter case, the method is called packet-
reception method. A detailed description of both the methods is provided in [83]. 

4.9.3 Recent improvements concerning the tool integration 
Recently, a RestFul interface is provided to run our tool. The input and output of our tool is now received through 
RestFul commands. Currently, our tool is the part of the troubleshooting workflow. A detailed description about the 
troubleshooting workflow (included our tool) can be found in Section 5.4. 

4.9.4  Evaluation results and conclusions 
4.9.4.1 Emulation Methodology 
We perform two different types of experiments - (1) (out-of-band) controller-induced verification, and (2) (in-band) 
VM-induced verification. Each of these will be handled in more detail in the following subsections. For our 
emulation, we implemented the proposed tool in the Floodlight controller that uses OpenFlow version 1.3 in its 
implementation. In addition, we used Open vSwitch for running OpenFlow in the switches of the emulated topology 
(Figure 43).  In the experiments, software matching errors are emulated by translating some packets of a flow to 
incorrect headers. In our emulations, we find these errors and find verification time. In all the experiments, multiple 
switches are verified at the same time. 

 

Figure 43 Emulated Topology. 

(Out-of-band) Controller-induced verification: 

In the controller-induced experiment, the controller makes an out-of-band connection with switches in the 
emulated Mininet topology (Figure 43) and performs all the steps of verification. Flow-Match Header errors are 
detected either via the packet-reception or the binary-search method. 
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Figure 44 shows the emulation methodology using traffic captured on the controller when the binary-search or 
packet-reception method is used for verification. Traffic is shown from second -100 to 200, when 1 Mbps bandwidth 
is available between each switch and the controller for verification. In emulation, each switch in the emulated pan-
European topology first establishes an OpenFlow session over the TCP session with the controller. The spikes in 
Figure 44 from -100 to -90 seconds are due to traffic exchanged between the controller and switches to establish 
OpenFlow sessions. At emulation time -50 seconds, the controller adds Flow Entries in each switch to forward data 
traffic. The Flow Entries contains the ingress port, source IP address and destination IP address as matching fields. 
The source and destination IP addresses are 24 bit addresses and therefore, the controller needs to transmit 65536 
different test packets for verification. However, due to the generated bug, each Flow Entry is not able to match 
correctly 256 flows out of 65536 flows. At second 0, the controller starts verification of the Flow Entries. In Figure 44 
traffic generated due the verification of one Flow Entry is shown. 

 

 

Figure 44 Traffic on the controller link (introducing emulations scenarios for controller-induced verification). 

(In-band) VM-induced verification: 

We now explain the emulation methodology of the VM-induced verification experiment using the traffic captured on 
the controller and the VM link. Traffic is shown when the VM is created in the Hamburg switch of the emulated 
topology (Figure 43) and verification uses data plane links for transmitting or receiving test packets. The emulation 
methodology of this experiment is same as the controller verification experiment (Figure 45) in which switches 
establishes OpenFlow session paths with the controller from second -100 to -90 and at second -50, the controller 
adds Flow Entries in switches to forward data traffic. At second 0, the controller starts verification by copying Flow 
Entries to another table, creating a VM at the Hamburg switch, and establishing Flow Entries for making OpenFlow 
sessions (in-band) between the VM and switches [84] We see small spike in Figure 45 at second 0 due to this traffic. 

In our emulation, the controller creates a VM using the RPC (Remote Procedural Call) commands. Figure 45B shows 
that the time to create a VM is about 19 seconds. After creating the VM, the VM establishes OpenFlow session paths 
with all the switches in the network and starts verification. For verification, we reserved 1 Mb/s bandwidth in each 
switch link. In our emulation, the controller controls the rate of test packets according to the bandwidth available in 
each link of its OpenFlow session. Additionally, the bandwidth between VM and the Hamburg switch is kept as 
4Mb/s. 
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Figure 45Traffic Intensity (Introducing VM-induced verification emulations scenarios). 

4.9.4.2 Emulation Results 
(Out-of-band) Controller-induced verification results: 

Figure 46 depicts the verification time when the bandwidth between the controller and switches is a value between 
5 Mb/s to 700 Mb/s. For transmitting test packets, the controller sets the rate of the test packets according to the 
bandwidth available between the controller and switches for verification. In case of the binary-search method, the 
verification time is calculated by subtracting the time when the last counter read reply message is received by the 
controller with the time when the first counter read request message is sent by the controller. In case of the packet-
reception method, the verification time is calculated by subtracting the time when the first packet-out containing a 
test packet is sent by the controller with the time when the last packet-in containing a test packet is received by the 
controller. All the results are taken 50 times and the average is shown in Figure 46. 

 

 

Figure 46 Verification time using the packet-reception and binary-search method (controller out-of-band network 
scenario. 

Figure 44 shows the results when there are only 5 wildcarded Flow Entries (wildcards in the last 8 bits of source and 
destination IP address) in each switch for verification. In this case, verification is completed in limited time. However, 
when the number of Flow Entries is increased in switches, the verification time will increase significantly. Figure 47 

(A)  Traffic on the controller link        (B) Traffic on the link between VM and Hamburg
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shows the results when the number of Flow Entries is increased from 5 to 400. In this experiment, 5 Mb/s of 
bandwidth is available in between each switch and the controller for performing verification. Figure 45 illustrates 
that the verification time becomes significantly long as the number of Flow Entries increases. This is because if more 
Flow Entries are present for verification, more test packets is required to be sent to the switches. As the bandwidth 
is limited, the controller needs to wait long time to send all the test packets, increasing the verification time. 

 

 

Figure 47 Scalability experiment with respect to the number of Flow Entries. 

 (In-band) VM-induced verification results: 

For in-band verification, we assume that different queues are installed in OpenFlow switches for control and data 
traffic. Configuration of these queues is described in [84]. . As traffic flows using different queues do not interfere 
with each other [in-band], we do not consider data traffic in our experiments. 

 

 

Figure 48 VM induced in-band verification. The controller is connected to one of the switches in the network. 

Figure 48 shows the results of the experiments when the bandwidth of each switch links is limited between 0.5 to 
5.5 Mb/s (value is shown in the figure) for verification. In these experiments, the VM makes an in-band connection 
with switches in the network and sets the rate of the test packets according to the verification bandwidth available 
in all the links along the OpenFlow session paths. As the paths for verification for some of switches are through 

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300 350 400

V
er

if
ic

at
io

n 
T

im
e 

(s
)

Number of wildcarded Flow Entries under verification

Packet Reception Method Binary-Search Method

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6

V
er

if
ic

at
io

n
 T

im
e 

(s
)

Bandwidth of each switch link (Mb/s)



  

70 D4.3 14.10.2016 version 1.2 

other switches in the network, the switches may have to wait for verification until the intermediate switches in the 
path perform verification. This leads to increase in the verification time in the VM-induced verification experiment as 
compared to the controller verification experiment (Figure 46) in which the controller makes an out-of-band 
connection with the switches. However, an out-of-band control network is not always possible (for example, in 
widely distributed central offices in access networks). In this case, the controller may itself need to communicate 
with switches in the network using in-band control paths. Even if an out-of-band control network is present, there 
may not be enough bandwidth in this network to perform verification. Therefore, in this case verification traffic may 
need to send through the data plane links by reserving some bandwidth over the data network for verification. 

4.9.5 Conclusions 
We provided a brief overview of out our tool and extensive experimental study. The tool was evaluated in extensive 
emulation experiments. The results illustrated that the verification time depends on the bandwidth available in the 
network for verification. If bandwidth is unlimited, verification can be achieved in a very short time interval. However, 
if bandwidth limitations exist, the verification time might increase significantly.  

 

4.10 DoubleDecker messaging system 
4.10.1 Purpose and problem statement 
In a rich SDN environment the variety of tools interacting together is more important than in a legacy network. 
Control messages flow toward and from the orchestration components. The monitoring functions transmit their 
results, sometimes to multiple recipients as time series databases, controllers or troubleshooting tools. A tool was 
needed to offer a simple way to transmit all kind of messages with performance constraints and heterogeneous 
domains. As a solution to this problem statement we propose the DoubleDecker messaging system. 

To provide a scalable system for easily integrating different monitoring functions, and transporting their results, the 
DoubleDecker messaging system has been designed. The system consists of two protocols (client-broker and 
broker-broker) which allow point to point messaging as well as supporting a publish/subscribe mechanism. 
Messages are routed between connected clients through a local broker or a hierarchy of brokers if necessary, 
keeping messages as local as possible in order to avoid network overhead. The hierarchical messaging topology 
created by connecting brokers fits naturally to the hierarchical, recursive, UNIFY architecture. 

4.10.2 Technical description 
The main problem the DoubleDecker messaging system is trying to address is to provide a simple and easy to use 
transportation mechanism for control and monitoring data for the various monitoring functions developed in the 
project. As these monitoring functions can be quite different in their complexity and how they are implemented, the 
solution should be easy to apply in a range of scenarios. For example going from a set of counters in a switch that 
are read by a SDN Controller app, to daemons running on a UN, to dynamically instantiated VMs. Additionally, it 
should be easy to use in the dynamic environment envisioned in UNIFY, where functions may migrate and scale-in 
or out depending on various factors such as incoming traffic load. Finally, it should be easy to implement support for 
the messaging system in the clients, and to integrate with existing systems. 

As it is built on top of the ZeroMQ messaging library it supports multiple underlying transport protocols, from shared 
memory within a process, to IPC, TCP, TIPC, and PGM multicast. Client endpoints are not identified by a network 
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address but by a separate identifier. By separating network address and identity, components can more easily be 
migrated in the infrastructure without requiring for example network routes to be updated or tunnels moved 
between endpoints. Thanks to the publish/subscribe mechanism, it is possible to discover components in the 
system without manual configuration. 

The DoubleDecker can be responsible for transporting very sensitive data from the orchestration layers down to the 
infrastructure layers. It is then critical to ensure the integrity of the data as well as authenticate the components. We 
have implemented authentication for both clients and brokers and point to point encryption. We use a standard 
public/private key pair mechanism and ECC algorithms for the encryption. This ensure that the transmission of the 
messages is secure but remains a marginal feature that VNF developers should take advantage of but not entirely 
rely on. 

The client side library is implemented in the C, Python and Java languages to fit the requirements of the majority of 
the tools developed in Unify. The software is open source and distributed under a free license to allow any VNF 
developer to integrate the DoubleDecker with their tool. It also ensures a life for the tool beyond Unify.  

4.10.3 Recent improvements concerning the tool implementation 
Our prototype was functional for some time already, no major new feature was added since M4.3 [58] and no new 
feature is planned to be added in the scope of Unify. The integration work however has revealed several problems 
with the code. We have focused on fixing bugs and cleaning the code to make it easy to use for other VNFs 
developers. As the tool is integrated within the code of other prototypes we must ensure backward compatibility if 
any feature is added. 

In the latest version we decided to maintain only the C version of the brokers. This choice was motivated for 
performance reasons. The broker is responsible for routing messages which can which is delay sensitive and heavier 
regarding computation if the messages are very heavy or if there is a huge number of clients registered as the 
routing tables become longer. The DoubleDecker is however not a dataplane tool but control plane only, it is a 
compromise between performance and flexibility plus robustness. As a first step during the development we 
offered the broker in Python which was unsatisfying regarding performances. We made some performance tests to 
evaluate the prototype; the results are available in the section 5.1.4 in D4.2 [6] 

4.10.4 Recent improvements concerning the tool integration 
We have worked a lot to integrate the DoubleDecker with other Unify prototypes and so far the results are: 

 Integration with the Rate Monitoring (Section 4.5). The RateMon can publish its monitoring results through 
the DoubleDecker. This means that the monitoring data can be spread to several data sinks. In the Elastic 
Router use case two databases are collecting data. On one side OpenTSDB, which provides the row data to 
be used for troubleshooting, in particular the Recursive Querry Language exploits the data stored in 
OpenTSDB. On the other side, according to the MEASURE annotation, data are aggregated and stored in 
PipeDB. From the point of view of RateMon, the number of destinations is not even known as the pub/sub 
mechanism inside the DoubleDecker takes care of transporting the data to all the interested parties. 

Communication has also been able in the direction of the RateMon. RateMon features runtime 
configuration. In the case of a SDN, the exact position of the monitoring function is not always known. This 
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makes runtime configuration via a direct IP address impossible. As the DoubleDecker provides an 
abstraction to the physical location of the clients, it is then trivial to send runtime parameters to any 
instance of the RateMon by simply knowing its identifier within the messaging system. It is also possible to 
use the pub/sub mechanism to notify all the instances to stop monitoring or resume monitoring for 
instance. 

 The control application, Ryu, deployed in the Elastic Router scenario has also been connected to the 
DoubleDecker. This network function is responsible for managing the deployment and the elasticity 
property. As one of the tasks of WP4 is to provide automation, the monitoring framework has to be able to 
notify the control application when a scale up is needed. As of the properties of the DoubleDecker it made 
sense to transmit this notification through it. Again, the sender of the alert doesn’t have to care about the 
exact location of the control application, by using pub/sub it is even possible to trigger the elastic 
functionality and log this action in a separate tool without affecting other components. 

The current scenario describes an overload of the link which leads the router to be scaled. Adding 
functionalities to the controller to handle other situations would be a normal continuation. The 
DoubleDecker can then be used to transmit richer data, containing logs or runtime information for a more 
advanced decision. This system is totally flexible regarding the type of data passing through it, meaning that 
enriching the scenario would require work on the VNF and the controller but the link would remain 
untouched. 

 With the important number of prototypes integrating an interface to connect the DoubleDecker, we have 
decided to integrate the Broker component as a part of the Universal Node (UN) prototype, developed in 
WP5. The Brokers are application independent and support multi-tenancy which makes them relatively 
architecture independent. The performance and deployment overhead of having a DoubleDecker deployed 
in every single UN is very small compared to its utility. The DoubleDecker interface is expected to be present 
as a standard component which eases even more the development of VNFs compatible with the UN. 

The Brokers can handle several interfaces at the same time. One broker can be used to expose an IP 
address whether it is public or not, and at the same time use the IPC protocol to connect IP-less 
components.  

 In addition to the integration done with monitoring functions such as the Rate Monitoring, the MEASURE 
framework, receiver of the monitoring data is also connected to the DoubleDecker. The generic code for 
aggregation points is connected to the messaging system to receive the raw data and transmit the 
transformed data. The genericity of this connection combined with the low latency and flexibility of 
messages formats and size made the Double Decker a natural solution. The MEASURE prototype described 
in section 4.2, has several independent components interconnected, without the DoubleDecker, the UN 
would have to allocate an important number of IP addresses only for the monitoring tools. 

 Epoxide (Section 4.12) can use a DoubleDecker interface to receive troubleshooting data. When the 
controller is not able to solve a problem or the cause of the problem is unclear, manual troubleshooting 
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tools need to be used. Epoxide is a generic tool aiming this goal. The more data are made available via the 
DoubleDecker the easier it will be for an operator to troubleshoot a service. 

Apart from the per-tool integration we have improved the generic way to integrate the DoubleDecker with other 
components. If Network Functions follow standard configuration protocols (JSON RPC) and a standard way to 
format monitoring results (mPlane like) the integration is almost straight forward. This is not a feature added to our 
prototype but more a guideline on how to make the whole architecture more standard thus more extendable. 

4.10.5 Evaluation results and conclusions 
One of the major a benefit of using the DoubleDecker is the facility to integrate it with any component. We have 
experienced both integration within a completely new tool and with an already mature tool.  Both lead to different 
conclusions. 

Integrating the DoubleDecker with a new tool as it was done with the MMP was a trivial process. It influenced the 
choice of the language used for the tool but without putting too strict constraints. It is also easier to think in terms of 
interaction with the other components when the transport layer is abstracted and simplified. The developer can 
focus entirely on the format of the content instead of dealing with lower level problems. This characteristic fits 
perfectly in the DevOps concept described in the Section 3.1. 

The integration with existing tools was a slightly more complex process. When the language was not compatible we 
had to find a workaround and spend more time with the developer of the tool to reach a good level of integration. 
This is a problem to be considered if we want to have the DoubleDecker being integrated in an already functioning 
environment. In addition to the original code, we have worked on a version of the DoubleDecker offering an even 
lighter coupling. By providing the DoubleDecker as an open source tool, and finding alternative solutions for 
integration with a large range of other tools we aim at providing a realistic solution for service providers. A SDN 
infrastructure has a lot to gain from easier messaging between components as much as each VFN does. 

 

4.11 Recursive Query Language for monitoring results 
4.11.1 Purpose and problem statement 
In NFV environments, operators or developers sometimes need query the performance of virtualized Network 
Functions (VNF), for example, the delay between two VNFs. In existing systems, this is usually done by mapping the 
performance metrics of VNFs to primitive physical network functions or elements, statically and manually when the 
virtualized service is deployed. However, in UNIFY a multi-layer hierarchical architecture is adopted, and the VNF 
and associated resources, expressed NF-FGs, may be composed recursively in different layers of the architecture. 
This will put greater challenge on performance queries for a specific service, as the mapping of performance metrics 
from the service layer (highest layer) to the infrastructure (lowest layer) is more complex when compared to cloud 
infrastructure with single layer orchestration.  We argue that it is important to have an automatic and dynamic way 
for decomposition of the performance query in a recursive way, following the different abstraction levels expressed 
in the NF-NGs at hierarchical architecture layers. Hence, we propose to use a declarative language to perform 
recursive queries based on input in form of the resource graph depicted as NF-FG. By reusing the NF-FG models 
and monitoring database already existing in the UNIFY architecture, the language can hide the complexity of the 
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multilayer network architecture with limited extra resources and efforts. However, the expression of performance 
queries is significantly simplified for any potential receivers (i.e. operator and developer roles).   

The proposed recursive query language allows both developer and operator roles to query monitoring metrics on 
high level of abstraction, corresponding to NF-FG and SG abstractions in higher layers of the UNIFY architecture. The 
queries are resolved by the query engine in a recursive way (following NF-FG definition throughout the hierarchical 
UNIFY architecture) until primitive infrastructure metrics are available in actual monitoring databases residing in 
infrastructure domains. The query language and the query engine have been described in D4.2 [6], an IRTF draft 
[85] and a paper [86] 

4.11.2 Brief technical description 
To address the challenge of automatic and flexible performance decomposition and abstraction in a recursive NFV 
architecture, we argue for a declarative logic-based language based on Datalog [87], which provides recursive 
querying capabilities.  Query evaluation with Datalog is based on first order logic, and is thus sound (all provable 
statements are true in all models) and complete (all statements which are true in all models are provable). However, 
Datalog is not Turing complete, and is thus used as a domain-specific language that can take advantage of efficient 
algorithms developed for query resolution. In Datalog, rules can be expressed in terms of other rules, allowing a 
recursive definition of rules, together with reusability.  

Like other Datalog based language, the recursive monitoring query program consists of a set of declarative Datalog 
rules and a query. A rule has the form:  

h <= p1; p2; …; pn 

which can be defined as “p1 and p2 and ... and pn implies h”. “h” is the head of the rule, and "p1; p2;… ; pn" is a list of 
literals that constitutes the body of the rule. Literals “p(x1; ; xi;… ; xn)” are either predicates applied to arguments “xi” 
(variables and constants), or function symbols applied to arguments.  

The program is said to be recursive if a cycle exists through the predicates, i.e., predicate appearing both in the head 
and body of the same rule. The order in which the rules are presented in a program is semantically irrelevant. The 
commas separating the predicates in a rule are logical conjuncts (AND); the order in which predicates appear in a 
rule body has no semantic significance, i.e. no matter in what order rules been processed, the result is atomic, i.e. the 
same. The names of predicates, function symbols and constants begin with a lower-case letter, while variable 
names begin with an upper-case letter. A variable appearing in the head is called distinguished variable while a 
variable appearing in the body is called non-distinguished variable. The head is true for given values of the 
distinguished variables if there are values of the non-distinguished variables that make all sub goals of the body 
true. In every rule, each variable stands for the same value. Thus, variables can be considered as placeholders for 
values. Possible values are those that occur as constants in some rule/fact of the program itself. In the program, a 
query is of the form “query(m, y1, ..., y n)”, in which “query” is a predicate contains arguments “m” and “yi”. “m” 
represents the monitoring metric to be queried, e.g., end to end delay, average CPU usage, and etc. “yi” are the 
arguments for the query function. The meaning of a query given a set of Datalog rules and facts is the set of all facts 
of “query()” that are given or can be inferred using the rules in the program. The predicates can be divided into two 
categories: extensional database predicates (EDB predicates), which contains ground facts, meaning it only has 
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constant arguments; and intentional database predicates (IDB predicates), which correspond to derived facts 
computed by Datalog rules.  

In order to perform a recursive monitoring query, the resource graph described by an (V)NF-FG needs to be 
transformed so it is represented as a set of Datalog ground facts which are used by the rules in the program. The 
following keywords are defined to represent the NF-FG graph into Datalog facts, which are then used in the query 
scripts: 

o sub(x; y) which represents ‘y’ is an element of the directly descend sub-layer of ‘x’; 

o link(x; y) which represents that there is a direct link between elements ‘x’ and ‘y’; 

o node(z) which represents an node in NF-FG. 

It should be noted that more keywords can be defined in order to describe other properties of an NF-FG. The 
ground facts are usually generated by the query engine by analyzing the NFFGs on various level of abstraction (i.e. 
granularity). In addition to ground facts, some rules shall be defined by receivers (e.g., the network service 
operators) in order to describe how to translate the high-level performance query into primitive resource metric 
queries, and how to aggregate the primitive query results in order to be able to return a single high-level result. A set 
of function calls can be defined in order to support the decomposition of queries onto low level primitive resource 
metrics, for example, the CPU or memory usage of given VM. The function call will start with “fn ” in the syntax and 
may include ‘boolean’ predicates, arithmetic computations and some other simple operation. The function calls can 
be added by either the provider of the query engine or the service developer. 

The formal definition of the query language is documented in Annex 3 of D4.2 [6]. 

4.11.3 Recent improvements concerning the tool implementation 
To perform recursive monitoring query, a query engine is also required in addition to the language. Since D4.2 [6], 
we have implemented a prototype (including query engine and GUI) which can perform the recursive query 
according to the defined language.  The main functions of the query engine include: 

o receiving a monitoring query from the receivers and sending back query results; 

o parsing and compiling the query scripts; 

o communicating with NF-FG repository and translating NF-FG graphs into Datalog facts; 

o traversing NF-FG graphs according to query scripts; 

o querying monitoring databases which contain the measurement results from monitoring functions. 
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Figure 49: The design of the RQL query engine. 

We have designed and implemented a query engine as illustrated in Figure 49. It consists of the following 
components: the Query Execution, the Request Handler, NF-FG parser, In-memory Data Store (DS), DB Query and 
Query Library. The Query Execution provides the compiler and running environment of the query language. The 
Query Execution is implemented using PyDatalog4 (, an open source Datalog compiler . The Request Handler 
receives and parses the query request from developers or operators. The query request could be the scripts written 
with the proposed language or a simple query request command.  

The NF-FG parser is used to check the NF-FG repository which is maintained by NFV orchestrators (i.e. ESCAPE in 
case of the UNIFY demo) and translates the graphs into Datalog ground facts automatically and stores them in an 
in-memory Data Store (DS). The query scripts are written in the language described in D4.2 [6]. Pre-defined Datalog 

                                                                    
4 https://sites.google.com/site/pydatalog/ 
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query rules or scripts can be stored in the Query Library, so that the receivers can just use simplified commands to 
perform the query. The Query Library contains the query scripts provided by developers or operators, and an API 
can be provided for each stored query script. The Datalog Execution will call the corresponding library according to 
received query command or scripts, and decompose the high level query request into primitive queries towards the 
monitoring data stored in the monitoring database. The Request Handler is also responsible for sending aggregated 
or abstracted query results to the receivers. In addition, the in-memory DS can also be used to store the 
intermediate results obtained by querying the monitoring database(s). The intermediate results can be used as 
cached results or to aggregate the data to be returned to the receivers. The DB Query retrieves low level monitoring 
data from the monitoring database and store intermediate results into the in-memory DS. 

The query engine provides a tool for the receivers (e.g., developers and operators) to query the various VNF 
performance metrics from the lower NFV architecture layers (e.g. NVFI) at higher layers. The query could be input 
either by the GUI or via a RESTful interface. As a natural location, the query engine could be an application in a 
service layer. It is to be noted that the query engine does not collect monitoring data directly from the infrastructure 
layer. Instead it relies on the data collected by the monitoring functions developed in NFV infrastructure. 

4.11.4 Recent improvements concerning the tool integration 
We have verified the effectiveness of the language by integrating it with other UNIFY and 3rd party tools, including 
DoubleDecker (see Section 4.10), RateMon (see Section 4.5), cAdvisor and distributed OpenTSDB/InfluxDB 
monitoring databases. The two example usage cases (i.e., end to end delay and aggregated CPU usage of network 
services) described in D4.2 [6] have been implemented and verified in this testbed setup. The usage of the recursive 
monitoring language in the scope of the UNIFY wide integrate prototype (IntPro) for the purpose of supporting a 
troubleshooting process is described in Section 6.2. 

4.11.5 Evaluation results and conclusions 
In our implementation of the query engine, compiler and running environment is based on PyDatalog, an extension 
of python to provide Datalog support. The experimental environment of the NFV infrastructure is setup by using 
Docker container based VNFs. The NF-FG files are based on the format specified in UNIFY  D3.2 [16]. Google cAdvisor 
is used to collect the primitive resource usage (e.g., CPU and memory) of individual containers, and for delay, 
simulated data are generated. OpenTSDB, an open source distributed and scalable time series database, is used as 
the monitoring database to store the collected performance metrics. We have used the HTTP RESTful API to query 
the performance metrics stored in OpenTSDB.  

We have implemented the two example use cases: an end to end delay between network services; and aggregated 
CPU/memory usage of network services. We have proved the effectiveness of the recursive monitoring language 
and the query engine. Below we will discuss the scalability of the recursive query which is an important criteria 
considered in real system. We will use the query latency as the factor during the discussion. The query latency is 
defined as the time interval between a performance query is sent to the query engine and a response is received by 
the sender. It consists of the several parts and can be represented as:  
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in which ls denotes the latency from a performance query request is sent by a receiver and it is received by the 
query engine; ld is the time taken by the query engine to execute the Datalog rules and decompose the query 
request into primitive queries; ldb is the time taken by the query engine to retrieve the primitive query results from 
the database; lr is the time taken to send back the aggregated or abstracted results to the receivers. For a single 
query from the receivers, ls and lr are independent from the scale of the NFV infrastructure and usually does not 
change much in the same setup. ld and ldb will depends on the scale of the network infrastructure. ld will also vary 
given different Datalog rules in the same Datalog execution environment. ldb will depend on the number of the 
primitive queries generated by the query engine, and the latency of each primitive database query in turn depends 
heavily on the monitoring database implementation. Below we measured the latency ld and ldb. 

 

 

Figure 50: Sample NF-FGs. (a) On the left, an example NF-FG with two layers of abstraction, i.e. VNF1-1 and VNF 2-2 
are realized by finer grained sub-NF-FGs. (b) On the right, a sample NF-FG with parallel links between NFs. 

In the evaluation, two types of NF-FG are simulated. The first type is similar to the example shown in Figure 50a 
which has nested NF-FGs but there is no multiple paths between network functions and is refereed as nffg1. The 
second type of NF-FG is similar to the example shown in Figure 50b, and it has multiple paths between network 
functions but without nested NF-FG and is refereed as nffg2. In the emulation, we measured the query latency 
when the size of the NF-FG (i.e., the infrastructure size) is increased to  1000 for both nffg1 and nffg2. When we 
increased the size of nffg1 and nffg2, the shapes are kept the similar, and only the number of VNFs and nodes 
belonging to VNFs are changed. For nffg1, the number of layers is still two, and the number of nested VNFs and the 
number of nodes in each VNFs are generated randomly. For nffg2, we only change the number of nodes of VNF1-2 
and VNF2-1 from 3 to around 500 respectively.  

In Figure 51 we show the measured latency (ld) for the query engine to execute the Datalog rules that decompose 
and aggregate the average CPU of a network service with both types of NF-FG. In Figure 52 we show the measured 
latency ld for the query engine to execute the Datalog rules for the end to end delay query between network 
functions. From both figures we can see that the Datalog engine execution latency (ld) almost increase linearly when 
the size of the NF-FG increases, eventhough the increasing rates show minor difference. We think one main reason 
is that to get the aggregated CPU and delays the Datalog execution needs to traverse the NFFG definition(s) and 
decompose the performance query into primitive queries to individual nodes in the NF-FG. With the increase of the 
size of NF-FG, more nodes or links have to be traversed by Datalog execution environment. However, it has to be 
noted that this latency is only measured for Datalog engine PyDatalog. For other Datalog engines, the trend may be 
different.  
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Figure 51: The Datalog execution latency (ld) for querying average CPU of network service. 

 

Figure 52: The Datalog execution latency (ld) for querying aggregated network delay between network services. 

It may cause high query latency when the size of the network service is extremely huge (e.g., greater than 
thousands). To reduce such potential high Datalog execution latency, one possible way is to cache the Datalog 
execution result into the in-memory Data Store because we expect the change of the NF-FG is not frequent.  

In Figure 53 the latency (ldb) to query the primitive metrics from the monitoring database is measured. It shows that 
the latency also grows when the number of the nodes included in the query increases and the rate is greater than 
that of Datalog execution latency (ld). As we mentioned above the latencies ls and lr are independent from the 
number of the nodes, therefore the order of complexity for query latency , O(lq) = O(ldb). It implies that the database 
query latency ldb  has more impact on the overall query latency in our experiment. Some monitoring databases (e.g., 
OpenTSDB) provide some aggregation functions though limited, which can be used to reduce the database query 
latency when the size of the network service is really huge. In addition, optimized placement and pre-aggregation 
methods of monitoring components can also be used to reduce the size of the collected monitoring data [32], hence 
the database query latency.  
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In summary, the experimental prototype verified that the proposed recursive monitoring query is practicable and 
effective. To tackle the potential high query latency for very large scale network service, the Datalog execution 
results can be cached in the query engine if the NF-FG doesn’t change frequently. 

 

 

Figure 53 The latency (ldb) for querying primitive metrics in the monitoring database. 

 

4.12 EPOXIDE – Multicomponent troubleshooting 
4.12.1 Purpose and problem statement 
Network troubleshooting is a complex task that requires accessing a plethora of troubleshooting tools and network 
nodes. Our tool’s main goal is to help network troubleshooting by integrating pre-existing network troubleshooting 
tools and implementing a framework that provides a unified interface to interact with these tools. Instead of re-
implementing functionalities available in existing, special purpose tools, EPOXIDE provides a simple way to create 
wrappers around these existing tools. Users then define high-level troubleshooting graphs (TSGs) written in a .tsg 
file that connect these special purpose tools to automate one hypothesis testing during a troubleshooting session.   

4.12.2 Brief technical description 
EPOXIDE is a multi-component debugging and troubleshooting tool written as an extension of the Emacs text editor 
[1]. The Epoxide framework interprets .tsg files and maps the nodes and links described by it to Emacs buffers. When 
execution of a .tsg is started, the framework creates an event queue and runs a scheduler that handles this queue. 
Events are generated when the content of a buffer is within EPOXIDE’s scope changes. On such occasions, the nodes 
that connect to the updated buffer are looked up by the framework and notification events addressed to them are 
inserted into the frameworks event queue. The scheduler takes out these notifications one-by-one from the queue 
and calls the execution function of the appropriate node. 

These node execution functions are responsible to call troubleshooting tools and handle the results returned by 
them. When they have new data, they should write their output links thus stimulating the frameworks scheduler to 
notify connected nodes. 

Because of the modular structure of EPOXIDE, wrapper nodes can be created by anyone using the Emacs Lisp 
language. Node developers have to implement only a handful of functions requested by the framework (with the 
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previously mentioned execution function among them). More information on the internal operation of EPOXIDE can 
be found in D4.4 [88]. 

4.12.3 Recent improvements concerning the tool implementation 
To demonstrate the concept we had already written in the past wrapper nodes around simple troubleshooting tools 
like ping, iperf, etc. [64] [65] but since these basic wrappers can provide only the same functionality as the tools they 
wrap, more complex nodes became necessary in order to provide a higher level of utility for EPOXIDE. Recently we 
added four new types of nodes to EPOXIDE: 

● nodes that wrap Emacs lisp functions, 

● nodes that are able to channel new information from any Emacs buffer to the domain of EPOXIDE, 

● Decision nodes that create conditional branches in a troubleshooting graph,  

● Decision-summary nodes that summarize the results of different Decision nodes. 

Using the first node type one is able to create simple manipulations on the text received on the inputs either by 
using one of the available Emacs lisp functions or writing a user-defined function. The nodes also provide the option 
to write the function in the .tsg file as a lambda function. This has the benefit that custom function definitions can be 
packed into the troubleshooting graph definition file itself in a self-contained way and no additional file is necessary 
for defining extra functionalities. 

The second node type is useful when there is a process that updates an Emacs buffer that does not belong to a 
specific EPOXIDE session but we still want to access information from that buffer in an EPOXIDE session. 

Decision and Decision-summary nodes, in their basic setup, filter their text-based input using a configurable filter 
expression then forward this filtered input to different output links. Although the logic of these nodes are relatively 
simple, they make possible to define TSGs that automate more than just one hypothesis testing of the  
troubleshooting session. The challenge here is to find an intuitive UI that can define useful decision logic easily and 
to create the node in such a way that it could support more automated troubleshooting processes by enhancing 
EPOXIDE with features of expert systems. All in all, the capabilities of EPOXIDE enhanced with the 
Decision/Decision-summary nodes are the following: 

● Implementing simple tests and evaluating them. The decision node is able to interpret incoming textual 
data, evaluate it and decide whether it conforms to given criteria. 

● Make conditional branches based on inputs. When a troubleshooting graph is built using different tests, the 
user is able to express that certain tests should run only when certain criteria are fulfilled. 

● Provide input specific preprocessing functions.  When a decision is based on multiple inputs, i.e., it is based 
on the results of multiple tools, then the TSG writer might need to use preprocessing functions tuned 
individually for each tool. These functions can analyze the text coming in on a certain input and return a 
value indicating a failure to comply with the criteria or some other value indicating success. For example, 
the Emacs lisp string-match function can be used as a preprocessing function as it looks up a substring in a 
string that matches a given regular expression. If it finds something, it returns the starting position of the 
match or it returns nil when there are no matches for the specified regular expression (the decision node 
considers this a failure). 
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● Combine inputs or select one from them using custom functions. When creating a hypothesis test the user 
can choose to have a simple success or failure message as an output of the decision node but sometimes it 
might be more appropriate to have more complex selection logic like, for example, to apply arbitrary 
Boolean logic on the preprocessed inputs.  

● The output of the decision node is either the result of the selection function (i.e., which input is interesting) 
or the selected input itself.  Consider the case when we want to check whether the input text contains a 
substring and if it does then use that exact text in a subsequent node of the TSG.  

● Since different troubleshooting tools relay their results in different formats, it is necessary to provide a 
configuration option to the Decision node that defines how to process a given input. A certain tool's output 
may relay information on a line-by-line basis where each line ought to be interpreted individually (e.g. 
ping) or in bigger chunks (e.g. ifconfig). 

● The result of an individual tool arrives asynchronously to EPOXIDE, in some cases users want to wait for all 
the inputs of a decision node to draw a decision, in other cases it makes more sense to conclude a decision 
when the first input arrives, or right after a given timeout expires.  

● For convenient usage, the decision node provides three kinds of output links.  The first one outputs the 
result of the selection function or the selected input.  The second outputs a timestamp when the selection 
function does not select any of the inputs.  And finally, the third kind of output is a status output that 
contains the results of the decision in all cases.  These kinds of outputs help writing conditional branching 
and overview tables implemented by Decision-summary nodes with ease.  

● The preprocessing function normally processes the data of one input link.  However, it is also possible to 
assign multiple input links to one preprocessing function to work on, which in some cases simplifies the 
definition of the decision logic. 

Figure 32 illustrates the extended flowchart of the Decision node that summarizes the main functionalities listed 
above. For a more detailed description of the Decision node’s in/output and configuration parameters see D4.4 [88]. 
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Figure 32 Extended flowchart of the Decision node. 

4.12.4 Recent improvements concerning the tool integration 
We have identified workflows that allow integrating EPOXIDE with the ESCAPE framework.  To achieve this we 
implemented a new wrapper node that is able to connect to the ESCAPE framework and query topology 
information from it by accessing its REST API. The node performs processing on the received data and is able to 
forward it to a Graph node that displays it using COGRE. 

We also have identified the DoubleDecker, Rate monitoring, RQE and the AutoTPG tools as possible candidates for 
UNIFY monitoring/troubleshooting tools that can be integrated with EPOXIDE. We created a wrapper node for 
DoubleDecker and possible troubleshooting graphs for RQE and AutoTPG. 
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The DoubleDecker node wraps around a special DoubleDecker client that is able to display and receive messages in 
JSON format. It has no input links; when it is instantiated it creates a sub-process that continuously updates its only 
output link. The node has one mandatory and four optional configuration arguments. The mandatory first argument 
specifies the host where the DoubleDecker client should run at. The second argument specifies the topic to which 
the node should subscribe in the form of <topic>/<scope> (or a semi-colon separated list of those in case of more 
than one topic should be used). The following arguments have default values: the third argument defines the 
location of the private key file for authentication, the fourth the tenant and the fifth specifies the DoubleDecker 
name of the node. 

The single output of the node relays every message received from the DoubleDecker client unaltered.  These 
messages are usually JSON formatted but in case of the startup they are unformatted strings. 

The RQE and the AutoTPG tools provide REST APIs to interact with or control them. We created an EPOXIDE node 
that is able to establish communication with REST APIs and relay information received from them. These two tools 
communicate with JSON formatted messages so we implemented another EPOXDE node that is able to dissect a 
JSON message and return the value belonging to a certain JSON key. Using these nodes and the previously 
mentioned node that is able to run the format Emacs lisp function we came up with the following two 
troubleshooting graphs as sample scenarios to interact with the RQE and AutoTPG tools. 

Figure 33 shows a simple scenario for the AutoTPG tool. In this scenario we want to check switch 00:..:01 in every 
minute for errors then filter the error part of the result and show it in an EPOXDE view. 

 

 

Figure 33 Sample TSG using AutoTPG. 

 

For the RQE tool we came up with the sample TSG shown in Figure 34. First we compile a string that is used for 
accessing the tool’s REST API – the left Format node is responsible for this. To make the TGS more versatile, we take 
the three arguments the REST API requires (resource, nfid, and type) from their respective Emacs buffers. The RQE 
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tool is accessible at the localhost on port 8000. The query is performed every 10 seconds, as indicated by the Clock 
node. When a response arrives from the RQL tool’s REST API, the requested parameter gets selected by the Json-
filter node. Since the parameter’s key can change depending on the queried resource and type, the right side Format 
node creates this key dynamically and it passes the resulting key to the Json-filter node as its first configuration 
argument. The result of the query is showed via a view. Notes on Figure 34 show the links’ contents in a sample 
execution. In the presented scenario we want to query the mean CPU utilization (right and left side Emacs-buffer 
nodes). The RQE tool responds that it is 80% (visible on the output of the Rest-api and the Json-filter nodes). 

 

 

Figure 34 Sample TSG using RQE. 

4.12.5 Evaluation results and conclusions 
Taking the Decision node approach further would take us closer to our goal to have a more automated 
troubleshooting process. This concept of creating tests by evaluating data returned by troubleshooting tool greatly 
resembles to the methods used in recent years for performing automated inferences in network troubleshooting 
[66]. 

If EPOXIDE links forward probabilities expressed as real numbers then EPOXIDE with Decision nodes would also be 
able to run a Bayes network based decision support system in the background and provide help for which tools to 
run in the troubleshooting process or to build a troubleshooting graph without supervision. 
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4.13 Final toolkit composition and status 
The SP-DevOps Toolkit is a set of tools developed in as part of the UNIFY SP-DevOps activities, and are collectively 
published under open source licenses via UNIFY dissemination channels. The tools solve particular problems on 
network performance monitoring, troubleshooting and service graph verification, and various combinations of these 
tools have already been demonstrated (e.g. DoubleDecker and Ramon in [27]) or are integrated to demonstrators as 
part of SPDevOpsPro or IntPro in the scope of UNIFY (see D4.4  [88]. and D2.4 [14], respectively). 

The following table shows the tools for the final SP-DevOps toolkit released in two batches. While the four tools 
comprising the first release are already publicly available since November 2015, the additional tools of the second 
release have been published in June 2016. The final toolkit release was announced via the UNIFY webpage5 with 
pointers to the separate repositories. Furthermore, the toolkit was advertised via presentations at IETF 94 in the 
NFVRG [89] and at the OPNFV summit 2016 [90]. Note that additionally to the tools listed in Table 4, an experimental 
version of MEASURE is also publicly available, but did not yet reach the maturity to be officially included to the SP-
DevOps toolkit. Documentation and links of all the public tools, including MEASURE, can be found in D4.4 [88]. 

 

Table 4 SP-DevOps toolkit components. 

SP-DevOps Tool 
or Function 

Problem solved 
1st Toolkit 
Release 

2nd Toolkit 
Release 

License 

DoubleDecker Flexible and scalable messaging x  LGPLv2 

Ramon Scalable congestion detection x  Apache 2 

AutoTPG OpenFlow forwarding verification x  iMinds License 

EPOXIDE Multicomponent troubleshooting x  GPLv3+ 

VeriGraph Service graph and configuration verification  x AGPLv3 

TWAMP Data 
Model 

Programmable active network 
measurements with a legacy OAM tool 

 x 
Simplified BSD 

License 

 

 DoubleDecker, a scalable messaging system based on ZeroMQ that features built-in message filtering and 
aggregation and sending opaque data between virtual network and monitoring functions, as well as 
towards higher layer orchestration modules 

o Tool release date: 2015-11-01 

o Repository: https://github.com/acreo/doubledecker 

o License: LGPLv2 

                                                                    
5 https://www.fp7-unify.eu/index.php/results.html#sp-devops-toolkit  
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 Ramon, a tool for determining a precise statistical estimate of link utilization in a distributed manner and 
offer congestion indications 

o Tool release date: 2015-10-31 

o Repository: https://github.com/nigsics/ramon.git 

o License: Apache 2 

 AutoTPG (Auto Test Packet Generator), a tool able to verify/test the matching header part of the OpenFlow 
forwarding entries, even in the presence of aggregated (i.e. wildcarded) flow rules 

o Tool release date: 2015-11-01 

o Repository: http://users.intec.ugent.be/unify/autoTPG/ 

o License: iMinds License 

 EPOXIDE, an Emacs-based framework capable of assembling general and SDN specific debugging and 
troubleshooting tools in a single platform  and make it easy for a developer or operator to combine them 

o Tool release date: 2015-08-14 

o Repository: http://github.com/nemethf/epoxide 

o License: GPLv3+ 

 VeriGraph, a formal verification tool for complex networks containing active NFs that is able to 
automatically verify NF-FGs and their configuration against some desired network policies 

o Tool release date: 2016-04-30 

o Repository: https://github.com/netgroup-polito/verigraph 

o License: AGPLv3 

 TWAMP Data Model, a data model for client and server implementations of the Two-Way Active 
Measurement Protocol (TWAMP),   defined through Unified Modeling Language  (UML) class diagrams and 
formally specified using YANG. 

o Model release date: 2016-03-21  

o Repository: https://datatracker.ietf.org/doc/draft-ietf-ippm-twamp-yang/ 

o License: Simplified BSD License 
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5 SP-DevOps workflows and processes 

The expected operation of SP-DevOps is specified in this section through the definition of a number of workflows, 
each one capturing a particular aspect or viewpoint of SP-DevOps: verification, monitoring (or observability), and 
troubleshooting. For each workflow, a number of different processes is defined, each one corresponding to different 
conditions or phases. In particular, this work concentrates on the tools described in Section 4 and represents the 
processes combining these tools. The next sub-section presents the criteria we used for distinguishing different 
processes that belong to each workflow. Then, the next sections deal each one with a different workflow. The 
notation chosen for specifying processes is BPMN (Business Process Model and Notation) [91], which is a standard 
graphical intuitive language commonly used for the specification of business processes. 

5.1 Scopes and Roles of processes 
When defining SP-DevOps processes for observability, troubleshooting or verification, it helps to categorize them by 
its purpose (i.e. WHY the workflow exists), the scopes where the process operates (i.e. WHAT the process does), and 
the roles involved in the process (i.e. WHO does what). Based on these dimensions, various different processes can 
be classified, pertaining to different kinds of scopes and roles. 

In order to break down various scopes and purposes of SP-DevOps processes, we devised a simple 
WHY/WHAT/WHO model: 

• WHY: Purpose of the operational (SP-DevOps) processes (monitoring/verification/troubleshooting) 

• Status updates (e.g. for orchestration, optimization of embedding, infrastructure status …) 

• SLA follow up (e.g. for SLA reports) 

• Accounting 

• Troubleshooting (including RCA and debugging) 

• Quality assurance (Verification, Validation/Activation) 

• WHAT: Technical scope of the process (monitoring/verification/troubleshooting) 

• Physical Infrastructure Resources (including physical network functions – PNF) 

• PNF (i.e., middlebox) functionalities 

• PNF performance 

• Service functionalities (entire service chain or NF-FG) 

• Service performance 

• VNF functionalities and performance (seen in isolation) 

• WHO: Initiator of monitoring/verification/troubleshooting processes and receiver/user of the results 
produced by such processes 
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• Service Developer (in SL space, Operator internal or external) 

• VNF Developer (in SL space, Operator internal or 3rd party) 

• Operator (in SL space, e.g. for “internal” SLA follow up and service status) 

• Operator (in OL space, e.g. for service optimization, embedding, scaling) 

• Customer/Tenant (in SL space) 

Note that the WHO category may also include modules that act on behalf of the operator/developer/user role, e.g., a 
scaling module in the OL on behalf of the operator, or a MF on the controller on behalf of the VNF developer. 

In the following table, we show a mapping according to this model. The list contains the SP-DevOps processes 
defined within each UNIFY workflow. 

 

Workflow 
SP-DevOps Process 

(Ref. to relevant section) 
WHY 

(Purpose) 
WHAT 

(Techn. Scope) 
WHO 

(Initiator/Receiver) 

Verification 
Pre-deployment 

verification (Sec. 5.2.1) 

Correctness 
assurance  

(Verification) 

Service  
(functionality) 

Customer, Operator 
(SL), Service  

Developer (SL) 

Verification 
Post-deployment 

verification (Sec. 5.2.2) 
Quality assurance 

(Validation) 
Service 

(functionality) 
Operator (OL) 

Observability 
Service monitoring 

(Sec. 5.3.1) 
SLA reporting 

Service  
(func.& perf.) 

Customer, Operator 
(SL), Service 

Developer (SL) 

Observability 
Orchestration support 

(Sec. 5.3.2)  
Status updates 

Resources  
(per VNF) 

Operator (OL) 

Troubleshooting 
VNF development 

(Sec. 5.4.1) 
Troubleshooting 

(debugging) 
VNF 

(func. & perf.) 
VNF Developer (SL) 

Troubleshooting 
Service troubleshooting 

(Sec. 5.4.2)  
Troubleshooting 

(RCA) 
Service 

(func. & perf.) 
Operator (OL) 

 

5.2 Verification workflows 
As previously discussed, for verification we can distinguish two main kinds of verification: pre-deployment 
verification, which works on models and is performed before deployment in order to prevent that bad graphs or bad 
configurations are deployed, and post-deployment verification, which works on the infrastructure after deployment 
and aims at detecting possible errors that show up in the deployed graph. The next two sub-sections deal with these 
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two different kinds of verification. For pre-deployment verification a single process is defined while for post-
deployment verification several processes are defined according to the different tools that have been experimented. 

5.2.1 Pre-deployment verification 
The pre-deployment verification process in BPMN notation is shown in Figure 54. It represents how the pre-
deployment verification tools operate within the UNIFY architecture, focusing on the key components, and which 
verification tasks they perform, according to the main roles involved in the UNIFY architecture. 

The whole verification process starts with a request of service graph deployment coming from the tenant or 
operator. The request includes: (i) a description of the Service Graph to be instantiated; (ii) the set of verification 
policies that have to be verified in the graph (in other words, the properties, as already defined in Section 4.1). These 
inputs are managed by the Service Graph Adaptation Sublayer of the UNIFY architecture, which triggers the first 
verification step, i.e. Service Graph verification.  

In detail, during SG verification, the system interacts with the Neo4JManager service (an internal component of the 
pre-deployment verification module, see Section 4.1)  through its REST API, specifying the service graph, which is 
stored in the Neo4J database, and the type of properties to check on that graph. At this level, topology verification of 
the Service Graph is done by Neo4JManager (“SG verification” activity in Figure 54). The verification tool returns a 
verification result, which is processed by the system in order to either alert the user of failing in deploying the 
service request or continue with the request process. 

In case of successful verification, the Orchestration level of the UNIFY architecture comes into play. In particular, the 
system operates several transformations on the NF-FG, related to its translation, decomposition, and embedding 
into available resources. In order to check the coherence of at least some of these operations, the orchestration 
layer also triggers the second stage of verification, namely the NF-FG verification. 

The NF-FG verification is actually split into two steps, compliantly with the orchestration process described in D3.3 
[7], the “Topology Verification of Decomposed NF-FG” and the “Flow-level Verification” (Figure 54). 

After the NF-FG decomposition phase, the orchestrator triggers the first NF-FG verification step, which is a 
topology-level verification (“Topology Verification of Decomposed NF-FG” in Figure 54). Similarly to what happens in 
SG verification, the Neo4JManager tool performs the NF-FG topology verification process and needs both the 
(decomposed) NF-FG description and the verification properties as inputs. The Neo4JManager tool returns a 
verification result, which is further processed by the system. Part of this processing includes a service for fixing 
possible topology errors detected by the Neo4JManager in NF-FGs (“NF-FGBugFixing” in Figure 54). After the fix, 
the modified NF-FG must be verified again, in order to be sure about its correctness. A loop is thus created, which 
can be repeated for a finite number of times. If the process for fixing NF-FG errors is not able to correct the graph  
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Figure 54 Pre-deployment verification workflow. 

within a fixed number of iterations, the system must alert the tenants of the verification failure. In the case of a 
successful fix, the system will continue in deploying the NF-FG.    

At this point of the process, and in essence after the embedding phase of the orchestration process (see the 
extended view of orchestration process in D3.3 [7]), the second phase of NF-FG verification, i.e. flow-level 
verification, is performed by the means of VeriGraph (“NF-FG Flow-level Verification” activity in Figure 54). Actually, 
before performing this kind of verification, further steps must be done by the system. The details of such steps have 
not been reported in the diagram as they do not concern the verification workflow. However an example of these 
preliminary steps is the retrieval of VNF configurations. This step is done in order to deploy the NF-FG correctly. In 
this process representation, we are assuming that the VNF configurations are already available. The system could 
retrieve such configurations from an external Entity Manager. Another solution could be that tenants configure 
directly their own graph, but these are details not essential from a verification perspective. Hence we can assume 
that the verification tool (namely the activity “Flow-Level Verification” in the workflow figure) receives the NF-FG 
description, the configuration of its VNFs and which properties have to be verified. 
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"Flow-level verification is composed of a set of sub-steps that are run in an automated fashion. As it is depicted in 
Figure 54, the verification tool has to do some preliminary tasks including:  

 Retrieval of all the paths that connect the source and destination nodes in the NF-FG, thanks to 
Neo4JManager, which exposes an API for doing this task (“VNF chain extraction” activity);  

 for each of these paths, VeriGraph must create a model though First Order Logic formulas and initialize the 
Z3 environment. In fact Z3 is the core engine of the main pre-deployment verification tool proposed by 
UNIFY, as it was already mentioned in D4.2. [6] 

In case of failure in verifying flow-level properties in the NF-FG, the system must alert tenants, otherwise it can 
continue with the NF-FG deployment. Once again, here the diagram does not detail the next steps performed by the 
system to deploy the graph, like the creation of Controller Rules (e.g., OpenFlow Rules). Moreover, we can image that 
in this phase a pre-deployment verification of the correctness of such rules can be performed by another 
verification tool (shown in figure as “CTRL Rule Verification” task). However, as this verification problem has already 
been addressed and solved by many existing works in relevant literature (many tools are available like VeriFlow [92], 
NetPlumber [93] and others), this task will not be part of the demonstrated UNIFY pre-deployment verification tool 
functionality. Instead, the tool functionality will be limited to verifying the correctness of graphs in the higher levels 
of the UNIFY architecture (namely Service and Orchestration levels), which was the main open challenge. 

 

5.2.2 Post-deployment verification 
When all the pre-deployment verification processes have been completed successfully, the tenant graph is 
deployed, and run-time verification can be performed, possibly alerting the tenant if any error is detected. In UNIFY, 
two different run-time verification techniques can be activated: verification of path functionality by tagging and 
verification of match flow functionality by automatic test packet generation. Consequently, we present here two 
instances of the post-deployment verification workflow, each one using a different verification technique. The two 
instances share the same purpose, scope and roles. These workflow instances aim to give a clear overview of how 
the post-deployment verification tools operate within the UNIFY architecture. 

Regarding the first post-deployment verification process, the operator would like to ensure the in-order policy 
updates in the data plane as there is an asynchronous medium between OpenFlow switches and controller so the 
consistent update verification tool takes care of it. The NF-FG converted from the service graph along with 
corresponding verification policies is passed as an input to the resource orchestration layer through the Sl-Or 
interface. The verification policies come in the form of requests from the user (operator in this case). The operators 
receive requests in the form of policies to determine the exact behaviour on the data plane and whether the 
behaviour is in sync with the control logic. As explained in D4.2 [6], there can be many reasons that could lead to an 
anomaly such as: a) the asynchronous medium between control and data plane could lead to out of order updates in 
policies, b) switches from different vendors have different reaction time and c) h/w or s/w bugs in switches, 
middleboxes and d) configuration errors. 

The resource orchestration layer maps the verification policies and the graph received from the service layer to the 
substrate resources and therefore, it allows the reservation and configuration of resources on the physical 
substrate. This step is automatic. The path verification tool works in the infrastructure layer and performs 
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verification of data plane paths. This tool can have one of the two possible flavours: a) as an application running on 
the SDN controller for the domain or b) as a data plane feature.   

 

 

Figure 55 Controller application-based approach for path verification. 

The controller-based application (Figure 55) works in three steps as shown in Figure 55: a) port mirroring b) tagging 
c) collection of tags. The flow rules are inserted with a timeout to mirror the traffic so that the line rate of production 
traffic is not disturbed. The tagging of the mirrored traffic is done by the controller application (RYU controller is 
used, it can be used with other controllers like ODL, Flowvisor having corresponding controller applications) with the 
corresponding logic or it can be done by the switch itself (data plane approach explained in the next paragraph). The 
controller application resides on the SDN controller in the infrastructure layer and adds unique tags per links to 
packets which eventually are gathered by the collector for analysis The collector sends the data to the parser and 
the gathered statistics are sent out through the output interface. The results are published to the user (operator). If 
there is an anomaly, the users (operators) are informed by the service layer.  

The data plane-based approach (Figure 56) tags packets on the line rate directly on the datapath element 
(OpenFlow switch) by pushing VLAN or MPLS tags. VLAN or MPLS tags are used as free space on packet header is 
already a scarce commodity. VLAN ID tags should be used in a way that forwarding behaviour is not affected by the 
tags inserted for verification. Moreover, there has to be a lot of consideration to make sure that rules inserted for 
tagging do not interfere with the forwarding rules. There is a configurable soft timeout of this tagging rule so that 
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not all packets get tagged and later the collector gathers the packets in the same way as in previous controller 
application approach and analyses the tags for determining paths. This is where our tool terminates the proceeding 
steps such as the representation of the verification results for higher layer metrics, which are considered as 
automatic or taken care by the UNIFY architecture. 

 

 

Figure 56 Data plane-based path verification. 

The second instance of the post-deployment verification workflow is based on the AutoTPG tool and is shown in 
Figure 57. It shows how AutoTPG operates within the UNIFY architecture. 

In the UNIFY architecture, the service graph adaptation layer communicates with users (such as operators). For the 
post deployment verification, users provide the service graph together with verification requests in a set of policies. 
In this set of policies, the users request to verify the deployed graph for finding flow-matching errors. The causes of 
such errors are: (1) configuration errors such as presence of an error-prone high priority forwarding entry and (2) 
software/hardware bugs. 

In the service graph adaptation layer (shown in Figure 57), the service graph is converted into the NF-FG graph, and 
the NF-FG graph description together with verification policies translated into NF-FG-related policies is passed to 
the resource orchestration layer through the SL-OR interface. The resource orchestration layer is the core of the 
UNIFY architectures. This layer maps the graph (including polices) received from the service layer to the physical 
resources. Based on this mapping, the layer automatically reserves and configures resources and management 
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functions (including Verification Network functions for post deployment verification) through its southbound 
interface towards the controller adaption layer.  The controller adaptation layer creates a domain wide joint 
abstraction of all the underlying resources which then creates virtualized resource view per user. Using this layer, 
the AutoTPG control network functions are deployed over the infrastructure layer. 

Through the NFs deployed (shown in Figure 57), the post deployment verification tool AutoTPG performs 
verification of the data plane network function. As shown in Figure 57, it performs three steps for verification: (1) 
flow duplication, (2) test packet-generation, and (3) matching error calculations.  In the flow duplication step, the 
controller in the orchestration layer copies the Flow Entries in the infrastructure layer from a FlowTable to another 
FlowTable. The entries are duplicated to maintain the same state between the FlowTable (under verification) and 
the duplicated FlowTable. 

In the test packet generation step, the controller generates and transmits test packets that can match with the 
Flow-Match Header of duplicated Flow Entries. In the matching errors identification step, the mechanism calculates 
the matching errors either by reading the counters (statistics) of the duplicated Flow Entries or by comparing the 
sent and received test packets. 

The output given by our tool identifies which deployed NFs (found through errors in Flow Entry) have errors. If there 
is no error, the output will be that there is no Flow Entry specific issue in the networks.  

 

Figure 57 Post-deployment verification workflow (using automatic test packet generation). 
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5.3 Monitoring workflow 
In this section, we describe two monitoring processes part of the SP-DevOps observability workflow. They outline 
concrete processes evolving the generic observability process definition documented in [25] (D4.1, Section 4.2.2.1).  

The first process corresponds to the SP-DevOps support  for the service deployment and orchestration processes as 
described in D3.3 [7], relating to Service SLA monitoring of an elastic router function, ranging from the service layer 
all the way into the infrastructure and back again. The purpose (WHY) of this process is SLA follow up and reporting, 
the scope (WHAT) is service functionality and performance; and the initiator and receiver of this process (WHO) is 
the operator in the service layer 

The second process supports dynamicity aspects of the UNIFY orchestration layers and relates to the service 
elasticity example enabled by the Cf-Or interface as described in D3.3 (sections on elastic router and state 
migration). The purpose (WHY) of this process is real-time status updates, the scope (WHAT) is VNF resource usage 
and performance; and the initiator and receiver of this process (WHO) is the resource orchestration layer in charge 
of the operators services. 

5.3.1 Service SLA monitoring process 
In this section, we will outline a service SLA monitoring process in alignment with the UNIFY architecture and the 
WP3 deployment process. It is important to note that the process depicted below is focusing on monitoring related 
activities and interactions. Instead SG/NF-FG and general service deployment related activities and interactions are 
described in D3.3 [7] (section on orchestration process). 

The observability process for service SLA monitoring (shown in Figure 58) is supported by SP-DevOps tools and 
functions developed as part of SP-DevOps by means of MEASURE annotations to NF-FGs, DoubleDecker messaging 
for dissemination of configuration and results, various monitoring components (including RateMon, E2E Delay and 
Loss Monitoring, EPLE, TWAMP, IPTV quality, AutoTPG and path-verification) treated as one generic monitoring 
function in the depicted process. As an alternative to the monitoring results dissemination part of the process (right 
part of Figure 58), the recursive query language and engine (RQL) could be used to support on-demand querying 
and processing of specific results from the monitoring DBs in the infrastructure, bypassing many of the data 
merging and composition steps of MEASURE.. The RQL is not shown in Figure 58, but described in Section 4.11 and 
visualized in Figure 3. 

The process starts by a tenant (customer or user) requesting an abstract service graph (SG) together with a set of 
requirements expressed in an SLA. The process flow through service (SL), resource orchestration (RO), and 
controller adaptation layers (CA) is as follows: first, the SLA is translated into specific observable KPIs; second, the 
KPIs are expressed in MEASURE annotations to the derived NF-FG, defining measurement definitions (metric, 
locations, configuration), zone definitions (aggregation and threshold configuration), and reactions (how to 
disseminate the results).  

In the RO sublayer, MEASURE annotations need to be decomposed following the decomposition chosen for the NF-
FG. Next, the MEASURE annotations need to be scoped according to the scoping of the NF-FG onto available 
infrastructure domains. At this stage, the NF-FG together with MEASURE annotations reach the domain specific 
monitoring controller, e.g. Local orchestrator including a Monitoring Management Plugin (MMP) within a Universal 
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Node (UN). The MMP interprets the MEASURE measurement definitions and selects a suitable monitoring tool 
available in this domain, and if applicable, it instantiates a MF control app (this would be the case for many SP-
DevOps tools like RateMon, AutoTPG, EPLE or TWAMP). It also retrieves the Zone and Reaction definitions of 
MEASURE to configure domain wide aggregation points (which might be implemented within as part of MF control 
app or as a generic DoubleDecker client). In order to compile the final configuration of actual observability points 
(OPs), the MMP will receive relevant parameter from network and compute controllers (e.g. through the LO within 
an UN). Based on the MEASURE annotations and the low-level details gathered locally, the MF control app can 
configure one or several OPs within the domain. 

During the operational phase, the OPs perform their continuous monitoring tasks according to configuration. In 
regular intervals or on events (like threshold breaches) the monitoring results are collected by the MF control app 
via DoubleDecker. Optionally, a DoubleDecker aggregation client might reduce the amount of data based on the 
earlier configuration. The MF control app can further pre-process and aggregate results from several OPs and push 
the results into a monitoring DB in the MMP. The SLA reporting reads from this DB in periodic polling intervals (order 
of seconds to minutes) and uses the scoping and composition rules of CA and OR to merge and re-compose metrics 
corresponding to the higher abstraction levels of the NF-FG of the observed service. In the SL, the KPIs are stored in 
an SLA database for logging and reporting purposes. Additionally, the periodic results can be compared to the 
requirements of the SLA and trigger notifications to the tenant on immediate SLA breaches. In a periodic reporting 
interval (order of weeks or months), SLA reports are created out of the timeseries of metrics stored in the SLA DB 
and provided to the tenant. 

The above described process is probably the most generic observability process and was chosen as a descriptive 
example due to its completeness through all architectural layers. It serves mainly the purpose to show how UNIFY 
SP-DevOps tools together can be used to create a process in concertation with UNIFY orchestration modules and on 
UNIFY infrastructure in the form of the UN. SP-DevOps tools will support the lower part of the process (with focus 
on controller and infrastructure layers), as well as rudimentary versions of monitoring orchestration modules in the 
orchestration layers CA and RO, which is developed primarily for the sake of integration with dynamicity use-cases 
such as elasticity and state migration as documented in [7] and  [18]. The specific process to support orchestration 
dynamicity is outlined in the next section. 
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Figure 58 Process diagram for generic service SLA monitoring. 
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5.3.2 Orchestration dynamicity support process 
In this section, we describe the process supporting orchestration dynamicity in alignment with the UNIFY 
architecture and the service deployment and orchestration process, relating specifically to the service elasticity 
examples enabled by the Cf-Or interface as described in D3.3 (sections on elastic router and state migration).  

This monitoring orchestration support process (shown in Figure 59) is supported by SP-DevOps tools and functions 
by means of MEASURE annotations to NF-FGs, DoubleDecker messaging for dissemination of configuration and 
results, and selected monitoring components (RateMon and cAdvisor as a third party tool for computer resource 
monitoring are considered) treated as one generic monitoring function in the depicted process. 

Like the more generic service SLA monitoring process, this process starts by a tenant (customer or user) requesting 
an abstract service graph (SG) together with a set of requirements in form of an SLA. In the SL, the SLA is translated 
into specific observable KPIs. These KPIs are then expressed in MEASURE annotations to the derived NF-FG. In this 
example, the RO sublayer chooses some network connections to be realized through an elastic router, i.e. a CtrlApp 
based (black-box) decomposition [7], due to some strict network requirements on a certain ports (e.g. capacity or 
availability). The elastic router is decomposed into VNFs realizing not only data plane (DP components), but also a 
special control network function (control NF) component, which inherently knows the service logic of the specific 
network function (in this case the router elasticity logic), corresponding to the declarative option [7]. In cases when 
the procedural option is followed, the elasticity logic is not inherent part of the VNF instantiation representing the 
control NF, and it can be programmed dynamically based on a procedure template residing with composition rules. 

The remaining activities in the RO and CA sublayers are to decompose MEASURE annotations following the complete 
decomposition chosen for the NF-FG, and to finally scope the MEASURE annotations according to the scoping of the 
NF-FG onto available infrastructure domains. The next steps until the operational phase are similar to the generic 
Service SLA monitoring deployment phase: the NF-FG together with MEASURE annotations reach the domain 
specific monitoring controller, e.g. Local orchestrator including a Monitoring Management Plugin (MMP) within a 
Universal Node (UN). While network and compute controllers deploy and connect the service VNFs (including the 
control NF), the MMP interprets the MEASURE measurement definitions and selects a suitable monitoring tool 
available in this domain, and if applicable, it instantiates a MF control app (in this example for RateMon). It also 
retrieves the Zone and Reaction definitions of MEASURE to configure domain wide aggregation points (which might 
be implemented within as part of MF control app or as a generic DoubleDecker client). In order to compile the final 
configuration of actual observability points (OPs), the MMP will receive relevant parameters from network and 
compute controllers (e.g. through the LO within an UN). Based on the MEASURE annotations and the low-level 
details gathered locally, the MF control app can configure one or several OPs within the domain. 

Basically, the operational phase within the infrastructure is similar to the generic monitoring example: the OPs 
perform their continuous monitoring tasks according to configuration, which in the elastic router example means 
monitoring of the VNFs representing elastic router DPs. In regular intervals or on events (like threshold breaches) 
the monitoring results are collected by the MF control app via DoubleDecker. Optionally, a DoubleDecker aggregation 
client might reduce the amount of data based on the earlier configuration. The MF control app can further pre-



  

100 D4.3 14.10.2016 version 1.2 

process and aggregate results from several OPs, but besides pushing the results into a monitoring DB, the relevant 
metrics (traffic rates, resource usage, etc..) are made available to the elastic router control NF though DoubleDecker. 
This can be either done via direct notifications or the publish/subscribe interface (which is the preferred way). The 
elastic router control NF can decide on reception of the monitoring results to initiate a scaling operation via the 
elastic control loop as described in the process flow in Section 6.2, and in more detail in D3.5 [18]. In short, the elastic 
router control NF instruments the Cf-Or interface to first request the NF-FG infrastructure context from the RO, and 
then locally performs a CtrlApp based decomposition which might result in an updated NF-FG with MEASURE 
annotation, for instance including further DP instances. This information is then the input to another deployment 
cycle, starting with an NF-FG + MEASURE at the Resource Orchestration.  

The above described process specifically supports the elastic router use case. However, it is general enough to 
support orchestration also for other dynamicity features such as state-migration. The main parts of this process 
have been implemented within the project-wide IntPro, supporting the WP3 elastic router use-case and with the 
Universal node as the infrastructure execution environment. The implementation is described in Section 6.2, with a 
focus on the parts involving SP-DevOps tools and functions. 
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Figure 59 Process diagram for monitoring in support of orchestration dynamicity on the example of the elastic 
router. 

 



  

102 D4.3 14.10.2016 version 1.2 

5.4 Troubleshooting workflows 
A troubleshooting process is typically triggered either by a user request (Operator/VNF developer/Service 
developer), or by a running monitoring process and its functions used for monitoring KPIs, run-time verification, or 
conditional observability (e.g. breakpoints) in a deployed service graph. The information level of the output depends 
on the role of the requester and associated permissions [26]. 

A troubleshooting process gathers data from three sources - MFs, VNFs and DBs (i.e. logs), for the purpose of 
analysis (e.g. event correlation) and reporting. For run-time troubleshooting (triggered by a monitoring process), the 
report or notification can be used for triggering actions to automatically and seamlessly mitigate the problem by re-
deploying affected parts of the NF-FG. Moreover, troubleshooting can be based on either of the following or both: 

 the creation of a troubleshooting NF-FG, which is an extended NF-FG with additional MFs and VNFs (e.g. 
functions for duplication and comparisons) used for testing and observing the components of the service,  

 queries to DBs (such as logs) and direct requests to MFs and VNFs for the purpose of gathering information 
about the network state and behavior. 

In many cases, troubleshooting based on gathering information from the system is sufficient for identifying the 
cause of a detected problem. In other cases, a modification of the NF-FG into a troubleshooting NF-FG may be 
necessary in order to gather additional information not already available to the troubleshooting process, or for 
performing specific tests or actions (e.g. debugging) on a VNF or service graph, for instance during VNF or service 
development phases. 

A Troubleshooting Function performs three tasks: Translation of a Troubleshooting Specification into 
Troubleshooting Actions; execution of Troubleshooting Actions; analysis and reporting. Troubleshooting Functions 
can be implemented in three different ways: as a function invoked by a user at User Layer (UL) (Section 5.4.1); as a 
functional block in the Resource Orchestrator Sublayer; or as a dedicated Troubleshooting Controller App (TCA) 
(Section 5.4.2). Troubleshooting Functions invoked at the UL are suitable for VNF developer support or for additional 
troubleshooting support of an SG. Troubleshooting implemented as a Resource Orchestrator functional block or as a 
controller is more suitable for fault management of a SG for seamless resolution of detected problems.  

The Troubleshooting Specification defines the steps and behavior of an automated troubleshooting process. 
Essentially, the Troubleshooting Specification defines which components of the SG should be tested or observed 
and how (e.g. in which order), including data sources (MF, VNF, DB) to be used and corresponding configurations. 
The Troubleshooting Function implemented at the UL, Orchestrator Layer (OL) or in a TCA, processes and translates 
each step defined in the Troubleshooting Specification into a detailed description of Troubleshooting Actions to be 
executed in the system for the existing SG. Note, that the formal language used for creating a Troubleshooting 
Specification is Troubleshooting Function specific, and will not be addressed here. If the design of the 
Troubleshooting Function and the Troubleshooting Specification language allows it, a Troubleshooting Function may 
call another one for the purpose of nested troubleshooting. 

A Troubleshooting Action is a description that includes: a Troubleshooting Graph (TG) with the required MFs and 
VNFs; KQI/KPI to be observed by the MFs; VNF configuration; query expressions for accessing DB information (e.g. 
logs, historic monitoring information); and, instructions for pulling information directly from MFs or VNFs. 
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The TG includes the components (MFs and VNFs) that should be added or inserted to an already existing NF-FG to 
form a troubleshooting NF-FG. The definition of the TG may require access to MF/VNF information bases.  The 
deployment of a TG requires functionality in the OL to extend an already existing NF-FG with additional VNFs and 
MFs. An empty TG corresponds to only performing troubleshooting based on gathering information from existing 
NF-FG via queries and direct requests to existing MFs and VNFs. The translation from Troubleshooting Specification 
to TG is done in a similar fashion for troubleshooting functions in OL and TCA. The extension from a TG to a 
troubleshooting NF-FG is handled by the Resource Orchestration and Controller Adaptation Sublayers in the OL. 

Depending on the scope and purpose there are several ways of defining a troubleshooting process. We focus here 
on presenting two cases of troubleshooting workflows (see Section 5.1 for a summary of scope and role overview). 
The first workflow relates to VNF development, with the purpose (WHY) of troubleshooting and debugging of 
undesired behavior and performance at the service layer (WHAT), initiated by a VNF developer (WHO) (see Section 
5.4.1). The second workflow relates to troubleshooting and root cause analysis (WHY) of service performance and 
functionality (WHAT), initiated (automatically) at Operator level in the OL (see Section 5.4.2). 

5.4.1 Troubleshooting process for VNF development support 
The process description in Figure 60 is in general applicable to any type of user (Operator/VNF developer/Service 
developer) and can be employed for debugging, testing and troubleshooting one or several VNFs under 
development. In this case, a VNF (or a chain of VNFs) is observed and debugged using arbitrary troubleshooting tools 
invoked at the UL. As an example, a SP-DevOps troubleshooting function could be implemented by a combination of 
EPOXIDE and the Recursive Query Language (RQL). 

The requesting user provides a Troubleshooting Specification as input to the Troubleshooting Function, which is 
used for producing a TG, a query, or both for the purpose of gathering data. In some cases, the creation of the TG 
requires access to MF/VNF information bases.  The resulting TG or query is sent to the Orchestration layer for 
processing. In the case the troubleshooting requires deployment of MFs and VNFs, the TG is decomposed (along 
with the specification and annotations) as a normal service graph. Information queries or requests may also be 
executed as a single or parallel task to TG deployment. If any query (or other type of information request) depends 
on the output of a TG, it can simply be executed as an additional Troubleshooting Action. Data (measurements, test 
results, notifications, etc.) gathered from the infrastructure layer are aggregated and forwarded to the specified 
aggregation point of the troubleshooting function in the user layer. The Troubleshooting Function processes and 
analyses the data and may, if necessary, carry out further queries or perform further measurements in line with the 
Troubleshooting Specification until a result can be reported to the requesting user or network function. 

The outlined workflow supports automated troubleshooting support for different types of tools. As an example 
based on EPOXIDE, a Troubleshooting Specification would include the definition of steps for setting up a 
management network, followed by carrying out a set of tasks (manual or automated) for a certain VNF of the TG. A 
Troubleshooting Function using EPOXIDE would thus take the Troubleshooting Specification and translate the steps 
into Troubleshooting Actions, out of which the first would be to create the TG (i.e. the management network). The 
remaining steps would be to use the management network to obtain status information of the VNF under testing 
and carry out specified tests (manual or automated), which corresponds to processes related to the "Aggregate logs 
from distributed DBs/perform direct information requests" block in Figure 60. 
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Figure 60 Principles of the requested VNF troubleshooting process. 

5.4.2 Service troubleshooting process  
Automated Service Troubleshooting is mainly aimed as part of service operation (Section 5.4.1). This process Figure 
61) is triggered by a detection event notified by a monitoring function (e.g. continuous monitoring through RateMon, 
EPLE, or AutoTPG [6]). The notification (along with other relevant information) is logged and forwarded towards the 
Resource Orchestrator Sublayer where a Troubleshooting Function is invoked. Based on a Troubleshooting 
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Specification, assumed to have been provided along with the SLA definition at service graph deployment, the NF-FG 
is modified and updated to include specified troubleshooting support functions (MF, VNFs). The modified NF-FG 
together with MF and VNF specific annotations is decomposed, scoped and deployed on the infrastructure. 
Additionally, DB queries and information requests are performed as a parallel task when needed. Data from the 
infrastructure and DB queries are gathered at a data aggregation point and forwarded for further processing and 
troubleshooting analysis (e.g. event correlation). Data from lower layers of the architecture may be recomposed and 
presented at varying level of abstraction depending on role and permission. The results of the analysis may require 
further troubleshooting steps according to the Troubleshooting Specification. When the analysis is done, the result 
of the troubleshooting is logged and reported to other parts of the management system. Although the actual 
troubleshooting process can be regarded as finished already at this stage, Figure 61 also includes the description of 
invoking a problem-resolving management function and reporting on, for example, the location of identified trouble 
and whether the problem was resolved or not. 

The alternative to implementing troubleshooting functionality in the Resource Orchestration Sublayer would be to 
implement a Troubleshooting Controller App (TCA) associated to the SG. In this case, a notification to the TCA from 
e.g. a continuous MF or WatchPoint instance, would trigger a request to the Resource Orchestration Sublayer to 
update the deployment of the NF-FG in accordance with a decomposed troubleshooting NF-FG (done dynamically 
in the TCA upon trigger or ready at deploy-time) given a Troubleshooting Specification (somewhat similar to the 
Elastic Router described in D3.3 [7]). The data from deployed MFs and VNFs of the troubleshooting NF-FG, as well as 
the results from DB queries, are gathered, processed, and analyzed by the TCA. In the end of the process, the TCA 
reports to the specified recipient, i.e. the user (Operator/VNF developer/Service developer) and/or a management 
controller function for resolving the identified problem.  

Implementation of a troubleshooting logic as a functional block in the resource orchestration layer relates more to 
the early architecture defined in D2.1 [10] and D4.1 [25] whereas the TCA approach appeals more to the narrow-waist 
architecture as described in D2.2 [11]. In practice, which variant to implement depends on the capabilities of the 
Orchestration layer, performance requirements and technical features of the infrastructure. 

 

 



  

106 D4.3 14.10.2016 version 1.2 

 

Figure 61 Principles of a service troubleshooting process. 
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6 SP-DevOps use-cases and demo implementations  

The UNIFY project has considered three process categories to realize the main technical challenges of SP-DevOps: 
verification, monitoring (or observability), and troubleshooting. This section presents possible use-cases for SP-
DevOps processes, each consisting a subsect of SP-DevOps tools. 

In particular, the state migration scenario related to the UNIFY FlowNAC prototype serves as a first use-case for SP-
DevOps. FlowNAC is supported by programmable and efficient observablity through DoubleDecker messaging and 
MEASURE. Furthermore, the FlowNAC demonstrator allowed us to verify the applicability of our definition of 
monitoring functions (MF) as discussed in Section 3.2.3. The ongoing evaluation of the FlowNAC demo shows that 
the SP-DevOps MF concept can be nicely generalized to include also VNF-internal monitoring. However, we learned 
that our current definition of MEASURE for automatic programmability of MFs still has some shortcomings, as 
highlighted in Section 4.3.4. As the FlowNAC state migration demo has primarily been carried out in a parallel UNIFY 
workpackage, we want to refer for detailed discussion to D3.5 [18]. 

A second use-case involves a selected NF-FG as a scenario to demonstrate the pre-deployment verification process 
as integrated with the ESCAPE orchestration framework. Finally, as the third and main use-case, an Elastic Router 
allows us to demonstrate the implementation of a more advanced monitoring process together with automated 
troubleshooting. The next subsections discuss the latter two use-cases and their implementations in more detail. 
 

6.1 Integrated verification of NF-FGs 
The integration of VeriGraph into ESCAPE aims at enabling the verification of SGs which involves the potentialities 
and functionalities offered by the UNIFY architecture. Nevertheless, a verification process must have a reasonable 
cost in order to be actually feasible in the UNIFY context.  

In this section, we show the impact of the verification process on the overall service deployment. A possible strategy 
to evaluate this impact is to compare the percentage of time spent by ESCAPE for the verification of a requested 
service (i.e., SGs, NF-FG) with the total deployment time. In order to evaluate this verification time, we consider as 
use case the NF-FG shown in Figure 62. This graph has been designed mainly to highlight the usefulness and 
potentialities of a verification process into the UNIFY architecture: thus, it is a simple graph that can be deployed into 
ESCAPE, for example, by means of Click elements. In particular, this NF-FG (Figure 62) is composed by three 
middleboxes, which forward and modify packets based on their internal state, and some end-nodes to verify the 
reachability between each other. 

Note also that this kind of NF-FG that contains several types of nodes can be suited to apply the verification process 
to the different functionalities of the UNIFY architecture, like the deployment of a graph (i.e., SG or NF-FG) over 
several physical domains (i.e., multi-domain deployment). A multi-domain graph can be simply the NF-FG proposed 
in Figure 62, where the two users are deployed onto Mininet, for example, the middleboxes on the Universal Node, 
while the web server on OpenStack. 
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Figure 62 Verification demo scenario. 

To briefly recap the purpose of the pre-deployment verification and how it is performed (see Section 4.1), VeriGraph 
is able to check the correctness of flow-level properties (expressed by means of verification policies) on a given NF-
FG, by modelling how each function involved in the network and the network itself forwards and processes packets. 
The network properties (or verification policies) considered to verify the correctness of the proposed NF-FG, are 
mainly related to the existence of reachability between two nodes in the graph. In particular, the NF-FG shown in 
Figure 62 has been verified in terms of reachability between two pairs of web client (User1 and User2 in picture) and 
web server (WebServer1). 

The satisfiability of a reachability property between two nodes is strictly intertwined not only with the network 
topology (if no path between the two nodes exists, certainly there will not be connection), but also with the 
configuration of each function in the network path that connects the two nodes. In order to check the tool with 
configurations that lead to different results, the following two scenarios have been defined.  

Scenario 1: Figure 62 contains a DPI function that has been configured to discard all packets containing some words 
in their payloads (e.g., packet contains the “sex” word). On the other hand, the firewall function considered in the 
proposed NF-FG is modelled to drop packets based on an Access Control List, whose content is a list of pairs of IP 
addresses not allowed to send packets between each other. In particular, in this first scenario, the ACL firewall has 
been configured to drop all packets that contain the IP addresses of the NAT and Web Server, as source or 
destination addresses. 

In particular, we verified reachability from User1 to WebServer and reachability from User2 to Webserver. We run 
the verification five times in order to measure the average times taken by the tools. In this scenario, VeriGraph takes 
an average time of 0,971 seconds to conclude that the desired policies are not verified in the chosen NF-FG. This 
means that the verification module completes its task in about 11% of the overall deployment time employed by 
ESCAPE to handle the SG request, which is of 8,812 seconds. In Figure 63, we have also reported the partial times of 
each sub-process triggered in the verification module, whose description is presented in Section 4.1.4. 
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Figure 63 Verification time in Scenario 1. 

Scenario 2:  the second scenario shows a possible configuration of the involved functions, which allows the 
connection between the end-host. In particular, the DPI function has the same configuration of the previous case 
(i.e., drop packet containing the “sex” word), while the firewall function forwards packets with source or destination 
IP addresses belonging to the NAT or the Web Server. Hence, the reachability between <User1, WebServer1> and 
<User2, WebServer1> is satisfied when the two clients are configured such that they send packets that do not contain 
the word denied by the DPI. 

  

Figure 64 Verification time in Scenario 2. 

We use the same metric as in the previous scenario to report the overall time required by VeriGraph to provide a 
verification output to ESCAPE. The total time employed by ESCAPE to handle the SG request in each case is 10,669 
seconds for each test run (five times), while VeriGraph takes 1,144 seconds in average. The division of the total 
verification time into the several sub-processes (presented in Section 4.1.4) is depicted in Figure 64.   

6.2 Elastic router monitoring and troubleshooting support 
In this section, we describe the use case and demonstrator implementation for monitoring and troubleshooting 
processes support for dynamic network functions. Specifically, a SP-DevOps monitoring process supports dynamic 
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scaling of network functions, corresponding to the generic process depicted in Section 5.3.2 and Figure 59, whereas 
a SP-DevOps troubleshooting process extents the monitoring process by considering the handling of a 
troubleshooting condition which is identified by the monitoring support, largely similarly to the generic process 
depicted in Section 5.4.2 and Figure 61. The demo descriptions in this section focuses on the SP-DevOps related 
components, and thus complements the demo description of D3.5 [18] (Section 4.1), which focuses on the Elastic 
Router logic and the orchestration functions and interfaces required for a dynamic network function.  

6.2.1 Elastic Router use-case 
An overview of the Elastic Router use case in depicted in Figure 65, which shows an overview of the UNIFY 
architecture on the left, the data model of the UNIFY reference points (i.e. NF-FG and MEASURE) in the middle, and 
the resulting deployment of the VNFs on the right. For a detailed description of the elastic router function itself, the 
reader is referred to [7], section 2.5.1, where it is more elaborately described. A brief introduction, however, is 
provided below. 

The initial deployment of the elastic router starts with a Service Graph (SG). In this high-level description, the elastic 
router is a service, routing traffic between four ports (SAP 1-4). In the Service Layer, the SG is translated to an NF-
FG, a more practical description of the service, describing the VNFs, SAPs and links to be deployed. Specifically, in the 
demonstrator, the mapped NF-FGs (visualized in the figure as NF-FG 1 and 2) represent the software router as 
decomposed into: 

 A control plane, implemented by a dedicated Control NF using an OpenFlow controller (Ryu) with an extra layer 
on top of it, which holds the scaling logic. This logic will generate the updated NF-FG to be sent via the Cf-Or 
interface to the global orchestrator (realized through ESCAPE). 

 A data plane, implemented by one or more Open vSwitch instances (OVS VNF), whose flow entries are set by 
the Control NF. The SAPs are connected here and all traffic is routed through these OVS VNFs. Every OVS VNF 
also has a control interface that connects the OVS to the OpenFlow Controller in the Control NF. This control 
network and the SAP connections are routed via the LSI (logical switch instance) of this NF-FG in the UN. 

In addition to the SG, a high-level service description includes a set of requirements in the form of a Service Level 
Agreement (SLA). In the Service Layer, the SLA is translated into specific observable KPIs, which are expressed as 
MEASURE annotations to the derived initial NF-FG (e.g. requiring to retrieve metrics like throughput and CPU 
utilization from specific ports of VNFs). The global orchestrator now contains a NF-FG including definitions of the 
VNFs, SAPs and links, and additionally a set of monitoring intents in terms of required metrics and aggregation rules 
(i.e. MEASURE), which can be used to trigger actions like scaling of the elastic router or automated troubleshooting. 
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In our integrated prototype, both service layer and global orchestrator are implemented in the ESCAPE 
orchestration framework [17]. A Universal Nodes (UN) serves as the infrastructure domain, as described in [22]. Each 
UN has a local orchestrator, which deploys the actual network functions and their interconnections as specified in 
the NF-FG. The global orchestrator (ESCAPE) could even map to different infrastructure nodes, also in other 
domains than the UN, as described in D3.5 [18], section 4.4. 

The deployment, operation and troubleshooting of the elastic router in the UNIFY framework consists out of five 
distinct stages, roughly illustrated in Figure 65: 

1) At initial service deployment, a Service Graph (SG) is sent to the Service Layer. This SG is a high-level description 
of the elastic router, describing the external interfaces connected to the service, and a description of SLAs. 

2) The Service Layer generates the NF-FG from the SG. The SLA is translated into monitoring requirements 
expressed as MEASURE indents. 

 

 

Figure 65 The elastic router use case. The UNIFY architecture (left), with data model of the UNIFY reference points 
(middle), and resulting service deployment in the infrastructure (right). 
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3) The NF-FG is passed to a (global) orchestrator, which determines the best choice of infrastructure mapping, 
deciding where the VNFs will be deployed. The local orchestrator on the infrastructure node will deploy the 
VNFs and trigger the installation of the monitoring functions defined in the MEASURE part of the NF-FG. The 
monitoring controller (called MMP in the UN), that installs the required monitoring functions, is further detailed 
later in this section. 

4) At the service runtime, elastic scaling is possible. A condition derived from the MEASURE annotations triggers 
the generation of a new, scaled version of the NF-FG and MEASURE annotations in the elastic router Control NF. 
Via the Cf-Or interface, the updated NF-FG is then sent to the (global) orchestrator to be deployed. 

On a different condition derived from the MEASURE annotations, a troubleshooting request is sent to an external 
troubleshooting node. This node will facilitate a semi-automatic troubleshooting process involving a range of SP-
DevOps and 3rd party tools to identify and solve the problem. 
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6.2.2 Integration of monitoring components to an Elastic Router service 
The elastic router use-case is used to demonstrate the deployment process of a NF-FG in the UNIFY framework on 
a Universal Node, together with monitoring and troubleshooting features. During the service lifetime, monitoring 
tools will trigger the Elastic Router Control App (i.e. the Control NF) to scale-out/in more or less Elastic Router OVS 
instances (i.e. OVS VNFs). Additionally, troubleshooting tools enable efficient debugging of the elastic-router. This 
illustrates how the UNIFY framework integrates SP-DevOps processes like automated monitoring and 
troubleshooting Figure 66 depicts this integrated prototype.  

  

Figure 66 System view of the prototyped elastic router, depicting integrated functional blocks and their interfaces. 

The system components are deployed over three physical separate nodes: 

 The Global Orchestrator Node is primarily running ESCAPE, i.e. realizing the service layer and (global) 
orchestration layer. This is where the initial NF-FG is generated. Additionally, the global orchestrator is 
connected to the DoubleDecker messaging system, and is thus hosting a local DoubleDecker Broker connected 
to the Broker in the UN. 

 The Troubleshooting Node executes the semi-automatic debugging and troubleshooting tasks triggered by the 
monitoring subsystem. In this use-case, troubleshooting is performed by EPOXIDE, instrumenting RQL 
(Recursive Query Engine), AutoTPG and 3rd party OpenFlow swtich debugging tools. More details on the 
integration and usage of troubleshooting tools will follow in Section 6.2.3. 
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 The Universal Node deploys the NF-FG, i.e. realizing local orchestration and infrastructure resources. The local 
orchestration and management functions are depicted in dark red in Figure 66. They include the UN local 
orchestrator, a node-local DoubleDecker Broker, a Docker Daemon, and an infrastructure monitoring controller 
(in the case of an UN as infrastructure domain, we call it MMP) that instantiates and configures monitoring 
related functions according to the definitions in the MEASURE annotations to the NF-FG. In terms of 
infrastructure resources, the Universal node is configured to use OVS for the virtual switching environment 
(VSE), realizing the LSI. Furthermore, the VNF execution environment (VEE) is realized through Docker (thus 
the existence of the Docker Daemon), which means that the elastic router VNFs are actually Docker containers 
(depicted in yellow in Figure 66). Also, the monitoring subsystem on an UN is realized as Docker containers 
(depicted in purple).  

In the following, we will focus on detailing the infrastructure components realizing the observability process 
supporting the elastic router use-case: 

 DoubleDecker (DD) Brokers and clients: As documented in Section 4.10, DD is a scalable, carrier-grade 
messaging system based on ZeroMQ, sending opaque data between connected clients. For this use case, DD is 
realized by a two-layer broker hierarchy, one in the infrastructure (i.e. on the UN), and another one serving 
higher layers including the service and global orchestration layers as well as the troubleshooting node. Locally 
on the UN, DDclients use IPC transport methods, whereas the DDbrokers and EPOXIDE use TCP.   
DD is used by the local orchestrator to trigger the MMP on reception of a new NF-FG including MEASURE 
annotations. The MMP (Monitoring Management Plugin) uses DD messaging for starting, stopping and re-
configuration of monitoring tools. The monitoring functions (RAMON and cAdvisor) are publishing their results 
on DD, with the Aggregation Point and the OpenTSDB database as their subscribers. Finally, also the Aggregator 
is publishing filtered and aggregated results on DD, where scaling requests are subscribed to by the Elastic 
Router Control App, whereas troubleshooting requests are received by EPOXIDE. The preferred message format 
used in the demonstrator is JSON, but the details on interfaces and messages are detailed in [88]. 

 Monitoring Management Plugin (MMP): This entity represents a monitoring controller inside a UN, and is one of 
the two main components realizing MEASURE (as described in Section 4.3). It acts as an MF control app for the 
observability points (OPs) in this demo (i.e. RAMON instances and cAdvisor). Via DD, the MMP exposes one 
JSON-RPC command for receiving all the information required for monitoring from the Local Orchestrator. 
Specifically, the required information includes the MEASURE descriptions from the update NF-FG, as well as the 
infrastructure mapping of the abstract VNFs and interfaces specified in the NF-FG (e.g. VNF ids to Docker 
names; or port ids to interfaces on the LSI). This is called whenever an NF-FG is deployed, modified, or removed. 
This information allows the MMP to either instantiate, update, configure, or remove the associated monitoring 
tools (i.e. OPs). Details on the implementation of the MMP and its helper functions like a MEASUREparser and an 
mPlane [94] inspired MF-IB can be found in D4.4.  

 Aggregator: This component is the second main component of MEASURE, realizing a generic local aggregation 
function for monitoring results. The Aggregator aggregates raw metrics streamed from monitoring functions 
like RAMON and cAdvisor via DD. To do so, it uses PipelineDB [95] as a backend container. PipelineDB is a 
Streaming SQL database, able to process streams of incoming data and discard the data once it has been used 
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for a calculation. It is used to process incoming measurement results and to calculate which zones are currently 
active. The Aggregator receives configuration from the MMP, derived from the “Zone” and “Actions” definitions 
in the MEASURE annotations to the NF-FG (see Section 4.2.3.1). More implementation details on the Aggregator 
can be found in D4.4 [88].  In this use-case, the aggregator collects monitoring metrics provided by RAMON for 
the purpose of processing the observed link utilization and congestion risk over multiple ports. Note that the 
aggregator may also gather other metrics such as CPU load provided by e.g. cAdvisor. Specifically, the 
monitoring information provided per individual SAP facing port is inspected for the purpose of classifying three 
cases: whether (i) the total (combined) load of the Elastic Router is below a threshold, (ii) the total load is above 
a threshold, and the throughput per port is roughly equal, which triggers a scaling request, or (iii) the total load is 
above a threshold, but the throughput per port is very imbalanced, indicating that scale-out cannot solve this 
overload issue and a troubleshooting process should be triggered. Depending on the outcome of the inspection, 
a trigger for either scaling or troubleshooting is published - the former is subscribed to by the Elastic router 
control app, whereas the latter is subscribed to by the EPOXIDE troubleshooting framework. 

 RAMON: RAMON is a rate monitoring tool acting as OP for determining a precise statistical estimate of link 
utilization and other congestion indications in a distributed manner (see Section 4.5). In the current RAMON 
version, one instance is required per monitored interface. In this demo, four RAMON instances are configured to 
monitor the elastic router ports representing the external visible SAPs (cf Figure 66). The RAMON instances are 
instantiated and configured by the MMP according to the MEASURE annotations requesting transmission rate 
and overload risk metrics for the SAPs. The results of RAMON are via DD streamed to the Aggregator, resulting 
in triggers for either scaling or troubleshooting operations. 

 cAdvisor: This is a resource monitor for Docker containers [51].  cAdvisor realizes an OP that provides various 
resource usage and performance characteristics of the running VNF Docker containers. In this demo, cAdvisor 
results are not used by the Aggregator, but could easily be considered to be combined with RAMON results for 
more advanced, compound triggers. Instead, we use cAdvisor to stream CPU and memory usage into a time 
series database, which is used by RQL as part of the troubleshooting process. 

 OpenTSDB: This is a scalable, distributed time series database [96]. In this demo, it stores the raw-metrics 
generate by monitoring functions (i.e., RAMON and cAdvisor).  It is used as a local logging facility allowing to 
perform off-line Root Cause Analysis (RCA) based on the maximum available data granularity. While monitoring 
data is streamed in the DB via DD, it is also accessible via TCP from external nodes through the port-mapping 
feature of the Universal node. The external connection is used by RQL to perform SQL queries during the 
troubleshooting process. 

6.2.3 Integration of troubleshooting components to an Elastic Router service 
The integrated prototype includes an example of a troubleshooting scenario of the ER use case as triggered by the 
observability process. The troubleshooting process aims at demonstrating the interaction between SP-DevOps tools 
operating across the architectural layers and the UN. We assume a troubleshooting process to isolate the cause of 
observed load imbalance, detected by the Aggregator based on a MEASURE definition using the measurements of 
RAMON. The aim is to detect increased overload, trigger the troubleshooting process, and perform a set of 
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troubleshooting actions via EPOXIDE using RQL and AutoTPG for the purpose of isolating buggy or faulty flow rules 
as the root cause for the observed behaviour. 

The components realizing the troubleshooting process supporting the elastic router use-case are listed below: 

 RAMON, Aggregator/MEASURE, and DoubleDecker: These components jointly generate and publish the 
troubleshooting trigger according to the observability process described above. Specifically, the Aggregator 
processes monitoring information for the purpose of identifying an unexpected load imbalance after scale out 
operations, mainly based on link utilization and congestion risk metrics provided by RAMON. Detected imbalance 
triggers publication of a troubleshooting request. 

 EPOXIDE: EPOXIDE, a multicomponent troubleshooting tool (Section 4.12 has subscribed on troubleshooting 
related topics via the DDBroker in the orchestration layer. On reception of a troubleshooting request, EPOXIDE 
performs automatic or manual troubleshooting steps for RCA instrumenting both RQL and AutoTPG, in our 
prototype running on the same troubleshooting machine. 

 RQL: The RQL (Recursive Query Engine) provides a prototype for the recursive query language (RQL, Section 
4.11). In this demo, it is used for efficient retrieval of all available measurement results stored in the distributed 
time-series database in the infrastructure (OpenTSDB). The results are used to verify the validity of the 
troubleshooting request, and to localize and identify further troubleshooting steps. 

 AutoTPG: As described in Section 4.9, AutoTPG is able to verify data-plane functionality of OpenFlow-based 
forwarding elements.It acts as a secondary OpenFlow controller that temporarily connects to the OVS VNFs. In 
this use-case, we use it to verify the possibility that the imbalance of the elastic router is caused by faulty 
configuration of one or more flow-tables in the OVS VNFs. If such misconfigured flow-tables are found, the 
problem could be solved by manual manipulation of the OVS instance (adding or removing flow entries). 
Furthermore, since the Elastic Router control app is responsible for setting up the OpenFlow tables in the OVSs, 
a debugged connection (e.g. via SSH) to the control app could be issued to pinpoint the code resulting in the 
faulty flowmod  instructions.  

We assume that SAP links of the ER are monitored for the purpose of load balancing. In this case, the estimated 
risks output from each instance of RAMON are inspected for the purpose of classifying three cases:  

Whether (i) the total (aggregated) load of the Elastic Router is below a threshold, (ii) the total load is high on all SAP 
ports, which triggers a scaling request, or (iii) the total load is high but very imbalanced between SAP ports, 
indicating that scale-out cannot solve this overload issues and a troubleshooting process should be triggered. In 
other words, we assume that scaling should be triggered when the aggregated risk estimate is above a certain 
probability. Troubleshooting is triggered when one rate monitoring instance signals that the probability of overload 
on the monitored SAP link is above a certain threshold. Once a troubleshooting request has been published by the 
Aggregator, EPOXIDE (which is subscribed to troubleshooting related messages) receives the request via the 
DoubleDecker message bus, and takes over to perform the remaining steps towards root-cause analysis.  

The first step involves the RQL, which here is used to gather information about the estimated overload risk in other 
instances of the ER deployed on this and other UNs. The information gathered is used for deciding over which set of 



  

117 D4.3 14.10.2016 version 1.2 

nodes the next troubleshooting actions should be executed and is part of fault localization and root cause analysis.  
As a configuration step of RQL, EPOXIDE queries MMP for the port mappings of the deployed NF-FG and relays this 
information to the Recursive Query Engine. 

In this example, the output from RQL indicates that there is only one SAP link (the triggering one) at one UN that 
needs to be further investigated by the use of AutoTPG. One instance of the AutoTPG controller will be used to send 
test packets over the selected UN in order to identify any faulty policies or flow rules deployed in the switches under 
testing. To configure AutoTPG, EPOXIDE once again queries the MMP via DoubleDecker for the management 
addresses of the OVS containers (i.e., IP address and ssh port pairs) and logs in to set the secondary controllers of 
the OVS switches to AutoTPG.  Then it waits for the switches to automatically connect to AutoTPG before it 
instruments AutoTPG to perform its tests. 

In the demo, one of the four OVS OpenFlow switch instances of the Elastic Router contains one erroneous high 
priority flow-entry.  The AutoTPG tool identifies this faulty flow entry that caused the increased load on the SAP link.  
EPOXIDE reports the outcome of the testing process, which shows the destination IP addresses of those packets 
that are lost or misrouted due the erroneous flow-entry.  At this point, the trouble-shooter has to switch to manual 
troubleshooting, but EPOXIDE queries and shows the flow tables of the OVS switch in question to help starting this 
manual detective work.  In this use-case, the erroneous flow-entry is a result of the misconfiguration of the control 
application of the elastic router, but the further process of finding this misconfiguration is not part of  the demo. 

The steps are summarized below: 

1) RateMon monitors each switch (RX on SAP links) 

2) The Aggregator (through MEASURE) detects increased overload risk, and notifies EPOXIDE via DoubleDecker 

3) EPOXIDE triggers RQL to inspect overload risks in other parts of the service to identify which parts should be 
part of the remaining troubleshooting process: 

a) Assuming that there is not only one UN but several infrastructure domains under control of the global 
orchestrator. 

b) Assuming that a symptom of a fault can have a root cause somewhere else. 

4) RQL analysis indicates that the switch monitored by the triggering instance of the rate monitoring is the switch 
to be further inspected. 

5) EPOXIDE starts and configures AutoTPG with the necessary addresses to test the flow rules (switch by switch).  
It also configures the switches to connect to AutoTPG as well. 

6) Based on the AutoTPG tests, one rule is identified as faulty. 

Further analysis regarding when/who/how the rule was installed may be performed. Examples of such a process 
can be found here [97]. 
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7 Conclusions 

This deliverable reported on the final results of the UNIFY SP-DevOps work. After a short summary of the UNIFY 
project as a whole and activities in other WPs, we described and assessed the UNIFY SP-DevOps concept. We 
continued in Section 4 with details of the SP-DevOps tools, also including experimental evaluations of each tool in 
isolation. In Section 5, we showed how the SP-DevOps tools can be combined into powerful workflows supporting 
verification, observability and troubleshooting processes accessible for both operator and developer personnel and 
thus integrating them into one SP-DevOps framework. Finally, evaluation of the concept as a whole was addressed 
in Section 6. We did this by designing particular instances of the processes as examples associated to specific use 
case scenarios shared with the programmability and orchestration results as well as the Universal Node prototype. 

 

Figure 67 SP-DevOps tools mapped on the UNIFY Service Lifecycle. 

In Figure 67, we depict how the SP-DevOps tools developed in UNIFY map onto a service lifecycle as introduced in 
Section 3. Our tools support operators and developers across all stages, with a focus on the deployment, operations 
and debugging/troubleshooting phases. A summary of all the tools and their main value compared to the respective 
state of the art as studied in D4.1 [25] was provided in Section 4 - Table 1. Note that several of these tools reached a 
maturity level that allowed them to be published as part of the open-source SP-DevOps toolkit (see Section 4.13).  

Constant verification of service graph functionality, both at design time and runtime, is a key requirement in 
software-defined infrastructure that was addressed through the VeriGraph tool as well as infrastructure and VNF 
verification tools such as AutoTPG and Path Verification. The integration with the orchestration ensures that policies 
can be consistently deployed to the infrastructure and potential deviations are identified at early stages. 
Furthermore, software-defined monitoring approaches were developed to take advantage of programmable 
infrastructure platforms (e.g., RateMon, EPLE, Delay&Loss Monitoring) to provide key quality indicators such as 
congestion notifications and packet loss estimates with a fraction of the overhead of typical management tools. 
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Furthermore, these tools may be deployed programmatically using MEASURE and provide data through the scalable 
DoubleDecker messaging system that eases integration with third-party software addressing both Developer and 
Operator roles. Finally, a way to automate debugging processes was realized through a developer-friendly 
troubleshooting tool (EPOXIDE). 

Each SP-DevOps tool itself advances the state-of-the-art and solves a specific research challenge (see Table 6 in 
Annex 1). However, in order to meet the ambitious objectives of UNIFY SP-DevOps (see Table 5 in Annex 1), we have 
combined them together into powerful, automated processes supporting verification, observability and 
troubleshooting. We demonstrated selected SP-DevOps processes integrated with the UNIFY global orchestration 
platform and the Universal Node. The technical integration of SP-DevOps tools with the orchestration and 
infrastructure layer realization of UNIFY was enabled by a few key tools and functions: DoubleDecker and MEASURE 
facilitated efficient integration of observability features with entities in all UNIFY layers; EPOXIDE proved to be a 
powerful framework to instrument many types of SP-DevOps monitoring and verification tools as well as third-
party debugging tools; and the modular design of VeriGraph allowed straight-forward integration of verification 
features into the global orchestrator (i.e. ESCAPE).  

The process definition and integration work proves the feasibility of combining individual SP-DevOps components to 
bring extra value to automated processes. Applying processes for verification, observability and troubleshooting as 
one SP-DevOps solution to software defined infrastructure, we calculated a possible OPEX reduction in terms of 
time of investment by 32%-77% through purely technical means.  

With this deliverable, we could successfully report results with respect to all related initial project objectives, as 
visible in Annex 1 (Table 6). Being a research project, UNIFY SP-DevOps results have also been extensively shared 
with the research community through numerous journal, conference and demo publications6. Additionally, we have 
continuously influenced the standardization community (IETF, IRTF, ETSI) with drafts [85] [52] [98], presentations 
and demos. Finally, the SP-DevOps toolkit allows us to directly address the open-source community with SP-
DevOps results. In this context, our focus is on the industrial open source NFV platform OPNFV. As a first step, we 
have given a talk on an OPNFV summit advocating Software-Defined Operations with help of our SP-DevOps Toolkit 
[90]. By mapping SP-DevOps contributions to relevant OPNFV projects, we created significant interest in the 
industry and started discussions in how to engage in several OPNFV activities (most notable with the SP-DevOps 
tools DoubleDecker, MEASURE, and Verigraph). As next steps beyond the duration of UNIFY, we will continue to 
support the ongoing IETF drafts and concretize and realize the adaptation of open-source SP-DevOps toolkit 
components within the scope of the quasi-industry-standardization forum OPNFV. 

To sum up, we could show how DevOps principles can be applied in the control and management plane of a future 
“softwarized” network infrastructure, also highlighting the benefits of such approach. In fact, current legacy 
OSS/BSS systems (mostly still based on human made manual configurations) will not be able cope with the 
dramatic growth in complexity brought by network Softwarization, which makes it necessary to manage and control, 
instead of thousands of physical nodes, millions of software processes, up to the user equipment.  

 

                                                                    
6 https://www.fp7-unify.eu/index.php/results.html#publications 
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Starting from the project results, future work in this area should include the definition of: 
 

 heuristics, autonomic/cognitive algorithms, data analytics methods for automating and optimising the 
processes of Operations; 

 Control Orchestration Management Policy (COMP) solutions for infrastructure slicing; 
 Security-by-design techniques; 
 

This technical transformation will have education and cultural implications, with particular reference to the new 
skills, which will be eventually required by the Softwarization. The future of creativity may depend on younger 
generations being taught mastering the software skills just as they are taught foreign languages, mathematics, and 
science. 
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List of abbreviations and acronyms 

Abbreviation Meaning 

NF Network Function 

DP Data Plane 

VNF Virtual Network Function 

SDN Software Defined Network 

UL User Layer 

OL Orchestration Layer 

SL Service Layer 

RO Resource Orchestrator 

CA Controller Adaptation Layer 

LO Local Orchestrator 

PNF  Physical Infrastructure Resource 

SLA Service Level Agreement 

KPI Key Performance Indicator 

SG Service Graph 

NF-FG  Network Function –Forwarding Graph 

TG Troubleshooting Graph 

SAP Service Access Point 

WP Work Package 

OVS OpenV Switch 

ODL OpenDayLight 

VM Virtual Machine 

MF Monitoring Function 

MMP Monitoring Management Plugin 

UN Universal Node 

TCP Troubleshooting Controller App 

OP Observability Point 

SNMP Simple Network Management Protocol 

DB Data Base  

ACL Access Control List 

DNS Domain Name System 

REST Representational State Transfer 

API Application Programming Interface 

BPMN Business Process Model and Notation 

ISP Internet Service Provider  

SP-DevOps Service Provider – DevOps 
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ESCAPE Extensible Service CHAIn Prototyping Enviroment 

MEASURE Measurements, States, and Reactions 

RateMon Rate Monitoring 

EPLE Efficient SDN Loss Monitoring 

IntPro Integrate Prototype 

AutoTPG Automatic Test Packet Generation 

Cf-Or Control Function - Resource Orchestration 

TWAMP Two-Way Active Measurement Protocol 

MoS Mean Opinion Score 

GoP Group of Pictures 
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 Annex 1: Mapping final SP-DevOps results on WP4 Objectives and Challenges 

Table 5 Final SP-DevOps results mapped on the WP4 Objectives in the DoW. 

DoW WP4 Objective D4.3 – final SP-DevOps results 

O4.1 Evaluate and demonstrate, in an agile 

manner, the SP-DevOps concept for selected 

scenarios, including the development of the 

Service Provider DevOps prototype 

(DevOpsPro) 

DevOpsPro related activities have already started during the first year of 

the project, resulting in the Y1 review prototype (Annex 4 in D4.2 and [27]). 

Since then, development towards a final DevOps pro has continued in an 

agile manner in the sense that tools and functions have been added after 

individual evaluations - with iteration cycles of around 4 months (co-

located with WP4 F2F meetings). As a result, the final DevOpsPro is 

realized and evaluated in the form of supporting processes part of two 

major UNIFY wide demonstrators (IntPro):  

 Integrated verification of multi-domain NF-FGs (Section 6.1) 

 Observability process for elastic router demo (Section 6.2.2) 

 Troubleshooting process for elastic router demo (Section 6.2.3) 

O4.2 Define conditional observability points 

located on Universal Nodes and develop an 

automated approach for deploying them 

consistently 

The architecture of observability points (OPs) has been designed and 

evolved in all WP4 deliverables, starting with D4.1. D4.2 ( [6] Section 3.3) 

detailed SP-DevOps OPs on the WP5 Universal Nodes (UN). The final and 

more generic concept of monitoring functions consisting of infrastructure 

OPs is outlined in this deliverable in Section 3.2.3.  

The “conditionality” and deployment of OPs is realized through the 

programmability possibilities as offered by MEASURE (Section 4.3).  

Together, we with the adaptive and programmable monitoring functions 

(RateMon, Probabilistic delay monitoring, EPLE, AutoTPG, - Sections 4.5, 

4.6, 4.7 and 4.9), we refer to this concept as software-define monitoring 

(SDM). A complete observability process based on SDM is described in 

Section 5.3. Conditional OPs on an UN in the form of RateMon and 

cAdvisor programmed by MEASURE are realized as part of the 

observability process supporting the elastic router demo (Section 6.2.2) 

Formally ensured consistent deployment has been realized for SDN 

network updates, as described in Section 4.2. 

O4.3 Develop scalable service monitoring 

approaches, adapted to software-defined 

networks, that are efficient in reducing the 

number of manual diagnosing steps and 

amount of observation data transiting on the 

network 

Software-defined monitoring as exemplified in the observability 

processes in Section 5.3 provides scalability and efficiency on various 

levels. Firstly, most monitoring functions apply efficient observability 

points, e.g. probabilistic RateMon (Section 4.5), Probabilistic delay 

monitoring (Section 4.6), and EPLE low-overhead SDN monitoring 

(Section 4.7).  
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Secondly, DoubleDecker and MEASURE (Section 4.10 and 4.3) offer not 

only programmability and efficient data dissemination, they also offer 

programmable, distributed aggregation functions to reduce data volumes 

as close to the source as possible.  

Thirdly, RQL + RQE (Section 4.11) offers a way to efficiently query 

aggregated data from services described by hierarchical NF-FGs.  

A novel troubleshooting framework (EPOXIDE - Section 4.12) allows the 

realization of automated troubleshooting processes which significantly 

reduces the number of manual diagnosis steps (Section 5.4). 

Troubleshooting steps can involve SP-DevOps observability and 

verification tools as well as third-party debugging tools.  

O4.4 Design methods for verifying service chain 

functionality at runtime and locating service 

chain faults 

Runtime verification of service chain functionality is explicitly covered by 

SP-DevOps tools for Path Verification (Section 4.2) and dataplane 

verification through AutoTPG (Section 4.9). How these tools can be used 

for post-verification processes in a UNIFY setting is discussed in Sec. 5.2.2. 

As for monitoring tools, our troubleshooting framework (EPOXIDE - 

Section 4.12) can be used to invoke runtime verification tools during root 

cause analysis, as described in the troubleshooting processes (Sec. 5.4). 

O4.5 Enable automatic definition of workflows 

for verification and activation tests for dynamic 

service chains 

Pre- and post-deployment verification processes (Section 5.2) outline 

possible verification and activation workflows for service chains modelled 

by NF-FGs. 

Automatic definition of workflows can be realized through EPOXIDE 

(Section 4.12), creating automatic activation tests through SP-DevOps 

Tools including programmable TWAMP, AutoTPG, Path Verification, and 

observability points realized by RateMon, Probabilistic delay monitoring, 

EPLE (Sections 4.2, 4.4-4.9) and E2E delay and loss monitoring (D4.2 [6]). 

O4.6 Enable the possibility to verify service 

chains within the limit of one development 

cycle 

A pre-deployment verification process (Section 5.2.1) is utilizing the 

service description verification tool VeriGraph (Section 4.1) and shows how 

service chain verification can be done on-the-fly during the service 

fulfilment phase. This feature has been integrated and evaluated as part 

of IntPro (Section 6.1). 

Additionally, the network policy watchpointer tool (D4.2 [6]) can support 

service chain verification during infrastructure deployment as shown in Y1 

review prototype (Annex 4 in D4.2 and [27]). 
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Table 6 Final SP-DevOps results mapped on the Research Challenges described in D4.1. 

Research Challenges (identified in D4.1) D4.3 – final SP-DevOps results 

RC1: Probabilistic in-network monitoring 
methods 

 RateMon (Section 4.5) 

 Probabilistic delay monitoring (Section 4.6) and  

E2E delay and loss monitoring (D4.2 [6]) 
RC2: Scalable observability data transport and 
processing 

 DoubleDecker + MEASURE (Sections 4.10 and 4.3) 

 Querying aggregated data: RQL + RQE (Section 4.11) 

RC3: Low-overhead performance monitoring 
for SDN 

 EPLE (Section 4.7) 

 RateMon (Section 4.5) 

 Probabilistic delay monitoring (Section 4.6) and  

E2E delay and loss monitoring (D4.2 [6]) 
RC4: Novel metrics in counter structures  MEASURE aggregation point (Section 4.3) 

 RateMon (Section 4.5) 
(RC5: Efficient counter retrieval) This challenge has not been follow-up due to higher engagement in RC2.  

RC6: Deploy-time functional verification of 
dynamic Service Graphs 

 Integrated verification of NF-FGs (Section 6.1) 

 Pre-deployment verification tool VeriGraph (Section 4.1) 

 Network policy watchpointer tool (D4.2 [6]) 
RC7: Run-time verification of forwarding 
configurations by enhanced ATPG 

 AutoTPG (Section 4.9) 

 Additional contributions for non-ATPG-based run-time verification: 

Path Verification (Section 4.2) 
RC8: Automated troubleshooting workflows  Troubleshooting framework: EPOXIDE (Section 4.12) 

 Troubleshooting process descriptions (Section 5.4) 

 Troubleshooting process for elastic router demo (Section 6.2.3) 
RC9: In-network troubleshooting  RateMon (Section 4.5) 

 Probabilistic delay monitoring (Section 4.6) and  

E2E delay and loss monitoring (D4.2 [6]) 
RC10: Troubleshooting with active 
measurement methods 

 Run-time dataplane verification through AutoTPG (Section 4.9) 

 Programmable TWAMP (Section 4.4) 

RC11: VNF development support  VNF developers have access to monitoring, verification 

troubleshooting processes (Section 5) and tools. Most relevant tools 

are EPOXIDE (Section 4.12) and the watchpointer tool (D4.2). 
Additional covered RC (not listed in D4.1):  
+ RC12: Consistent network updates 

 Consistent network updates   

(part of Path Verification, Section 4.2) 

Additional covered RC (not listed in D4.1): 
+ RC 13: Application-specific network functions  

 IPTV Quality Monitor (Section 4.8) 

 


