

Deliverable D4.1
Initial requirements for the SP-DevOps concept, Universal Node capabilities and

proposed tools

Dissemination level PU

Version 1.1

Due date 30.06.2014

Version date 10.02.2015

This project is co-funded

 by the European Union

ii Deliverable D4.1 10.02.2015

Document information

Editors and Authors:

Editors: Wolfgang John and Catalin Meirosu (EAB)

Contributing Partners and Authors:

ACREO Pontus Sköldström

BME Felician Nemeth, Andras Gulyas

DTAG Mario Kind

EAB Wolfgang John, Catalin Meirosu

iMinds Sachin Sharma

OTE Ioanna Papafili, George Agapiou

POLITO Guido Marchetto, Riccardo Sisto

SICS Rebecca Steinert, Per Kreuger, Henrik Abrahamsson

TI Antonio Manzalini

TUB Nadi Sarrar

Project Coordinator

Dr. András Császár

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB

KONYVES KALMAN KORUT 11 B EP

1097 BUDAPEST, HUNGARY

Fax: +36 (1) 437-7467

Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme

FP7-ICT-2013-11

Collaborative project

Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ‘as is’, and no guarantee or warranty is given that
the information is fit for any particular purpose. The above referenced consortium members shall
have no liability for damages of any kind including without limitation direct, special, indirect, or
consequential damages that may result from the use of these materials subject to any liability
which is mandatory due to applicable law.

© 2013 - 2015 by UNIFY Consortium

iii Deliverable D4.1 10.02.2015

Table of contents

1 Introduction 1

1.1 Project vision 1
1.2 Relation with other work packages 1
1.3 Scope of the deliverable 2

2 State of the Art and related work 3

2.1 Management approaches 3
2.1.1 Best practice models in telecom: eTOM 4
2.1.2 Best practice models in IT: ITIL 5
2.1.3 Modern agile development and operations models in IT: CD and DevOps 6

2.2 Current practices in service graph operations 8
2.2.1 Service examples 8
2.2.2 The effect of middle boxes on management 13

2.3 SDN and cloud management 15
2.3.1 Observability and monitoring 15
2.3.2 Troubleshooting 20
2.3.3 Verification and policy checking 22
2.3.4 Testing and debugging 24
2.3.5 Distributed SDN control planes 27

3 Summary of relevant UNIFY results 30

3.1 Exemplary use-case: Secure, content aware IP VPN 30
3.2 UNIFY process model and service lifecycle 32
3.3 Initial UNIFY Architecture 34

4 SP-DevOps concept 37

4.1 Sketch of SP-DevOps concept 37
4.2 SP-DevOps applied on UNIFY 39

4.2.1 Definition of Monitoring Functions 42
4.2.2 SP-DevOps process flows 47

4.3 Research challenges and proposed tools 59
4.3.1 Observability 59

iv Deliverable D4.1 10.02.2015

4.3.2 Verification 64
4.3.3 Troubleshooting 66
4.3.4 VNF development support 67

5 Requirements for realizing SP-DevOps in UNIFY 69

5.1 Technical Requirements 69
5.1.1 Node-level (infrastructure) requirements 70
5.1.2 Orchestration level requirements 72

5.2 Operational Requirements 75

6 Conclusions 77

7 References 79

Annex 1 : Detailed service configuration steps 87

Annex 2 : Mapping onto WP4 Objectives 90

v Deliverable D4.1 10.02.2015

Summary

Management of telecommunication networks is complex and costly. In a recent survey [1], 80%
of the participating telecom operators indicated that operational excellence is the most
important area for improvements. This need for operational excellence together with the
upcoming demand for high velocity in service deployment calls for novel concepts, which evolve
beyond existing workflows and processes as defined in current frameworks based on historical
best-practices (e.g. eTOM and ITIL). We present two examples of current operational practices
that reflect the overhead incurred by operators when introducing a new MPLS VPN service or
when operating network middle boxes of types which are expected to be replaced with virtual
functions running on the UNIFY production environment.

As part of the UNIFY vision, networking and service functions will be virtualized on commodity
hardware, and thus treated as software applications. As outlined in D2.1, services described as
service graphs (an association of Virtual Network Functions – VNFs - and their interconnections)
are presented through a software interface.. UNIFY develops a set of orchestration engines and
controllers that further refine the service graph towards policies and configuration parameters
and eventually deploy the resulting NF-FG (Network Function Forwarding Graph) on the virtual
infrastructure of the production environment.

Due to the software nature of the virtualized network functions, modern agile software
development and operations methods (collectively referred in the industry by the term DevOps),
common to software companies such as Google, Facebook, IBM, HP and Yahoo, constitute a good
source of inspiration for novel concepts that may be adapted to telecom carrier environments.
DevOps relies on four major underlying principles: Monitor and validate operational quality;
Develop and test against production-like systems; Deploy with repeatable, reliable processes;
Amplify feedback loops. Technical aspects associated to these principles reflect on the tools and
processes for monitoring, validating and testing software and programmable infrastructure..
Such technical aspects are the focus of our own Service Provider DevOps concept. DevOps has
also a cultural dimension, reflected mainly in the Amplify feedback loops principle, which we
will not be able to address within this project.

The SDN and cloud management areas in general are hot research topics. We reviewed the
literature in line with the areas outlined in the Work Package objectives from the description of
work: observability and monitoring; troubleshooting infrastructure problems; verification and
network policy checking; testing and debugging of programmable networks. A major problem
related to frequent and fine-grained observability updates from many nodes, as envisioned in
UNIFY, is scalability and resource-efficiency. At the network level, the applicability of the
existing, centralized, Openflow verification tools is limited to the network control plane only.
This is a severe restriction in a UNIFY production environment that supports deploying active
network functions such as load balancers, firewalls, etc. as part of a service graph. State-of-the-
art semi-automated SDN troubleshooting is a mere workflow-led integration of otherwise

vi Deliverable D4.1 10.02.2015

separated network monitoring or debugging tools. Programming interfaces that enable tools to
exchange rich diagnostic data in a controlled manner with components of the UNIFY architecture
are required for a higher degree of automation. In addition, virtual network function
developers that use one of the recently introduced network programming languages are limited
to the network flow space in terms of resources that can be accessed. We identify a need for
better support from the infrastructure for controlling and monitoring network, compute and
storage resources, as well as infrastructure platform support during the initial deployment and
debugging cycles.

We identify four major characteristics of telecommunication networks that make them different
from data centres even when a significant part of the functionality is virtualized:

• higher spatial distribution with lower levels of path and equipment redundancy;

• high availability;

• strictly controlled latency;

• larger number of distributed datacentres.

These characteristics pose additional challenges, compared to the state of the art, that need to
be accounted for when applying data centre DevOps principles in this environment.

For the Service Provider DevOps concept, we defined two Developer roles: one associated to a
classical operator role assembling the service graph for a particular category of services (we call
it the Service Developer) and another one associated to the classical equipment vendor role in
actually programming a virtual network function (we call it the VNF Developer). The role of the
“operator” in UNIFY is to ensure that a set of performance indicators associated to a service are
met when the service is deployed on virtual infrastructure within the domain of a telecom
provider. We identify four categories of processes within the WP4 activity areas that involve
these actors (in parentheses we indicate the DevOps principle reflected most in a particular
process): Observability (Monitor and validate operational quality); Troubleshooting (Monitor
and validate operational quality); Verification (Deploy with repeatable, reliable processes); and
VNF Development support (Develop and test against production-like systems). To complete the
Service Provider DevOps picture, the Bootstrap process from WP2 as well as the Service
Invocation and Confirmation processes developed in WP3 need to be involved. Support from the
Universal Node is needed for executing the intelligent filtering and aggregation algorithms
envisaged by our observability and troubleshooting processes. We detail the WP4-specific
process flows by mapping them on the functional architecture defined by WP2.

The processes and their components (exemplified in research challenges and proposed tools)
defined requirements and create opportunities for integration between the Work Packages. The
sets of initial requirements already reported in the MS3.1 and D5.1 documents are
complemented by further description and details in this deliverable. As presented in Annex 2,

vii Deliverable D4.1 10.02.2015

we conclude that all Work Package objectives, except the one related to the evaluation for
which it would be too early in the project timeframe, are covered by several research challenges
that will be approached in WP4 as well as requirements placed towards other Work Packages.

We conclude this deliverable by briefly outlining the work towards the next document, Milestone
4.1, planned to be made available by the Work Package in month 12. We need to identify and
specify interfaces associated to passing Service Provider DevOps-relevant information between
components of the functional architecture. In cooperation with the service instantiation and
deployment framework developed in WP3, we will work on specifying how to describe
monitoring and verification capabilities such that they could be integrated in the UNIFY
production environment. Together with the work on the infrastructure and hardware aspects in
WP5, we will work on further understanding how the Universal Node can support our
requirements for programmable monitoring capabilities.

1 Deliverable D4.1 10.02.2015

1 Introduction

1.1 Project vision
We envision full network and service virtualization to enable rich and flexible services and

operational efficiency. Therefore, the UNIFY consortium will research, develop and evaluate

means to orchestrate, verify and observe end-to-end service delivery from home and enterprise

networks through aggregation and core networks to data centres. Telecom providers struggle

with low service flexibility, increasing complexity and related costs. Although cloud computing

and networking have been two active fields of research, there is currently little integration

between the vast networking assets and data centres of telecom providers. A unified production

environment will create unprecedented opportunities for innovation, an improved quality of

experience for users, and technological leadership for European industry and academia. A faster

and more flexible network will reduce operating costs and open up new business possibilities.

1.2 Relation with other work packages
The WPs of UNIFY and a schematic workflow of the activities are shown in Figure 1. As shown in

the workflow WP2 is the main owner of the use cases definition, the related requirements and

the architectural aspects so it will integrate and steer the activities of the technical work

packages such as WP3 (Service Programming, Orchestration and Optimization), WP4 (Advanced

Management Framework and Tools), and WP5 (Universal Node Architecture and Evaluation). In

particular, WP3 will work on the definition of service orchestration solution, WP4 will implement

a new management framework in the UNIFY architecture, and WP5 in collaboration with the

other WPs will design a Universal Node hardware and software architecture and perform an

evaluation of its viability. All WPs activities will be highly integrated under the technical

supervision of WP2.

Figure 1: Relation of UNIFY work packages

2 Deliverable D4.1 10.02.2015

1.3 Scope of the deliverable
This deliverable will document the results and status of WP4 at the end of Task 4.1 (Initial

Requirements and Specification for Service Provider DevOps (SP-DevOps). In this deliverable, we

document the studied state-of-the-art work (Section 2), which includes existing management

approaches and models, a description of current service-chain (and middlebox) operation

practices with an analysis of the major pain- and cost-points, and a study of related work from

the scientific and academic environment related to SDN and cloud management. We will also

summarize the status of the UNIFY project based on the current snapshot of deliverable D2.1,

describing a major use-case and the preliminary architecture which will enable a carrier-grade

environment with high- velocity of feature deployments (Section 3). The deliverable describes a

sketch of the SP-DevOps concept (Section 4) developed by applying datacentre-originated

DevOps principles to programmable telecommunications networks. Besides the theoretical

sketch of how DevOps could be applied in a Service Provider scenario, this section will also

describe the identified process embedded into the functional architecture draft of D2.1, and

finally give an outlook on specific research questions identified and tools proposed regarding the

SP-DevOps processes in focus. A major result of this deliverable is the initial set of requirements

(Section 5): technical requirements related to features in the controller and the Universal

Nodes, and operational requirements related to interactions between service chain development

and operation teams in a telecom provider environment. This deliverable will set the stage for

activities in tasks 4.2 and 4.3 and will also have relevance for related tasks in WP3 and WP5.

3 Deliverable D4.1 10.02.2015

2 State of the Art and related work

In this section we first describe the relevant state of the art in terms of management and

operational practises in the industry as background for the UNIFY SP-DevOps concept. We will

then give examples of current practices in service operations at telecom providers in order to

highlight the major current pain-points. Finally, we will outline the most important related work

with respect to management of SDN and cloud. The related work overview will focus on

observability and monitoring, verification, troubleshooting, testing and debugging, in line with

the plans and vision for the UNIFY SP-DevOps concept.

2.1 Management approaches
Management of telecom networks and services incurs high operating expenses related to

complex management requirements. However, despite the high expenses, a survey by the

TMForum [1] points out that more than 80% of the participating telecom operators indicated that

operational excellence is the most important area for improvements. This need for operational

excellence together with the upcoming demand for high velocity in service deployment calls for

novel concepts, which evolve beyond existing workflows and processes as defined in current

frameworks based on historical best-practices (e.g. eTOM and ITIL).

As part of the UNIFY vision, networking and service functions will be virtualized on commodity

hardware, and thus treated as software applications. As such, modern software development

methods constitute a good source of inspiration for novel concepts. In contrast to network

operators, IT companies are already advancing with methods for continuous delivery (CD) today.

They are engaged in a continuous cycle to develop code, perform initial testing, release for

others to test, deploy in an operational environment, and then monitor the operational status at

runtime. These CD methodologies are supported by a set of tools that focus on automation and

programmability to accomplish standard management tasks mainly in terms of configuration and

fault management in the data centre. The term DevOps is used to refer to the combination of CD

methods and supporting tools, although there is no consensus in the industry with respect to the

finer details of what is included and what is excluded from this.

In the following subsections, we will first provide the background on traditional best practice

models for the telecom and IT industries (i.e. eTOM and ITIL, respectively) and relate them to

the goals of the UNIFY project (i.e. SP-DevOps). Next, to highlight the contrast, we will outline

the more recent, still evolving, concept for agile DevOps-based IT development and operations.

These approaches will form the background for our late discussion on SP-DevOps, an attempt to

apply modern DevOps principles on traditional telecom operator business.

4 Deliverable D4.1 10.02.2015

2.1.1 Best practice models in telecom: eTOM
eTOM [2], the enhanced Telecom Operations Map, introduced by TMForum, defines a best

practice model for business processes in the telecommunications industry. An overview is

presented in D2.1. The part of eTOM most relevant for the purpose of this deliverable belongs to

processes within the Operations area.

Figure 2: eTOM Level 2 Model

Figure 2 depicts the eTOM Level 2 Model for Operations. Here, each core process is generally

part of one vertical Level 1 grouping and one horizontal process grouping. This level of detail

roughly corresponds to the process descriptions in D2.1 section 6 [3], where the lifecycle of

services to be deployed in the production environment is described through a number of UNIFY

processes. Most of these processes could be mapped onto eTOM level2 processes in a straight-

forward way. As an example, the UNIFY process relating to bootstrapping would map on the

vertical process for readiness, covering the horizontal areas of both service and resource

management – in eTOM called Service/Resource Management Support & Readiness. On the other

hand, UNIFY programmability processes related to orchestration, instantiation and deployment

of services dealt within the development of the programmability framework, are mapping nicely

onto the Fulfilment processes of eTOM, specifically called Service Configuration & Activation as

well as Resource Provisioning. For SP-DevOps, the most relevant UNIFY processes are related to

observability and monitoring, troubleshooting, and verification. In the eTOM model, these are

encapsulated within the Assurance processes related to services and resources – i.e. Problem

Management, Quality Management, Trouble Management, and Performance Management.

5 Deliverable D4.1 10.02.2015

From these examples, it can be seen that many UNIFY processes can be mapped onto eTOM –

hence the framework proves helpful in order to structure and organize the UNFIY service

lifecycle based on industry best-practices. However, from a WP4 SP-DevOps perspective, it is

important to highlight the two following observations:

• Operational eTOM processes are defined in the traditional way of encapsulating

functionalities within organizational silos, usually pursuing their own goals, with customized

tools and an own mind-set (or culture). This is in stark contrast to the DevOps ideas of cross-

functional teams and common tools and goals across the organization.

• While eTOM provides a decent set of best-practice processes for operations of

telecommunication services (the Ops part of DevOps), it does not provide the processes for

actual development of services and network functions (i.e. the Dev parts). In 2014, TM

Forum initiated the ZOOM (Zero-Touch Orchestration, Operations and Management) to

address the transition of operations towards DevOps. At the time of writing this deliverable,

a set of user stories were made available to TM Forum member companies in an exploratory

TR229 report [4].

2.1.2 Best practice models in IT: ITIL
ITIL (IT Information Library) v.3.0 is a collection of best practices and guidelines for companies

and practitioners on the subject of managing IT services throughout their lifecycle. The

applicability of ITIL to telecommunication services is recognized by the TMForum organization

and described as part of the FrameworkX [5] . A generic observation is that ITIL describes a

series of roles and processes that are considered complex and rigid by the DevOps community.

However, we point out that such processes could form a strong baseline for automated actions,

while communication barriers between the different roles could be lowered through the use of

common tools. The ITIL publications of major importance in the WP4 context are the Service

Transition and Service Operation.

ITIL Service Transition defines best practices related to “introducing new and changed services

in supported environments” [6]. Of particular WP4-interest are the guidelines for change

management, service validation and testing. Release and deployment management could be

considered as being addressed partly in the context of WP3. On the other hand, ITIL Service

Operation [7] focuses on “achieving effectiveness and efficiency in the delivery of services to

ensure value for customer, users and provider”. Methods and tools usable for both proactive and

reactive operation are provided. Topics of high importance from a SP-DevOps perspective in WP4

are event and incident management, while for example availability of services and optimizing

the capacity utilization are considered more of a focus for instantiation and deployment of

6 Deliverable D4.1 10.02.2015

services dealt with in WP3. We make the following observations regarding the applicability of

ITIL to a UNIFY production environment:

• ITIL evolved out of best practices optimized for a manually-driven rigid change

management process involving a large number of human actors. In contrast, a DevOps

environment is expected to be highly agile and adaptable with focus on small teams.

• While automation is regarded as an optimization option in ITIL, a rather high degree of it

is expected in a DevOps environment due to the natural reliance on scripting and APIs.

Furthermore, by reducing the number of actors and roles, DevOps methods create an

opportunity to further simplify ITIL and thus provide additional gains compared to simple

automation.

2.1.3 Modern agile development and operations models in IT: CD and DevOps
DevOps is a paradigm shift in the way of developing and operating software and systems, based

on close ties between Dev (writing and testing code) and Ops (operating the virtual

infrastructure and the application) activities. It appeared initially in startup companies that had

to bootstrap with very little human and financial resources. As DevOps ideas spread, a few

attempts have been made by practitioners to sketch maturity models (MM) and approaches that

cover the gaps between those two activities and show enterprises an evolutionary path. MMs are

wide developmental frameworks that enable assessing processes and methods within an

organization against a set of benchmark criteria. However, there exists no standardized or

universally agreed DevOps model to date. In the following, we will summarize our findings of the

most relevant existing MMs and approaches.

For this study, we first have evaluated several proposed maturity models on DevOps and CD. The

first three models (i.e. [8] [9] [10]) are relatively similar. They are based on the main phases of

the software development and delivery pipeline. Each model contains a subset of {architecture

and design, building, deployment¸ testing, release management, monitoring and reporting, data

management} but none of them covers the full set. The model proposed in [10] adds culture and

organization as a key area. This is totally sensible as DevOps is at least as much about the

mindset and culture around the software delivery process as it is about processes and tools. The

model proposed in [11] takes a different approach. It identifies three areas of maturity which do

not relate directly to phases of the development/delivery pipeline. Those three areas are

Process, Automation and Collaboration. For each of those areas, activities or processes that

should be realized are identified.

7 Deliverable D4.1 10.02.2015

In all of the above models, five maturity levels have been defined for each area. Two models use

generic names to identify the levels (beginner, advanced …), while others use names which are

more specific to the achievements that have to be developed to reach that level (repeatable,

measured, optimized). It is understood that higher levels in the maturity models should not

necessarily be the ultimate objectives to reach by all organizations, as this could introduce

unjustifiable costs for the actual benefits. The targeted level depends on the capability, the

type of service and application offered and the established business models. For instance,

UrbanCode [8] suggested the targeted level for each area and indicated which level is currently

the norm in the industry.

Figure 3: Comparison of DevOps models

Besides maturity models, we also considered the high-level descriptions of DevOps by prominent

consulting houses. In Figure 3, we compare representations of the DevOps approaches detailed

by IBM in [12], HP in [11] and InfoQ in [13]. We observe that the four principles defined by

Sharma in [14] permeate through all these models:

- Monitor and validate operational quality

- Develop and test against production-like systems

- Deploy with repeatable, reliable processes

- Amplify feedback loops

As these four principles seem to provide a common ground for understanding DevOps, we will

relate to them in our definition of DevOps in a UNIFY environment in section 4.

In addition to the processes outlined by the maturity models, DevOps practices are supported by

a range of tools that are used by people in both the development and operations teams, or in

mixed teams that include people with dual roles. Popular DevOps tools such as Chef [15], Puppet

Monitor and Optimize

Plan
and

Measure

Develop
and Test

Release
and

Deploy “Defined”
maturity

level:
DevOps
+ ITIL

Process maturity:
standardized

Process
automation:
centralized

Collaboration:
shared

accountability

Shared tools, mutual trust, faster feedback

Build and deployment automation

Continuous delivery release process, changes
released frequently based on policies provided by IT

operations

IBM HP InfoQ

Deployment

Continuous Integration

Configuration
management

Monitoring

Issue tracking

Planning

Source
control

Devel.
environ.

C
ollaboration

8 Deliverable D4.1 10.02.2015

[16] and Ansible [17] address mainly the configuration management space. Originally restricted

to compute resources, they were extended to support the configuration of network nodes.

Common characteristics of these tools include the use of templates defined in a domain-specific

language and powerful scripting capabilities that allow a high degree of automation. The

monitoring capabilities of Ansible are limited to reading counters exposed by the node. None of

them was designed for use as a performance troubleshooting or validation tool and therefore are

cumbersome and may only provide extremely limited functionality when employed in such

scenarios. A recent trend in the industry is to present performance management solutions that

were integrated with an SDN controller as DevOps tools [18] [19] from a marketing perspective.

2.2 Current practices in service graph operations
In this section, we will review practices in operating service graphs in telecom networks. As

dynamic service graphs are yet to be deployed in production, we consider two examples based

on fixed service graphs built on physical hardware and an additional example related to the use

of middle boxes.

2.2.1 Service examples
We present current practices for two examples services, including configuration and

maintenance activities. In particular, we focus on the configuration and monitoring of fixed

service graphs built on hardware physical network resources: i) an MPLS VPN service which is a

rather popular service offered by ISPs to their business and enterprise customers, and ii) an IPTV

service, which is also a highly popular value-added service offered by ISPs to their (mainly

residential/consumer) customers. The reason for selecting these two services is the fact that

their high popularity implies higher occurrence of configuration and maintenance activities;

thus, high probability to impact the operating costs of the ISP that is deploying/providing them.

As observed in the eTOM discussion within Section 2.1.1, current best-practises related to the

lifecycle management of a telecommunications services do not cover the development of the

network functions themselves. This takes place at the equipment manufacturer. The eTOM

Product Lifecycle Management covers the work related to defining a new service (such as a MPLS

VPN service) in terms of contractual clauses, parameters to be included in the agreement that

reflect the service capacity and quality, accounting and billing, etc. These processes are

implemented manually by different departments at the operator and rely on the support of a

multitude of software tools.

Example 1: MPLS VPN service

9 Deliverable D4.1 10.02.2015

MPLS VPN employs Multi-Protocol Label Switching (MPLS) to create and support Virtual Private

Networks (VPNs), thus, offering the flexibility to network providers to transport and route

several types of network traffic with heterogeneous QoS characteristics using the technology and

features of an MPLS backbone.

Figure 4 depicts the network infrastructure involved in an MPLS VPN service to the customer of a

network provider, including the customer network (right), the customer edge (CE) router, the

provider edge (PE) router, the core MPLS network and the access network of the service

provider, and finally, the remote user (left) that communicates with the customer.

Specifically, the CE router is practically the customer-premises equipment (CPE) device to which

subscribers in the customer’s network connect. The CE router connects to a PE router, which is

located at the edge of the MPLS core network of the service provider, by initiating a remote

access session to it. Then, a PE router connects to one or more CE routers and has full

knowledge of the VPN routers associated with each one of them, while it is not aware of VPN

routes associated with CE routers which are not connected to it. Moreover, the MPLS core

comprises several routers that do not assign VPN information and do not have any awareness of

CE routers; the main focus of the MPLS core routers is on label switching.

Figure 4: MPLS VPN network [20]

The configuration of an MPLS VPN service comprises several steps that need to be completed by

a network operator. In particular, the first step is the configuration of the MPLS core network,

which includes enabling label switching of IP packets on the interfaces of the core routers,

configuration of virtual routes and forwarding tables (i.e. per VPN), association of virtual routes

with physical interfaces, and configuration of multi-protocol BGP (MP-BGP) routing session

between the PE routers. Limited automation can be implemented based on pre-defined

10 Deliverable D4.1 10.02.2015

configuration templates, which need to be developed before the first service is deployed and

modified to track changes in the infrastructure.

Second, the definition of a virtual template interface which enables the dynamic configuration

of virtual access interface (VAI) per user upon request; when the user terminates the session,

the VAI goes down and resources are released for other users. Such parameterized templates are

defined manually, and applying them to the infrastructure is often a manual task, time

consuming and error-prone. Moreover, Asynchronous Transfer Mode (ATM) permanent virtual

circuits (PVCs) are created to support encapsulated PPP over ATM on either point-to-point, or to

multi-point sub-interfaces. Third, the formation and association of each VPN to a virtual routing

and forwarding (VRF) configuration and a virtual template interface is performed. Fourth, the

user profiles and Authentication, Authorization and Accounting (AAA) services are configured at

the customer premises. Finally, verification is performed according to a manual workbook.

Regarding maintenance, the service provider is obliged to frequently monitor a multitude of

interfaces and protocols such as: i) concerning the MPLS core: validation of successful running of

the routing protocol, verification of successful label switching, label distribution and bindings,

and ii) concerning the MPLS VPN: validation of VRF configurations and routing tables, verification

of associations of PE and CE routers, etc. A complete set of tasks related to the configuration,

monitoring and maintenance of a MPLS VPN service, in line with the service definition from [20],

is provided in Annex 1.

Operational procedures related to a MPLS VPN service are inefficient due to the complex manual

configuration (e.g., more than 180 different commands to complete the configuration, even

though some of these could be included in templates that are pre-defined) and monitoring of the

different nodes associated with the service. Such manual activities are highly time-consuming

and prone to errors and mistakes, which in turn imply significant operating costs for the service

provider and could be further increased by penalties due to SLA violations w.r.t to delivery or

troubleshooting times.

Example 2: IPTV service

IPTV has been deployed by multiple network operators for distribution of both live TV as well as

video-on-demand (VoD), i.e. on-demand delivery of video content. Unlike (residential)

broadband Internet service which is provided on a best-effort basis, ensured high quality-of-

service (QoS) is critical for an IPTV service. Therefore, the especially high sensitivity of the IPTV

application to impairments creates very big network management challenges.

11 Deliverable D4.1 10.02.2015

Figure 5 illustrates the network infrastructure involved in IPTV service delivery to end customers

including the transport network, the content delivery network, and the access network [21]. The

transport network infrastructure consists of high-bandwidth MPLS/IP core and distribution. A

series of specific hardware elements need to be planned, deployed and managed specifically for

this service – set top boxes and Video Switching Offices, for example. As Quality of Service

demands are not possible to fulfil with a best effort infrastructure, a new virtual network needs

to be defined and managed through specific VLAN tags deployed in the DSLAM.

The video head-end consists of real-time encoders/decoders for local and national broadcast

video channels, VoD libraries for on-demand video services, and video switching equipment for

video transport. The VoD servers implement the storage and real-time streaming functionality

for on-demand services. The conditional access system (CAS) provides encryption and decryption

services, as well as key generation and distribution functionality, for both broadcast and on-

demand services.

The middleware ties a number of logical components together into a more comprehensive

IPTV/video software system. The middleware implements the user interface for both broadcast

and on-demand services. Note that there are several different middleware implementations

depending upon existing/proposed OSS architecture.

Billing of content services can be either pre-paid or post-paid. The end user access is xDSL, or

FTTx for wireline providers and QAM/coaxial for cable operators.

The set-top box (STB) is the hardware and common software infrastructure component that is

used by the on-demand and broadcast clients as well as by the video decryption function and the

video decoder. The hardware may also include a hardware-based decoder and decryption

subsystem. The STB software typically includes an embedded operating system, and may also

include application infrastructure components such as a Web browser.

12 Deliverable D4.1 10.02.2015

Figure 5: Network infrastructure involved in IPTV service delivery to end customers [21].

The service provisioning of IPTV comprises several tasks that need to be fulfilled by a network

operator. In particular, the first step is the service activation in multiple informational systems

of the service provider such as CRM, DSLAM EMS’s, CPE provisioning system, identity and access

control system (i.e. AAA), and the billing system. Next, a quite complex configuration must be

performed carefully in the head-end, VoD servers, CAS, middleware and STBs. Additionally,

proactive and reactive maintenance procedures, fault management and troubleshooting need to

be executed so as to ensure that the IPTV service performs according to the QoS levels defined

in related SLAs.

Furthermore, IPTV network management puts currently several challenges to service providers.

For instance, a service provider must handle multi-vendor equipment, e.g., head-end,

middleboxes, VoD servers, CAS/DRM equipment and STBs, which may not be always

interoperable. As already discussed, careful configuration must be performed so as to avoid

post-installation issues and malfunctions. Moreover, monitoring of the service capacity from the

head-end to the access network and instant switching to an alternative (back-up) path are

critical to assure high (or adequate) QoS to end-users. Finally, trouble-shooting and isolation of

problems is rather difficult due to the complexity of the IPTV system.

Especially, concerning the network management and maintenance, the service provider should

perform monitoring of both devices, e.g. the VoD servers, and the service itself, e.g. video

quality. Thus, the service provider must monitor a multitude of KPIs such as packet loss, latency

and channel change time for the IPTV service, CPU, memory and buffer utilization for the

various involved devices, committed information rate (CIR) utilization, as well as queue drops

13 Deliverable D4.1 10.02.2015

and number of dropped frames for the network. Network management and maintenance is

performed by means of mainly two methodologies: i) packet probing, and ii) device

instrumentation; both of them are executed manually, thus incurring a high risk for mistakes, or

faults to be disregarded.

In conclusion, the complex and mostly manual deployment and configuration, the necessity to

involve operations personnel in constant monitoring activities and the difficulty of maintenance,

all worsened by the integration complexity of a multi-vendor environment result in time-

consuming and very error-prone provisioning of IPTV services, which in turn would implies

significant operating costs for the service provider.

2.2.2 The effect of middle boxes on management
In current telecommunication networks there is a large deployment of middle-boxes, providing

L4-L7 networks services. Current practices are showing that these middle-boxes are implying

high capital and operating expenses, complex management requirements, and causes of failures

from physical infrastructure and overload. UNIFY goals are to develop an architecture and SP-

DevOps solutions in order to reduce capital and operating expenses, improve performance and,

maybe, add new types of network services.

Today there is a range of deployed middle-boxes [22] such as WAN optimizers, NAT, proxies,

intrusion detection and prevention systems, any sort of firewalls and other application-specific

gateways. Each middle-box (typically closed and quite expensive) supports a narrow specialized

function (layer 4 or higher) and it is mostly built on a specific hardware platform. Middle-boxes

are deployed along most paths from sources to destinations: that’s why the Internet lost its

initial simple end-to-end forwarding principle. A recent study [23] shows that about 33% of paths

tested keep state and perform some level of L4+ functionality.

Figure 6: Box plot of middlebox deployments for small (fewer than 1k hosts), medium (1k-10k
hosts), large (10k-100k hosts), and very large (more than 100k hosts) enterprise networks [24]

http://www.blog.telecomfuturecentre.it/2013/02/25/middle-boxes-no-thanks-stateless-core-and-stateful-edges/middleboxes/

14 Deliverable D4.1 10.02.2015

In Figure 6 (extracted from [24]) it is shown that the number of middle-boxes is on par with the

number of routers in a network. This highlights that middle-boxes today contribute to the

network ossification, but also represent a significant fraction of the network capital and

operational expenses. The cost is further increased by complex management requirements, and

the need for overprovisioning to react to failure and overload scenarios [24]).

For example Figure 7 shows the five year expenditures on middle-box hardware against the

number of actively deployed middle-boxes in the network. Figure 8 correlates the number of

middle-boxes against the number of networking personnel.

Figure 7: Administrator-estimated spending on middle-box hardware per network [24].

Figure 8: Administrator-estimated number of personnel per network [24].

This short analysis illustrates the need for significantly more sustainable and cost-efficient

alternatives to expensive and rigid middle-box solutions. The work in UNIFY is aimed at

developing a framework based on hardware resources either in the Cloud or in the Network, and

with a proper orchestration of virtual elements, which altogether aims to enable efficient,

flexible, and dynamic service-chaining and provisioning. In general, there are already Open

Source software implementations of firewalls [25], load balancers [26], proxies and caches [27],

monitoring and measurement [28], intrusion detection [29] [30], and ubiquitous NAT that

support virtualized service-chaining approaches - however, while being a promising start towards

15 Deliverable D4.1 10.02.2015

flexible service deployment, there are some concerns about, for example, the performance of

network functions purely developed in software and running on standard hardware resources. In

the next section, two examples further illustrate the limitations in current service deployment

and maintenance practices and processes.

2.3 SDN and cloud management
The following sections cover previous work within cloud and SDN environments grouped

according to the different focus areas of the DevOps efforts in UNIFY : observability and

monitoring, verification and policy checking, troubleshooting, as well as debugging and testing.

In each subsection, relevant cloud management approaches are discussed followed by currently

available SDN approaches.

2.3.1 Observability and monitoring
In control theory, a system is called observable if we could reconstruct its internal state based

on outputs that can be measured seemingly simultaneously. In a real complex system, such as a

telecom network composed of tens of thousands of physical nodes on which millions of software

processes are executed, continuous experimental access is limited to only some of the variables

that describe internal system states. Such a system is thus only partially observable. In UNIFY,

we use the term ”observability” to collectively refer to methods that attempt to measure or

estimate performance metrics or Key Performance or Quality Indicators and based on them

determine particular system states in the UNIFY production environment. Examples of metrics

include network delay, jitter and packet loss, processor utilization by a particular process,

container or virtual machine; parameters include buffer occupancy, number of flows active,

number of containers deployed on the same server; system states include link-level forwarding

for a particular flow, network-level forwarding according to a particular routing protocol, the

stage in the orchestration process reached by a particular NF-FG at a certain point in time

during deployment, whether a particular container is being migrated or not, etc.

Increasing the observability in the network and cloud through the means of resource-efficient

and scalable monitoring approaches is an enabler for the deployment and operation of service

graphs. According to a recent analyst report taken up in the press [31], up to 74% of the network

operations personnel surveyed believe that existing visibility on cloud environments is

insufficient. The same survey finds 29% of the administrators complaining of the loss of visibility

in SDN environments, 24% find SDN too difficult to troubleshoot and 47% have difficulties keeping

up with constant changes. .

16 Deliverable D4.1 10.02.2015

2.3.1.1 Cloud monitoring
Monitoring of resources (both virtualized and physical) in cloud computing environments is a

mature research area, with production-grade environments operating in large public and private

clouds for several years. In this subsection, we review toolsets and framework components

representative for public and private cloud monitoring and the monitoring of SDN.

The JCatascopia [32] framework includes a series of intelligent probes deployed in the cloud

computing infrastructure that store and retrieve the value of an observed metric, a timeline for

those observations as well as the capability to perform filtering and adaptive sampling on the

collected data. Application-level metrics are supported through a system of plugins that

currently support the collection of throughput and delay values. Metrics are aggregated at

different levels (compute node or virtual machine levels) and used for further processing via

Agent and Server entities. The framework allows for users to define rules for how metrics should

be aggregated. Features supported by the JCatascopia tool are similar to objectives assumed by

WP4. The filtering and adaptive sampling capabilities of the intelligent probes, for example, are

in line with features we plan to develop at the network level.

CloudWatch [33] monitors resources at Amazon, currently the largest provider of public cloud

infrastructure. CloudWatch is made available in an “aaS” manner. It includes a large number of

pre-defined metrics at both application (for example, MapReduce database transaction

statistics) and infrastructure (for example, CPU and bandwidth utilization for a VM instance).

The users have a limited capability to define their own metrics, and billing depends on the

frequency of the monitoring interval. CloudWatch is integrated with services of the Amazon IaaS

platform, of particular relevance being the integration with the Auto-Scaling and Elastic Load

Balancing services.

Hyperic [34] is part of the VMware cloud management suite. It provides performance monitoring

for physical and virtual infrastructure, middleware and several enterprise applications (such as

Microsoft Exchange and IBM Websphere) using a combination of agentless and classical agent-

based monitoring. Significant capabilities are the auto-discovery of key properties for newly-

created VMs and automatic configuration of monitoring functionality. Hyperic also has the

capability to copy and re-use monitoring configurations and alert policies, speeding up the

deployment of monitoring capabilities. Hyperic is part of the vCenter Operations Enterprise

framework [35], which allows determining dynamic thresholds based on hourly-observed

behaviour of a performance metric in correlation with other metrics.

Note that both CloudWatch and Hyperic are proprietary and will not be considered for

comparison with the monitoring tools we develop in WP4 as the possibility to determine how

17 Deliverable D4.1 10.02.2015

specific functionality is implemented is highly limited. We nevertheless include them in order to

indicate that market demand exist for intelligent monitoring functions that simplify the work of

administrators deploying the monitoring functionality and the analysis of the collected

measurements.

Ceilometer [36] (also known as Openstack Telemetry component), implements infrastructure–

level monitoring in cloud environments based on the Openstack platform. It collects monitoring

information from compute, network and storage resources in Openstack-managed environments.

It expects the resource managers to publish monitoring information through the Oslo messaging

bus, but push and pull agents that communicate directly with the resource managers are also

supported. Ceilometer has no capabilities of monitoring virtual network functions, which are

regarded as applications from its perspective. Ceilometer offers a REST API to access monitoring

information once it is stored in the database. Anecdotic evidence suggests that MongoDB, the

database recommended by Ceilometer developers, supports about 386 writes per second and

33,360,480 events per day [37]. Ceilometer is integrated with Heat, the orchestration

component of Openstack, and provides input data for performance-triggered auto-scaling rules.

Google cAdvisor [38] is a container monitoring tool that can be delivered itself as a container.

Newly released in May 2014, the functionality is limited to monitoring only a handful of metrics

to analyse usage and performance characteristics of Docker containers. It has programmable

filtering capabilities for the data that is generated, although the filters need to be defined at

the compilation time of the tool. Both raw and processed data is made available through a

versioned REST API.

2.3.1.2 SDN monitoring
In today’s IP-based networks, OAM tools such as Bidirectional Forwarding Detection (BFD)

operate largely in a distributed and decentralized manner [39], which is in contrast to Software

Defined Networking (SDN) concepts, which operate with a logically centralized control plane. It

has been shown that it is possible to integrate existing OAM tools into SDN (specifically

OpenFlow) environments [40]. However, in this approaches the OAM control plane remains

distributed which violates SDN principles and complicates management and operations tasks.

Furthermore, approaches that rely on pre-Openflow OAM tools require integration of several

technology-specific toolsets, which on the long run is not an extensible solution and will

substantially increase the complexity of datapath elements. Performance monitoring tools

addressing OpenFlow networks were proposed, for example in [4-6]. These solutions utilize the

centralized control plane and are implemented in the form of controller applications which take

advantage of the existing OpenFlow counter facilities. However, most of these solutions operate

18 Deliverable D4.1 10.02.2015

under assumptions that are usually not met in a service provider scenario as envisioned in UNIFY:

they assume re-active flow instantiation, triggered by the arrival of an unknown flow at a

switch; and/or they assume access to fine-grained flow definitions with fully specified matching

structures.

Resource/Accuracy tradeoffs in SDNs is a topic that is highly relevant in UNIFY to achieve the

scalability objectives. Moshref et al [41] explore the trade-offs in resource usage and

measurement accuracy for three different SDN measurement primitives: counting, hashing and

programming. One main difference between the three approaches is the amount of processing

and analysis that is done locally in the switches. In terms of counting, the switches only update

flow-based counters and rely on the controller to perform all analysis on these counters and to

periodically adjust the measurement rules. A hash-based switch can extract summaries of traffic

and transfer the results to the controller for further analysis. A programmable switch can run

simple measurement programs to collect and analyse more data locally. The focus in [41] is on a

use case where the task is to detect large flows (hierarchical heavy hitters) in a network. The

authors argue that at finer time-scales and with more variability in the traffic, hashing and

programming offer better resource/accuracy trade-offs.

FlowSense [42] is a passive monitoring approach in which information already existing in

OpenFlow control messages is used for monitoring link utilization. Based on the information

stored in flow control messages upon initiation and removal of flows, the link utilization can be

calculated. Passive monitoring is a scalable way of estimating the behaviour in the network, but

the limitations are here related to timing - all estimates of the link utilization requires data

based on completed flow sessions in order to get all data, which may not be suitable in a UNIFY

environment where timing is essential for dynamic service-chains.

OpenSketch [43] is an SDN traffic measurement architecture that addresses the challenge of

balancing between generality and efficiency in SDN monitoring. The framework introduces a

measurement data plane, which is automatically configured by the controller and comprises a

three-stage pipeline of hashing (data reduction), filtering (rule-based flow selection), and

counting (statistics accumulation). This approach offers a high degree of automation, but the

maintenance of 'sketches', i.e., data structures storing information about packet states, takes

time and resources. Hence, it might be more suitable for analysis at higher levels in an SDN

architecture.

NetFlow [44] and sFlow [45] are tools developed for flow monitoring in classic IP and Ethernet

networks, but could also be applied in cloud and SDN environments. NetFlow-enabled routers

collect statistics on IP-traffic data, which are sent to a server for analysis. Such data include

19 Deliverable D4.1 10.02.2015

e.g. source and destination IP address, ports, type of service, packet and byte counts,

timestamps, protocol flags, and routing information. sFlow is a network monitoring protocol that

uses random sampling of packets (matching the headers of one or several flows) and scheduled

sampling of counters. The results of the sampling are also sent to a server for analysis. One of

the differences between the tools is that NetFlow is designed only for monitoring on IP-level,

whereas sFlow can be applied in any network layer. As noted in Yu et al. [43] , Netflow [44] and

sFlow [45] provide generic support for measurements, but the encapsulation and forwarding of

datagrams to a controller quickly become too costly in terms of resources in a highly dynamic

network environment.

Latency monitoring has always been crucial in the operation of a network, and therefore it has

been in permanent focus of research. However, SDN creates new challenges (because, for

example, the OpenFlow standards do not require too much monitoring capabilities from a

standard compliant OpenFlow switch), but SDN also allows implementing some novel monitoring

techniques. For instance, in [46] a mechanism to measure link latency from an OpenFlow

controller is proposed based on sending a small, specially crafted OpenFlow packet through a

link from the controller and back while measuring the amount of time it took to do so. The

evaluation shows that their proposed scheme has accuracy close to that of ping but with a lower

overhead. In WP4 alternative, scalable and resource efficient approaches will be considered that

exploit the features of the UNIFY architecture by either monitoring existing traffic in the

network or generating monitoring traffic in the Universal Node (see Section 4.3.1).

2.3.1.3 Conclusion
Monitoring solutions for network and compute resources are inefficient from the point of view of

resource utilization and make it difficult or impossible to control trade-offs between accuracy

and the resource utilization. In SDN/Openflow, they are limited to using data provided by basic

counters supported by the switch specification. Aggregation and filtering algorithms employed

are fairly basic and limited with respect to the types of metrics on which they could be applied.

Programmability is also a problem, as each of the tools exposes its own interface with individual

data and operation encoding, which makes very difficult the integration of multiple tools within

a system or accessing data from a different receiver such as orchestration software. Certain

problems specific to SDN environments limit the observability when aggregated flow descriptors

are used or create a high overhead on the controller. Section 4.3.1 will detail how we plan to

approach some of the above challenges.

20 Deliverable D4.1 10.02.2015

2.3.2 Troubleshooting
Troubleshooting encompasses localization and root-cause analysis of detected faults, changes

and performance degradations in the observed network behaviour. The applicability of these and

other approaches in cloud and SDN contexts will be considered in the work towards

troubleshooting support mechanisms in UNIFY. We use the term “troubleshooting” to collectively

refer to techniques that correlate and filter information collected from different entities within

the UNIFY production environment with the purpose to identify a particular erroneous situation.

Examples of entities include virtual and physical switches, hypervisors and servers. The

correlation refers to collecting and assembling together data along a set of rules or descriptions

associated to the particular erroneous situation to be investigated. Such data could include, for

example, the content of the flow tables within a virtual switch and the erroneous situation

under investigation could be the non-forwarding of a particular traffic flow.

2.3.2.1 Cloud troubleshooting
VScope [47] is a flexible, agile monitoring and analysis system for troubleshooting real-time

multi-tier applications. It allows for dynamically created processing overlays in combination with

monitoring and on-line processing of observed metrics. VScope abstracts troubleshooting as a

process involving repeated operations such as monitoring of metrics on a set of nodes;

interaction between a set of nodes within specified spatio-temporal scope; and analysis of

collected metrics from a set of nodes.

Monalytics [48] is based on a similar approach as VScope, capable of dynamically constructing

Distributed Computation Graphs (DCGs) overlays, implementing monitoring functions for

capturing, aggregating and incrementally analysing data on-demand and in real-time. The

proposed architecture offers a flexible approach to multi-layer monitoring and troubleshooting

at a large scale. Analytic functions can be dynamically created, initiated, adjusted and

terminated as necessary and deployed in different types of centralized, hybrid and tree

topologies for meeting different requirements on costs and analytic needs.

MonitorRank [49] provides a ranked order list of possible root causes of detected anomalies in a

service-oriented web architecture. The aim is to isolate and rank the combinations of services

and API calls that are most likely to be a root cause, without complete prior information about

dependencies or domain knowledge. For this reason, the approach relies on unsupervised

learning and is partially based on pseudo-clustering and analysis of historical time-series of

monitored metrics and API calls in addition to generated call graphs. A random-walk approach is

employed to compute a score used in the ranking process performed in obtained call graphs.

21 Deliverable D4.1 10.02.2015

2.3.2.2 SDN troubleshooting
OF-Rewind [50] is a SDN-debugging tool that is capable of recording both control and data

traffic traces of an OpenFlow network, and is capable of replaying it in a custom OpenFlow

network to reproduce the bugs. The challenges in replaying include timing accuracy, multi-

instance synchronization, and online replay of multiple network elements. The amount of traffic

passing through a network can be significant, and for this reason OF-Rewind records a subset of

traffic and uses this to reproduce or to find the root cause of bugs. However, partial recordings

can be insufficient as some data needed for replay and debugging may be missing.

Automatic Test Packet Generation (ATPG) [51] is another debugging tool, which automatically

generates a minimal set of packets in a real network to test all forwarding rules, firewall rules,

links and network elements for errors. For finding the minimal set of packets, ATPG takes

snapshots of forwarding tables periodically. The efficiency of ATPG approaches depends on the

snapshot (or probing) interval and is thereby linked to the additional load incurred in the

network. The approach in this case is restricted to only the action part of the forwarding rules

and does not account for the matching part, meaning that relevant debugging information may

be missed. The approach requires additional fields that are not currently supported by the

OpenFlow standard for troubleshooting purposes.

A systematic troubleshooting methodology for SDN is suggested and discussed in [52], in which

state and code layers are related to corresponding categories of faults. In the proposed layered

approach a binary search troubleshooting procedure can be employed to localize a bug (e.g.

erroneous control logic). The authors outline a generic troubleshooting workflow that can be

implemented and executed automatically, and that can be combined with recently developed

troubleshooting tools in each step (such as ATPG [51], OF-Rewind [50], NICE [53]). The overall

methodology is in general relevant to consider with respect to the troubleshooting and

verification approaches investigated in UNIFY.

The SDN Troubleshooting System (STS) [54] automatically reduces the sequence of debugging

events (isolated by the use of e.g. OFRewind) and other important events (like link and

component failures) to a ``minimal causal sequence'' that still triggers the same bug. The main

contribution is the generalization of delta debugging to distributed systems which enables STS to

prune unnecessary events. STS also benefits from internal events exposed by the controller

software. Additionally, STS relies on the Hassel library [55] to notice when a bug manifests. A

limitation of this off-line tool is that it is inadequate in dealing with performance bugs.

22 Deliverable D4.1 10.02.2015

2.3.2.3 Conclusion
Troubleshooting in SDN is an active research area, with many problems being identified and

point solutions being independently proposed to address them. However, daily operations of

resources would thus require expert knowledge of tens or hundreds of tools that each diagnoses

small categories of problems. The integration of such tools into workflows is difficult because of

the lack of common interfaces. Many of the tools require gathering all data at a centralized

location or massive generation of test traffic, which puts a high load on the infrastructure.

Existing methods rely on the OpenFlow specification, but visibility on other infrastructure

control interfaces need to be considered in a unified production environment. . Section 4.3.3

will detail how we plan to approach some of the above challenges.

2.3.3 Verification and policy checking
In UNIFY, we use the term “verification” to collectively refer to approaches that compare and

contrast expected and detected system states in the UNIFY production environment. The

expectations are based on pre-defined representations of the system states under investigation,

while the detection of the actual state can be provided through observability or by other means.

Examples of such system states include availability of cloud infrastructure, compliance with

security policies, the existence of forwarding loops or whether a certain node is reachable or

not. Mechanisms for verification and policy checking are necessary to avoid conflicting behaviour

in the network devices caused by contradicting rules (such as forwarding loops) or violations

against e.g. security policies. Note that the following approaches in cloud environments are

mostly related to application-level services.

2.3.3.1 Verification of cloud computing functionality
Verification of cloud services and an overview of existing techniques are provided in [56]. In

this paper, the authors investigate existing tools and methods for cloud consumers and service

providers to verify that their services work as expected from different points of view: functional

correctness, service availability, reliability, performance and security guarantees. Given the

narrowness of the existing tools, the authors encourage future efforts on this research area and

highlight some promising directions. For example, some work has been done in the direction of

verifying the users interaction with untrusted cloud services (Venus [57], SPORC [58]), verifying

sensitive data propagation within a cloud environment (CloudFilter [59]) and solve accountability

issues that raise when moving services to a cloud infrastructure [60] [61]. However, authors

identify different areas where we still lack specific cloud-oriented verification tools and they

propose some possible promising research directions to help and encourage future efforts

exactly on these issues. To this end, from a functional point of view, it would be interesting for

customers to have tools that check whether the cloud infrastructure is operating in the correct

23 Deliverable D4.1 10.02.2015

way, i.e. if it is running the correct application. In addition, customers need to verify that

performance and availability levels are aligned with the ones agreed with the cloud provider by

means of SLAs and, if a violation occurs, they need to assess how frequently it happens.

Verification of multi-domain cloud security policies is discussed in [62]. In this paper the

authors define a model checking technique that can be used as a management service/tool for

the verification of multi-domain cloud security policies. The necessity of a collaboration scheme

among different cloud systems is becoming more and more important since this enables them to

achieve higher uptime and services usage.

Cloud services composition is discussed in [63] where a framework for Cloud service

composition is introduced that aims to overcome the issues caused by the open and flexible

nature of Cloud services, by incorporating some trusted third-party entities to govern and

optimize the service composition process.

2.3.3.2 Verification of SDN functionality
FORTNOX [64] is a software extension to the NOX OpenFlow controller that aims to enforce the

security constraints imposed on an SDN network by a security application. In particular,

FORTNOX prevents an application to inappropriately install new rules that contradict the

existing ones. To achieve this goal, FORTNOX detects and resolves rules conflicts at execution

time by analysing each newly arrived rule. The conflict resolution algorithm can perform on-the-

fly checking of hundreds of rules with an overhead in the order of few milliseconds. FORTNOX is

targeted at detecting conflicts between security-related rules, but the approach is relevant for

verifying other aspects in the deployment of a service-chain in UNIFY.

VeriFlow [65] is a layer between a software-defined networking controller and network devices

that dynamically checks for network-wide invariant violations at each forwarding rule insertion.

In particular, VeriFlow introduces novel incremental algorithms to search for potential violation

of key network invariants — for example, availability of a path to the destination, absence of

routing loops, access control policies, or isolation between virtual networks. The approach is

based on checking various network properties for the packet equivalence classes affected by the

new rule, followed by building a forwarding graph representing forwarding decisions at each

node, that in turn is validated against the network invariants. Some of the limitations of the

approach are related to scalability and accuracy as it is assumed that a complete view of the

network is available through a centralized controller which may work well only for smaller

networks.

24 Deliverable D4.1 10.02.2015

NetPlumber [66] is a real-time policy checking tool with the Header Space Analysis (HSA) as its

theoretical foundation. It is targeted at verifying SDN networks, but its abstract concepts can be

adapted to fit conventional networks as well. Header Space Analysis is based on a geometric

interpretation of the packet headers as an L-dimensioned space and on switch processing as a

transfer function that operates on this space. Applying the switch functions in cascade, the

system can explore and analyse a variety of reachability properties. Although NetPlumber has

proved to be scalable and efficient (in real network deployments with thousands of rules), the

main limitation of NetPlumber (as well as HSA, in general) is that it cannot precisely model

dynamic network appliances or network functions, since it relies on reading the state of network

devices. An additional limitation could be the large amount of time needed to handle link

up/down events, due to the regeneration of the NetPlumber internal network representation.

Header Space Analysis (HSA) [55] allows for static checking of the forwarding rules of a whole

network. It can detect reachability failures, forwarding loops, traffic isolation and leakage

problems. Moreover, other tools (ATPG [51], STS [54], [67]) have already been built upon the

open source implementation of the proposed technique called Hassel. The key to HSA is the

efficient calculation of Network Transfer Functions, which tells how the bits of incoming packet

header are changed when the packet passes a specific forwarding element. Although the Hassel

library seems practical for analysing a campus-sized network, HSA is currently not capable of

handling nodes with stateful forwarding rules.

2.3.3.3 Conclusion
The majority of the SDN verification tools operate on network configuration rules (commonly

OpenFlow), and none of them considers active network functions (i.e. VNFs or middle-boxes that

dynamically change the forwarding path of a flow according to local algorithms, as for example

an intrusion detection system or a load balancer may do). In other words, these tools operate on

the (centralized) programmability of the control plane only and are not adequate for situations

such as the UNIFY production environment where VNFs may program the data plane and cloud

resources are integrated with the network. Section 4.3.2 will detail how we plan to approach

some of the above challenges.

2.3.4 Testing and debugging
Deployment of applications and network functions requires various types of debugging and

model-checking tools to ensure the intended behaviour of the component. In UNIFY, different

approaches to testing and debugging service-chains and included service-components are

considered and leveraged from existing methods. From a cloud management perspective, cloud

testing is the concept of evaluating the functionality and performance of software and services

25 Deliverable D4.1 10.02.2015

using a cloud platform, in which different scenarios and traffic conditions can be tested in a

large scale. A survey of representative approaches for cloud testing (including multi-layer

testing, SLA-based testing, large scale simulations and on-demand test environment) is

presented in [68]. The paper highlights that the focus is shifted from software development and

product-oriented activities to service-oriented reuse, composition and online renting. The

challenges of cloud testing is in terms of the dependability between systems, parallelization,

and development of evaluation metrics, to name a few.

2.3.4.1 Cloud testing
CloudTest [68] is a production software tool for functional, load, and performance testing of

web sites and web applications. Nodes can be distributed across public and private clouds to

cooperate in a large load testing. CloudTest On-Demand allows for testing web sites under

normal and extreme traffic conditions and can be used to simulate thousands of virtual users

visiting website simultaneously, using either private or public cloud infrastructure service.

Memory-based techniques enable real-time analysis of the data produced in large-scale tests.

Provisioning data are displayed via an analytic dashboard on a synchronized time-line.

iTKO LISA [69] provides a cloud-based environment and services for composite application

development, verification and validation. The framework builds executable test cases for

functional, load, and performance testing, which enables complete tests of the service. The

testing capabilities of the framework include coverage-based testing for heterogeneous

distributed architecture, codeless testing, UI testing, as well as load and performance testing.

LISA also provides a codeless testing environment for QA and development which enables a rapid

design and execution of automated tests.

Cloud9 [70] is a cloud-based testing service that uses parallel symbolic execution techniques by

migration to the cloud platform, and implements the "Testing as a Service" (TaaS) concept.

Under this model, users of the Cloud9 testing service are charged according to test goal

specifications that they provide, meaning that the total cost of service is proportional to the

program size. During a test, the Cloud9 attempts to follow all the possible executions by

exploring the program path-by-path, with the drawbacks of extensive path exploration, CPU-

intensive constraint solving, and high memory usage. Although this is offered as TaaS, the

approach is relevant to SP-DevOps as an example where the execution of a software or service

component is divided and tracked across several nodes in, for example, a sandboxed testing

environment.

Cloudstone [71] is an open-source toolkit consisting of a set of automation tools for generating

load and measuring the performance of a synthetic Web 2.0 social application in different

26 Deliverable D4.1 10.02.2015

deployment environments. The toolkit allows for selecting a deployment architecture and

automated deployment of components; specification of workload profiles; experimentation using

a workload generator; and analysis of the resulting behaviour. A metric in terms of dollars per

user per month is introduced for evaluating the cloud performance in terms of usage and costs

relative to e.g. consumed storage and computing. These approaches are focused on testing

software developed for cloud computing but include similar challenges related to testing of

service chains and individual components within the DevOps-concept. The challenges are similar

in terms of virtual machine placement, dependency relations, and traffic generation as well as

testing in a secure environment that will not affect other parts of the cloud system.

2.3.4.2 SDN debugging
NICE [53] is a model checking tool, augmented with a symbolic execution engine, capable of

checking the correctness of an OpenFlow application, based on the popular NOX controller, at

development time. NICE can test an unmodified version of the controller application using a

simplified model of hosts and switches against a number of predefined properties, possibly

extending them to meet the user’s requirements. The heuristic approach employed in NICE

makes the method fast and efficient in finding several types of bugs, such as routing loops and

black holes, and it can also verify different reachability constraints. The main limitation of NICE

is related to the time duration of a complete verification process in a real (and complex)

network scenario and to the memory requirements of this process, which will likely not meet the

requirements of the UNIFY use cases with respect to real-time verification in fast DEV-OP cycles.

OFTEN [72] test switches and controllers together as one system, instead of testing individual

components of an SDN system. The authors argue that, for example, in case of OpenFlow

switches, the compliance validations to OpenFlow standards are simply not enough because of

cross-feature interactions among different components of the system. Traditional testing of an

integrated network is more or less straightforward, but it is a tedious task that includes writing

lots of specific test cases. OFTEN takes another approach, it modifies NICE by extending its

controller testing capabilities to the whole system. The model checker of NICE uses a model of

the network environment, whereas OFTEN interacts with the real network. One limitation is

that it is not possible to know for sure whether an OpenFlow switch has finished processing a

datapath packet. Preliminary results show some potential of the tool, but the size of state space

limits its practical usage in case of complex networking settings.

Network debugger (NDB) [73] is a network debugging primitive analogous to well-known

software debugging ones. The debugging tool allows users to study packet backtraces when a

user-defined breakpoint is triggered. Breakpoint conditions can be based on packet fields (like

27 Deliverable D4.1 10.02.2015

OpenFlow matching rules) and packet paths; a packet backtrace is a sequence of forwarding

actions of the packet. NDB modifies the OpenFlow control traffic in order to duplicate packets

in the switch for each matched flow entry. The duplicates are then marked and sent to a

collector module, where the unique marks help to create backtraces. Although there are some

cases when the correct backtrace cannot be reconstructed due to some ambiguity, SDN

developers may still find NDB useful in case of diagnosing bugs in the controller or in the switch

that affect the correctness of forwarding.

Anteater is a debugging tool [74], which takes snapshots of forwarding tables of distributed or

centralized networks and analyses them for errors. Anteater converts forwarding table states

into instances of Boolean satisfiability (SAT) problem, and uses a SAT solver to find bugs.

Anteater can verify a network for the reachability, forwarding loops, and packet loss issues

without sending real packets in the network. Although the detection performance is rather high

(86% of randomly sampled bugs from the Bugzilla open-source repository), one of the limitations

of Anteater is that it assumes that the snapshots in a network are consistent over time.

However, in large networks with frequent changes to a forwarding state, the snapshot might be

inconsistent because the network state changes while the snapshot is being taken. The other

limitation of this tool is that it cannot test issues due to link failures or hardware failures.

2.3.4.3 Conclusion
Testing and debugging tools aimed at clouds and SDNs have a series of limitations in terms of the

explosion of states that need to be examined, the assumptions they make regarding the stability

of the network and the scalability of the probing approach. No environment that tests both

cloud and SDN resources exists at the writing of this deliverable. Section 4.3.2 will detail how

we plan to approach some of the above challenges.

2.3.5 Distributed SDN control planes
Openflow started as a logically and physically centralized architecture and evolved towards

different levels of logical centralization and physical distribution. For carrier networks as

complex and large-scale as those envisioned to be supported through the UNIFY architecture, it

is inevitable to distribute the network control plane across several compute and storage

resources, which can (and should) be spread geographically as well. This section will introduce

some examples on how distribution of functionality has impact on observability, verification and

troubleshooting capabilities of the network.

In [75] the authors identify two main approaches to distributed SDN control planes; flat or

hierarchical (Figure 9). The authors identify classes of control plane functionality which do not

rely on a global view of the network, and thus could be handled by a local controller, i.e., a

28 Deliverable D4.1 10.02.2015

controller which is topologically close to the network devices it controls. One example of control

plane functionality which can be handled locally is heavy-hitter detection, an important feature

for network troubleshooting in WP4, intrusion detection, traffic engineering and load-balancing.

Flat control partitioning Hierarchical control partitioning

Figure 9: Approaches for distributed SDN control planes

Flat SDN control is required to realize a cooperative control plane across administrative,

topologically, or geographically diverse datacentre locations. Flat control plane partitioning

allows for global optimizations, such as optimized placement of content caches or other chains

of VNFs. The amount of state required to synchronize across all partitions however can be kept

low by limiting it to state which is required for global optimizations. Determining what state

needs to be shared across a flat control plane to facilitate troubleshooting of faults that affect

multiple domains is relevant in the WP4 context.

A hierarchical distribution of a WiFi-tailored SDN control plane was presented in [76], providing

fine-grained control over rapidly changing transmission parameters that are specific to the IEEE

802.11 WiFi protocol. Another example is the ElastiCon [77] approach which is an elastic

distributed controller architecture, which addresses the issues that may arise due to the static

configuration of the mapping between switches and controllers, i.e., uneven load distribution

and lack of elasticity. Approaches intended for operation in decentralized architectures are also

considered, addressing for example non-conflicting policy composition in distributed control

planes [78].

From a WP4 perspective, the decentralized and distributed operation is highly relevant and

necessary with respect to scalable and resource-efficient network observability and

troubleshooting. This is achieved through a hierarchical controller architecture operating based

on different layers as described in WP2, but also by enabling distributed node-local analytics in

the Universal Nodes developed by WP5. Verification and debugging could be performed in a

centralized and decentralized manner, but may require different assumptions and approaches,

which are subject to further investigation.

29 Deliverable D4.1 10.02.2015

30 Deliverable D4.1 10.02.2015

3 Summary of relevant UNIFY results

In this section, we will briefly summarize the initial considerations regarding UNIFY use-cases,

processes, and architecture aspects1. We will first present the use-case selected as the main

focus of this work-package, and highlight how it is suitable to highlight relevant WP4 aspects.

We will then outline the envisioned UNIFY service lifecycle and related processes selected as the

main scope of the project, in order to give a better understanding of how SP-DevOps will fit into

UNIFY. Finally, we will provide an overview of the initial overarching architecture together with

a first draft of the functional architecture, derived from the selected processes of the UNIFY

service lifecycle. This will allow us to describe SP-DevOps process flows embedded into the

UNIFY architecture and point out research challenges in Section 4.

3.1 Exemplary use-case: Secure, content aware IP VPN
This example shows a potential future evolution of the baseline MPLS VPN case described as

state-of-the-art in section 2.2.1 to include additional functions such SSL accelerator, malware

and intrusion detection and private content delivery network (Figure 10). If such a complex

service would be realized with today’s production-grade telecom hardware, it would require

that the MPLS VPN infrastructure be supplemented with a number of middleboxes, each

middlebox dedicated to supporting one network function. Apart from the disadvantages incurred

with managing hardware middleboxes that were mentioned in section 2.2, placing the hardware

in fixed locations within the network would require careful planning from the operator and has

the potential to introduce additional delays in order to channel traffic from customer premises

to the fixed location where a particular hardware box was deployed. The installation and

operation of the middleboxes is equivalent to building a parallel network (similar to what had to

be done for the IPTV service described in section 2.2.1), dedicated to this service, and having a

small potential of reuse for other services.

D2.1 described a Content-Aware IP VPN use case where a carrier provides value to a large

enterprise customer by embedding Virtual Network Functions (VNFs) corresponding to SSL

accelerator functionality, a malware and intrusion detection function, private content delivery

network support and an elastic router (Figure 10). Compared to the rather static middlebox-

based MPLS VPN extension, the UNIFY Content-Aware IP VPN example shows how the operator

can use Virtual Network Functions deployed on generic hardware instead of building a parallel

1 These considerations are taken from UNIFY D2.1 [3], which represents the current status of the

integrated input and work carried out in all technical workpackages WP3, WP4 and WP5.

31 Deliverable D4.1 10.02.2015

network infrastructure to support this service. On-demand VNF placement and re-use of generic

hardware between different services are facilitated. The UNIFY Content-Aware IP VPN has an

inherent dynamic aspect in that policies associated to it allow the enterprise to increase the

resource usage 10x for a relatively limited time interval, in the order of minutes or hours, by

employing an elastic router and taking advantage of a programmable optical transport network.

Traffic that was identified as infected documents by the malware-IDS function is automatically

and dynamically made to bypass the content delivery network, thus reducing the spread of an

infection.

Figure 10: Secure, content aware IP VPN service [3]

A Service Graph is an association of VNFs and their interconnections. Some examples of basic

monitoring functionality internal to the Service Graph include compute resource utilization for

the SSL VNF, compute and storage resource utilization for the IDS VNF, network delay measured

between the service access point at the branch office and the service access point at the main

office, packet losses measured along traffic tunnels within the aggregation and core parts of the

network, etc. Key Quality Indicators that are agreed through the Service Level Specification are

usually exposed to the enterprise customer through a self-service portal. Examples of such

parameters could include Committed Information Rate (1000 Mbit/s and 100 flows/s),

Committed Burst Rate (10000 Mbit/s, 30000 flows/s for a time interval of 1h), Malware detection

rate 98%, Caching maximum capacity 10 TB, branch-main office latency 10ms.

The following aspects of the use case are relevant from a SP-DevOps perspective:

32 Deliverable D4.1 10.02.2015

- An elastic router that increases and decreases capacity depending on the traffic demand

requires that monitoring functionality associated to it scales to a) include the new

instances added to the router and b) accommodate a potential increase in monitoring-

related traffic generated by the new router instances (such increase could be significant

if certain ports had to be put in span or mirror modes, or traffic is being captured

through technologies such as sFlow or IPFIX). Every scale-in and scale-out operation

requires that flow descriptors for incoming and outgoing traffic from the various

instances are verified as being correctly configured in the infrastructure.

- Software updates (for new functionality or bug fixing) are expected several times a year.

Critical security updates needs to be applied outside pre-scheduled maintenance

windows. This creates a need for capabilities supporting the testing of such new patches

in an environment as close as possible to the real operating network. Such capabilities

may include monitoring features that provide a higher level of detail than during normal

network operations. They could also include verification features that validate both the

deployment and the resource usage in the test environment.

- The fact that traffic dynamically bypasses certain VNF instances (for example, traffic

identified as malware-infected documents are not sent through the content delivery

network) requires a verification capability that is able to validate such cases.

- The telecom operator has the capability to rapidly customize the service for a particular

customer based on diverse criteria, such as using VNFs that have restricted features but

are more cost-effective for the customer or choosing VNFs provided by a particular

software company in case policy restrictions demand it on security grounds.

3.2 UNIFY process model and service lifecycle
The UNIFY service lifecyle has been derived from traditional operator processes (eTOM) as well

as DevOps principles in order to accommodate for increased dynamicity and higher service

velocity. We introduce the model in Figure 11. A detailed description with the relationship to

our developed SP-DevOps concept will be presented in Section 4.

33 Deliverable D4.1 10.02.2015

Figure 11: Simplified Process model and mapping to UNIFY

As the main scope of the UNIFY project as a whole, we identify four larger process groups

relating to Development, Operation Support and Readiness, Fulfilment, and Assurance. In an

eTOM analogy, these processes would be situated on the Level 1 of the framework. The SP-

DevOps concept will span the four main UNIFY processes and provide an additional level of detail

focused on particular areas. In an eTOM analogy, the SP-DevOps processes would be situated on

the Level 2 of the framework. The focus will be on the assurance part providing additional

management capabilities to the service and virtual network function graphs in the areas of

monitoring and verification. The UNIFY high level processes served as guidance and input for

detailing the functional architecture (see Section 3.3) and can include further sub-processes:

● Boot-strapping is covering all aspects to enable the unified production environment to work.

This includes details required to translate and map information between architecture layers

and abstractions, information about the resources and it’s capabilities,, to inform relevant

elements on the different architectural layers about available information and to enable

infrastructure to perform basic management tasks such as monitoring of nodes, links and

interfaces between architecture layers.

● The programmability framework will rely on available information and interfaces from the

boot-strapping process. The goal with UNIFY’s programmability framework is to enable on-

demand processing anywhere in the physically distributed network and clouds. The major

objective is to enable dynamic and fine-grained service (re-)provisioning, for which a Service

Invocation sub-process will resolve and map network function forwarding graphs (NF-FG) and

associated requirements through different levels of abstractions (and virtualizations) to

physical resources available in the distributed system (both network and cloud) while

adhering to operational policies..

UNIFY: Boot-
Strapping

UNIFY: Monitoring
and Verification

UNIFY:
Programmability

UNIFY: Development
of entire Service

Graphs or individual
network functions

Operations
support and
readiness

Termination

Strategy and life
cycle

management

Assurance

Development Fulfilment

34 Deliverable D4.1 10.02.2015

● Monitoring and verification (more details in Section 4) is covering a set of operational aspects

for service and virtual network function graphs like collection of information, verification,

analytics, failure detection and resolution, quality observations. These processes will rely on

information from boot-strapping process, as well as interaction with programmability for

monitoring function placement and configuration. Here, sub-processes for Observability,

Verification and Troubleshooting have been defined, all focus areas of the work in WP4.

● The Development process is capturing the aspects of the development (or rather definition)

of service graphs on the one hand as well as dynamic development of network functions

(VNFs) on the other hand. In UNIFY, we assume that the needs of the service developer are

largely fulfilled with support of monitoring and verification functions introduced above. The

additional requirements of VNF developers will be covered in an additional process

specifically aiming at VNF development support.

Additionally, we have identified two other processes in the eTOM process model which are

relevant for the completion of the UNIFY service lifecycle, but which have been considered out

of scope in terms of research focus within the project: Termination process, and Strategy and

live cycle management (shown in Figure 11 as orange boxes with dotted lines). But both

processes are considered out of scope in terms of research focus within the project and

therefore will be not further detailed.

3.3 Initial UNIFY Architecture
In order to understand the SP-DevOps process flows detailed in section 4.2.2, we will briefly

introduce the initial draft of the UNIFY architecture. UNIFY is defining a three layers

architecture as reported in Figure 12, composed by a Service Layer, an Orchestration Layer and

an Infrastructure Layer. The three layered model can be augmented with an application layer

corresponding to the users of the services (shown as Service + SLA).

The Service Layer is in charge of turning the service chain provisioning into consumable services

by defining and managing service logics; establishing programmability interfaces to users

(residential, enterprise, network-network, OTT, etc.) and interacting with traditional OSS/BSS

systems. The service layer is also responsible to create further service abstractions as needed

toward the different users (e.g., BigSwitch topology) and to realize the necessary adaptations

according to such abstractions.

The Orchestration Layer is split into three major sub-components: the Resource Orchestrator

Layer, the Controller Adaptation Layer and the Controller Layer. From a resource orchestration

point of view, the Orchestration layer collects and harmonizes virtualized resources into a global

35 Deliverable D4.1 10.02.2015

virtualized resource view at its compute, storage and networking abstraction. The global

resource view in the orchestrator consists of four main components; forwarding elements,

compute host capabilities, hardware-based or accelerated network function capabilities, and the

data plane links that connect them. All of the resources must have some associated abstract

attributes (capabilities) for the resource provisioning to work. The Controller Layer is

responsible to provide technology independent control interfaces and to virtualize resources.

Note that there could be as many different controllers in the Controller Layer as there are

different technical sub-domains.

Figure 12: The three layered UNIFY architecture

The Infrastructure Layer encompasses all network, compute and storage physical resources. It

can support the creation of virtual instances (networking, compute and storage) out of the

physical resources. One of the challenges is to harmonize virtualization above these resources by

proper abstraction in the Orchestration Layer. Four types of physical resources are identified:

i) our Universal Node (UN),

ii) SDN enabled network nodes (e.g., OpenFlow switches),

iii) Data Centres (e.g., OpenStack) and

iv) legacy network nodes or network appliances.

Orchestration
Layer

Infrastructure Layer Local Resource Managers
(Compute, Storage, Network)

Service Provider User

Resource
Orchestration (RO)

Controller
Adaptation (CA)

Controllers
(Compute, Storage, Network)

Adaptation
Functions

Resource Control
Function within

deployed Service

Management
Function related to
deployed ServiceUs-Sl

Sl-Or

Or-Ca

Ca-Co

Co-Rm

Cf-Or

36 Deliverable D4.1 10.02.2015

For development and prototyping, the main focus will be on the UN as it is the most novel type

of resource developed within UNIFY. SDN enabled network nodes are also in scope given that

they can fulfil the requirements for the specific observability and troubleshooting capability in

question.

In the following, the 4 (sub)layers are depicted including the top-level functional model as

described in detail in D2.1, representing the initial draft of the resulting functional architecture

(Figure 13). The SP-DevOps concept and its related sub-processes (Observability, Verification,

Troubleshooting, VNF-Development support) will mainly relate to the functional components on

the right part of the sub-layers, which will be described in more detail in Section 4.2.2.

Figure 13: Initial UNIFY functional architecture

37 Deliverable D4.1 10.02.2015

4 SP-DevOps concept

4.1 Sketch of SP-DevOps concept
In this section we define the roles of “developers” and “operators” in UNIFY. We will discuss

briefly how we propose to apply IT DevOps principles in a carrier environment as envisaged in

the UNIFY project. It has been widely acknowledged that a key component of DevOps is

embedded in the cultural aspects that create an environment where development and

operations team may interact with increased efficiency. We believe that this could be a topic

for research in organizational processes and behaviours, but WP4 does not have the right

capabilities in order to pursue such a research topic. Instead, we focus on the automation,

measurement and verification aspects for DevOps, identify a set of related problems and present

our first ideas on tools that could be developed to address these problems from a technical

perspective. An organization may then adopt one or more of the solutions we propose and find

the best way of integrating them in their own processes, along with defining how these

processes will need to change to take advantage of the new technical capabilities. This approach

is similar to the way typical DevOps tools such as Chef, Puppet and Ansible were developed from

the ground up.

There are two facets of the “developer” role in UNIFY. One facet refers to the person that

determines which high-level functions should be part of a particular service, decides what

logical interconnections are needed between these blocks and defines a set of high-level

constraints or goals related to parameters that define the service. This person might be the

product owner for a particular family of services offered by a telecom provider. They might be a

key account representative that adapts an existing service template to the requirements of a

particular customer by adding or removing a small number of functional entities. We refer to

this person as the service developer and for simplicity (access control, training on technical

background, etc.) we consider the role to be internal to the telecom provider. The other facet

of the UNIFY “developer” role is a person that writes the software code for a new virtual

network function. Depending on the actual virtual network function being developed, this person

might be internal or external to the telecom provider. We refer to them as VNF developers.

The role of the “operator” in UNIFY is to ensure that a set of performance indicators associated

to a service graph are met when the service graph is deployed on virtual infrastructure within

the domain of a telecom provider. In cloud computing companies such as Google, Amazon and

Facebook, this role falls within the responsibility of the so-called site reliability engineering

teams. From a standard telecom and enterprise management perspectives, this role is related to

assurance processes in the eTOM framework and to the Service Operation in ITIL, respectively.

38 Deliverable D4.1 10.02.2015

Compared to a standard cloud computing environment in which DevOps originated, a unified

network and cloud set of resources in a telecom provider environment exhibits the following

major differences:

- Higher spatial distribution, with lower levels of redundancy: telecom resources are spread

over wide areas due to coverage requirements. In access and aggregation networks, the

levels of equipment redundancy are much lower than in the massive data centres of typical

cloud computing companies. Differences in latencies of any two control actions may trigger

unsynchronized state changes between neighbour nodes, which in turn may translate onto

legitimate packets being dropped in the parts of the network that have yet to receive the

latest update to the flow table while incoming traffic is forwarded by the nodes that already

received the updates.

- High availability is the norm, with stricter adherence to the four or five “9s” expected from

customers. Infrastructure support for such capabilities needs to be verified at the service

development stage, and downtime minimized during operations.

- Strictly controlled latency is required for many virtual network functions due to technical

restrictions specified in standardization documents. This drives demand for more frequent

measurements, impacts the precision required from measurement tools and requires

automated handling of operations such as scaling or migration.

- A larger number of distributed data centres is needed [79] in order to address the spatial

distribution and controlled latency requirements

The differences outlined above impact the way in which DevOps principles may be applied to

telecom provider infrastructure. Although the principles remain the same, the potential costs of

rolling back a service change are higher for telecom providers because redundant equipment

might simply not be available to take over the functionality while a patch (be it software, or

configuration) is being applied while high-availability requirements are expected to be strictly

enforced. As such, we assert that an increased focus needs to be put on the verification and

validation at various stages in the deployment and activation of service graphs by developers and

operators. The ITU-T Y.1564 standard defines a methodology for validating standards-based

Ethernet connectivity services at deployment time and continuously during their lifetime. We

envisage that similar functionality and processes need to be developed for service graphs,

although the problem in the service graph case is much more complex due to the huge increase

in the potential number of parameters and verification tools. Having the right information on

virtual network function and infrastructure metrics at the right place and at the right time has a

39 Deliverable D4.1 10.02.2015

high potential to reducing the troubleshooting time for problems. Finally, isolation capabilities

for data plane and control planes in the network nodes and virtual network functions that enable

testing in a production-like environment are paramount.

4.2 SP-DevOps applied on UNIFY
The UNIFY production environment plays a key role in the interaction between service or VNF

developers and the operators. The UNIFY production environment provides the tools for

orchestrating, configuring and controlling the virtual resources used by a service graph or virtual

network function. This means that all the resources (in terms of compute capacity, network

interfaces and tunnel identifiers for the dataplane, management plane and control plane

connections and storage for both the infrastructure and the virtual network function

management notifications) are identified and configured automatically as result of work

performed in WP3.

The aim of SP-DevOps is to situate itself overall at the “Defined” level of the HP DevOps

maturity model [11]:

• Customization of services or new releases of VNFs have the capability to be released

frequently to the production environment based on policies provided by team members

representing Operations. Our interpretation of release management from [11] is that it

enables successive improvements of service graphs in a UNIFY production environment.

Such improvements result by defining new categories or classes of services that include

certain constraints or policies by default, or changing the composition of the service

graph to include newly-developed virtual functions.

• Self-service one-click automated build, orchestration and deployment processes are

identical in all environments (development, test, production). We expect to be able to go

beyond “Defined” to the “Measured” level by providing visibility onto metrics related to

the introduction of new services, such as release cycle time and defects.

• Collaboration is part of an established process and supported by a tool chain common to

cross-functional feature delivery teams. In this area we will address only the common

tool chain by providing tools that could be used by cross-functional team members

addressing both development and operations scope. Cultural aspects, such as frequent

communication characterized by mutual trust, cannot be addressed in this Work Package.

Neither could we address detailed measurements of collaboration processes at the

organizational level.

40 Deliverable D4.1 10.02.2015

Figure 14: Schematic representation of the SP-DevOps cycle

In line with the principles of the IBM DevOps model [12], the observations regarding

particularities of telecom provider environment outlined in Section 4.1 and the WP4 Description

of Work, we define four large categories of processes that are integral part of SP-DevOps (i.e.

Verification; Observability; Troubleshooting; Support for VNF Development). For completeness,

we represent SP-DevOps in a cyclical form as depicted in Figure 14. The “Define” stage

represents the process through which fulfilment functions determine which resources should be

allocated to a service graph defined by a service developer. The “Code” stage is associated to

the process of the VNF Developer writing the software that will be executed as a virtual network

function. The “Deploy” stage represents fulfilment functions that configure and activate

resources in the unified production environment. For the VNF Developer role, additional

constraints, in particular in view of isolating the execution environment, need to be taken into

account at this stage. This is therefore represented as an additional stage in the SP-DevOps

cycle. Verification functions are the way WP4 implements this stage of SP-DevOps. The

“Operate” stage is concerned with assurance functions related to the production environment

and the VNF. For the VNF Developer role, this stage of SP-DevOps is concerned with debugging

the software implementation in a realistic medium isolated within the unified production

environment. Observability and troubleshooting functions are the way WP4 implements this

stage of SP-DevOps. The VNF Developer may transition its virtual network function to the real

production environment by making it available to the “Define” stage of SP-DevOps once the

software debugging was successful – this is indicated through the blue outline of the “Sw

debugging” arrow.

The cogwheels placed between stages of the SP-DevOps cycle symbolize the fact that

automation is an inherent part of the concept. Automation is needed in order to respond to

Deploy
VNF Developer
Service Developer

Operator

41 Deliverable D4.1 10.02.2015

velocity and scalability requirements generated by the UNIFY production environment.

Programmatic interfaces located at the transition between stages in the SP-DevOps cycle act as

an enabler for the automation.

The four categories of processes dealt with in WP4 relate mainly to three out of the four DevOps

principles [12]:

● Monitor and validate operational quality: This is the principle motivating the core activities in

WP4: providing processes and accompanied methods and tools for Verification and

Observability, together with capabilities supporting Troubleshooting of service graphs.

● Develop and test against production-like systems: With respect to development of new or

updated virtual network functions (VNFs), we will detail a process supporting VNF-

Development, allowing the developers of new or updated VNFs to deploy and verify their

functions on the UNIFY production environment. With respect to development or definition of

service graphs, the developers are supported by verification and debugging capabilities within

the various layers of the architecture. And with respect to the operation of the

infrastructure, isolation and virtualisation will be key concepts to protect other active

services.

● Deploy with repeatable, reliable processes: This principle corresponds largely to one of the

general UNIFY ideas about automatic deployment and operation of service graphs. While the

fulfilment related processes are part of WP3 (Service Deployment process and

programmability framework), reliability of these processes is supported by programmable and

automated observability and verification capabilities developed in WP4.

The forth principle “amplifying feedback loops” is very much connected to both the culture

within an organization, as well as business decisions based on market or customer feedback, and

is as such not directly covered by the technical solutions developed in WP4. However, this

principle is obeyed in UNIFY from a technical point of view by providing a customer facing

service layer, including interfaces towards fulfilment and assurance processes, potentially even

development processes.

42 Deliverable D4.1 10.02.2015

Figure 15: Relations between SP-DevOps stages and UNIFY processes

Figure 15 depicts the relations between processes currently defined in D2.1 (the WP4 processes

are further detailed in Section 4.2.2) and the overall SP-DevOps stages. The bootstrapping

process (D2.1) is the base for adding new virtual functions and resources. The Service Invocation

processes (D2.1) enables the Developer (whether for a service, or a network function) to define

a service graph and automatically trigger its deployment onto suitable resources. When the

deployment is completed, the Service Confirmation process (D2.1) announces the resource

identifiers and enables operations capabilities to either assure the day to day operations or

participate in a distributed virtual network function debugging session.

Before describing the four large categories of SP-DevOps processes in relation to the functional

architecture, it is important to understand our definition of monitoring functions and their

observability components envisioned for UNIFY. This is relevant, since most of the processes and

research questions developed in the scope of UNIFY WP4 will be centred around observability

and troubleshooting of service chains and its building blocks.

4.2.1 Definition of Monitoring Functions
Since monitoring and validation of operational quality has been identified as a key principle of

SP-DevOps, we want to give our definition of monitoring functions and corresponding

components. The following definitions are embedded into the UNIFY functional architecture

(Figure 13) and are described separately due to their importance for the remainder of this

deliverable.

Deploy

Bootstrapping

Service confirmation Service invocation

Observability

Troubleshooting

Verification

VNF developer
support

WP2 process

WP3 process

WP4 process

43 Deliverable D4.1 10.02.2015

The overall purpose of the monitoring functionality implemented in UNIFY is to increase the

observability over the network behaviour and state, as a trade-off between scalability (i.e.

resource-efficiency in terms of monitoring overhead) and accuracy. Certain monitoring

functionality will also address the unification of network and compute resources.

Monitoring functionality is implemented as Virtual Network Functions (VNFs) operating in both

control and data planes. Conceptually, such a VNF consists of one or several observability points

(OP) instantiated on one or several virtual nodes. The monitoring function consists of a control

plane (CP) component for analysis and control of lower-level monitoring operations towards the

observability points. In turn, an observability point operates in terms of a local CP and data

plane (DP) components for local analytics and measurement purposes (Figure 16).

Figure 16: Conceptual overview of a monitoring function.

The operational scope of a monitoring function includes the Virtualized Infrastructure

Management Layer (Controller Layer) and the infrastructure layer. A monitoring function

implements different levels of observability and analysis for performance monitoring and

troubleshooting purposes. The complexity of the monitoring function can vary from very simple

probing mechanisms in the infrastructure layer to more complex analytic applications based on

one or several observability points, instantiated in one or several nodes.

The monitoring function includes a CP component that implements mainly three functions:

• control domain and global analytics of reported measurements;

Virtualized monitoring function

Observability point

Local Control
Plane (CP)
component

Data Plane (DP)
component

Control Plane (CP)
component

44 Deliverable D4.1 10.02.2015

• notifications for further performance analysis or troubleshooting purposes;

• dynamic control functionality towards certain OPs in the infrastructure layer.

Figure 17: The main operational scope of a monitoring function encompasses implemented
functionality mainly in the Controller Layer and infrastructure layer.

The definition of a monitoring function enables the implementation of monitoring capabilities at

varying levels and complexities. A simple monitoring function can, for example, be implemented

for monitoring delay and loss on a certain link (physical or logical) relative to specified QoS

requirements. The delay and loss metrics can be observed by instantiated observability points in

two or more nodes involved, and modelled using e.g. probabilistic approaches [80]. Depending

on the implementation, the link metrics can either be provided in terms of separate

observability points for delay and loss, or from the same observability point. A more complex

monitoring function can for example implement trend analysis based on model estimates

collected from several observability points in the network.

The monitoring function is instantiated via an interface of the virtualized function by the

orchestrator given configuration and monitoring specifications (e.g. type of monitoring function,

requirements on accuracy, detection thresholds, etc.). The instantiation in the Controller Layer

includes mapping of the observability points on to certain nodes in the infrastructure layer. The

number of observability points and the placement of them are parameters specific to the

Virtualized Infrastructure
Management Layer

CP component for
global/analytics/forwarding of
notifications and
reports/configuration of OPs

OP OP OP OP. . .

Infrastructure layer

Configuration/
reconfiguration

Notifications/reports

Monitoring function

45 Deliverable D4.1 10.02.2015

implementation of the monitoring function, but the exact mapping onto resources in the

infrastructure layer is part of the resource management components in the orchestration layer.

4.2.1.1 Observability points and components
Observability points implement measurement and modelling functionality local to a virtual node

and consist of two types of components operating in the local CP and the data plane (DP) (Figure

18). The output from one or several observability points can be used for high-level analytics in

the monitoring function at the Controller Layer.

In general terms, typical for the local CP component is low frequency updates and control

operations and high complexity computations (updates of estimates, local change detection,

troubleshooting support, etc), whereas the DP component operates at a high frequency and low

complexity (counter updates, flow entry matching, etc).

Local CP components enable in-network analytics, which is an important part in meeting the
requirements on scalability, specifically for measurement intensive monitoring functions. The
main tasks of the local CP component are to:

• execute control operations relevant to specific implementations of a monitoring function,

such as scheduling of active measurements, packet manipulation in certain cases when an

active measurement tool is implemented with CP support, message and information

exchange between OPs, or forwarding of certain packets to the Controller Layer CP

component;

• perform high-level computations for the purpose of node-local performance analytics of e.g.

a certain flow or flow aggregates, that can be further used for e.g. detecting local

performance degradations and other types of troubleshooting support;

• act as a measurement data transport intermediary, that pre-aggregates or pre-processes

data in the network to limit the bandwidth and computational load on the analytics

component of the virtual monitoring function;

• report the observed behaviour based on the fulfilment of specified conditions, or in terms of

regularly pushed messages in accordance with specification, or by request. The receiver of

such a report or notification can be a developer, service user, operator or another

management function (e.g. for dynamic resource management purposes).

46 Deliverable D4.1 10.02.2015

Figure 18: Overview of an observability point and components in a virtual node. The
observability point can be configured and reconfigured by a specific interface, but the

instantiation of an OP is handled by a local resource management processes in the node.

Note that the degree to which a local CP component is implemented in each OP is dependent on

whether the monitoring function is implemented for centralized or in-network monitoring. For

example, a centralized monitoring function strictly following the SDN paradigm would for the

largest part be based on the centralized CP component in the Controller Layer for performance

monitoring and analytics, rather than on a local CP component. Thus, a local CP component can

be very simple in terms of forwarding a packet from the DP component to a centralized CP

component, or perform more complex operations such as producing estimates of the observed

network behaviour, or send a test packet at certain intervals, for example.

The DP component performs low-complexity operations but at a high frequency specific to the

implemented monitoring functionality. Such operations mainly include:

• passive measurement support, such as counter updates to specified flows or flow-

aggregates;

Node
Observability point

Control plane (CP) component

Data plane (DP) component

Local
resource
mgmt/
netw.
monitoring
agent

Information exchange between
OPs/passive and active measurements

Counter
updates/readings
/measurement
control actions

Configuration/
reconfiguration

Notifications/reports/forwarding
to monitoring function CP
component

47 Deliverable D4.1 10.02.2015

• active measurement support, such as packet manipulation (e.g. timestamping and

marking) and creation of measurement probes;

• packet forwarding to the local CP component.

Operations performed in the DP component are supported by the capabilities of the DP provided

by the UN, which are further outlined in the WP5 deliverable D5.2 [81] It is expected that the

DP of the UN supports OF-counters but also allows for software-defined counters that can

perform simple arithmetic operations, in order to observe different aspects of the network

behaviour (e.g. at different time granularities). This is necessary for the support of dynamic and

flexible network operations. The degree of observability, resource-efficiency and accuracy in

modelled link metrics and monitored network behaviour depends on the frequency with which

the operations in the DP component are performed (e.g. the frequency of counter readings), as

well as the resources needed to perform certain actions (e.g. number of counters needed to

accurately model a flow behaviour).

4.2.1.2 Interfaces
Upon instantiation of a service graph, the monitoring functions are specified in accordance with

desired accuracy and the conditions under which the monitoring functions should operate. This

specification can include deterministic measurement rates, detection thresholds, or input

specifying probabilistic guarantees on the monitoring performance. From a resource-

consumption perspective, it is assumed that the orchestration layer performs functional

decomposition determining the monitoring objectives relevant to each layer of the composition,

as well as resource management functionality for instantiating a monitoring function and

associated observability points.

A monitoring function consists of a set of interfaces that allow for instantiation and (re-)

configuration of the monitoring behaviour as well as for notification to the Controller Layer and

the orchestrator (Figure 17). A Virtualized Network Function interface allows for configuration

and instantiation of each observability point from the Controller Layer CP component specific to

each monitoring function (Figure 18). Moreover, OPs instantiated at the nodes can exchange

messages (such as test packets) for measurement and troubleshooting purposes (Figure 18).

4.2.2 SP-DevOps process flows
We will in the following describe the four large categories of processes in focus of UNIFY WP4

(Observability, Verification, Troubleshooting, VNF Developer support,) in more detail and map

their functionality to each UNIFY architecture layer and involved components described in D2.1.

48 Deliverable D4.1 10.02.2015

Figure 19 illustrates a simplified overview of the functional architecture with the components

within the main scope of WP4 highlighted.

Figure 19: Functional UNIFY architecture with WP4 focus: Solid stars represent identified UNIFY
DevOps research challenges (Section 4.3); stripy stars represent integration aspects.

Although we present the high-level processes views here, it is understood that the major

research contribution will be in terms of technical aspects covered by particular parts of these

processes. The processes are important from the perspective of integrating the output of the

Work Package with WP3 and WP5 in the integrated testbed. Identifying them in the beginning of

the project gives us a communication tool towards the other Work Packages and contributes to

understanding what interfaces and common functionality would need to be developed in order

for the integration to take place.

49 Deliverable D4.1 10.02.2015

4.2.2.1 Observability process and associated functional components
The Observability process provides visibility onto the operational performance of service graphs

deployed in the unified production environment. The process (Figure 20) has two distinct

objectives:

1. Key Performance and Quality Indicator (KPI/KQI) translation and tool selection which

determines what should be measured for a service graph, how such measurements are

carried out and where such measurement capabilities are instantiated and configured. This

is represented in the figure (depicted as yellow arrows) as the chain of events going from a

Developer down through the layers terminating at the Infrastructure layer.

2. Measurement data generation and analysis which rely on novel capabilities for performance

and fault management developed by UNIFY partners. Basic data generation capabilities on

any type of resource include e.g. packet/byte counters, notifications and logs generated by

the resource itself or a function executing on the resource. This is represented in the figure

(depicted as green arrows) as the chain of events going from the Infrastructure layer up to

the Developers.

Starting with the first objective, KPI/KQI translation and tool selection, there are several

functional blocks in the architectural layers to fulfil this objective:

• In the service layer an incoming service graph contains an SLA that describes a set of KPIs

and/or KQIs that need to be fulfilled during the lifetime of the service. These KPIs and KQIs

provide the first trigger of the SP-DevOps Observability process by dictating which

measurements are needed for a service graph and how they are analysed. In the service layer

these need to be translated and mapped from high-level abstract KQIs that may be applied

to compound network functions to more precise KPIs by the “KPI – KQI Translation”

functional component.

• In the orchestration layer the KPIs that are provided from the service layer as part of an NF-

FG are mapped to Observability Points, which in turn are mapped onto virtualized

infrastructure management and infrastructure layer resources that can provide the required

measurements and analysis to fulfil the KPIs. This is done by the “KPI mapping / OP

creation“ functional block, whose output is taken into account during the orchestration

process. In the resulting instantiable NF-FG produced by the orchestration layer new NFs may

be included to provide the necessary observability components, if their corresponding KPI

calculation cannot already be provided by the existing infrastructure resources or existing

NFs. Additionally, the orchestration layer includes a second trigger in the SP-DevOps

50 Deliverable D4.1 10.02.2015

Observability process when it requests the creation of Observability Points that are not the

direct result of service graph specifications, in order to obtain up-to-date resource

utilization and infrastructure health monitoring data. The orchestration layer uses this data

as part of the orchestration process in order to take the current state of the network and

compute resources into account when mapping NF-FGs to the available resources. These

triggers are created by the “Resource manager” functional block.

Figure 20: The Observability process in relation to architectural layers: Yellow arrows indicate
the observability request and invocation; green arrows indicate notification and reporting; solid
arrows represent the parts of the process dealt with in WP4; dashed arrows represent the parts
of the process flow that need to be done in shared responsibility with other WPs.

• At the Controller Layer the KPIs that are part of the incoming NF-FG are mapped to existing

Observability Points in the infrastructure layer or new one are allocated. This is done by the

“Domain observability / KPI Observer” functional block together with the Domain resource

VNF Developer
Service Developer

51 Deliverable D4.1 10.02.2015

manager, in particular the “Resource Manager” function within the Domain resource

manager. Observability Points in this layer are represented by an “Observability Point CP

Component” block which is responsible for coordinating the lower layer Observability Points

instances and for aggregating/analysing their output. The output of Controller Layer is then

communicated to the infrastructure layer using technology specific protocols for the

particular infrastructure.

• In the Infrastructure layer Observability Points for gathering measurements and performing

initial analysis and aggregation are instantiated and configured based on commands from the

virtualized infrastructure management layer. Observability Points are represented by two

functional blocks, “OP local CP component” and “OP DP component”, the first performing

aggregation/analysis at the node level and the second representing the functionality

performing the actual measurements. The functional block responsible for instantiation and

configuration of these functions is the “Observability & Performance Manager”.

For the second objective, measurement data generation and analysis, there are also several

functional blocks in the architectural layers that are involved, starting from the infrastructure

layer:

• In the Infrastructure layer, data is gathered, analysed and aggregated by the “OP local CP

component”. Analytics results are then forwarded to the Controller Layer for further

analysis. Analytics performed in the “Observability Point CP component” includes e.g.

modelling of flow counters and modelling of measurements such as delay or loss that might

be performed in the node. The “OP local CP” component also generates notifications/alarms

in case of e.g. failures, which are sent to the Controller Layer where management decisions

may be taken. Such alarms may also have a role in the Troubleshooting process, detailed in

Section 4.2.2.3.

• The Controller Layer obtains locally aggregated/analysed measurements and other data

provided by observability points in the infrastructure layer and performs domain level

analysis, using the "Observability Point CP Component" functional block. The received data is

also used in the “Domain observability / KPI observer” functional block in order to monitor

the KPI status versus thresholds and generate notifications when thresholds are breached.

Results of these functional blocks are sent to the orchestration layer, and/or acted upon

within appropriate layer via local triggers.

• In the Orchestration layer notifications and modelled data is received for further analysis

and troubleshooting/resource management support, the data is processed in the "Global

52 Deliverable D4.1 10.02.2015

analytics", “Global observability / KPI Observer” functional blocks. Relevant data is provided

to the "Resource manager" functional block for updating the global resource view and

informing the orchestration process. The “Global analytics” and “Global observability / KPI

Observer” also sends notifications and KPI status updates to the Service layer.

• Finally, in the Service Layer, notifications and KPI statuses are integrated and translated

back to the original KQI/KPIs requested in the service graph(s) by the “KQI-KPI Translation”,

“KQI Observer”, and “Analytics & reporting” functional blocks.

Moreover, several of the steps in the Observability process are required to be dynamic in the

sense that they are expected to be triggered following the increase or decrease of resources

allocated to a service graph, when service graph components are migrated through the

production environment.

4.2.2.2 Verification process and associated functional blocks
Enabling ongoing verification of code is an important goal of continuous integration as part of

the DevOps concept. While traditional DevOps mainly refers to verification of code, we relate

this goal in SP-DevOps to verification of service definitions and configurations. Automated

verification functions on each layer of the architecture facilitate verification as part of each

step in the deployment process, allowing identification of problems already early in the service

lifecycle. In that sense, verification is less of a process, but rather a set of features providing

gatekeeper functions to verify the abstract service models - Service Graph, Network Function –

Forwarding Graph (NF-FG), and the proposed resource configuration - before actual instantiation

on the infrastructure layer takes place. The Verification process is outlined graphically in Figure

21.

We describe the Verification process and its functionality mapped to UNIFY functional

architecture from Figure 19):

• The Service Layer receives a service request from developers in the form of a Service Graph

with a related SLA definition. This abstract Service Graph definition will allow the SL to

verify the absence of loops and other topological consistency properties. As a result, Service

Graphs can be marked as invalid and returned to the customer/user early on in the

deployment process. If the verification does not find any inconsistencies, the deployment

process continues in the next layer. The result of the Service Layer is a NF-FG which is also

verified for absence of loops and other topological properties before it is sent to the

orchestration layer.

53 Deliverable D4.1 10.02.2015

Figure 21: Verification process in relation to architecture layers: Yellow arrows indicate the
validation requests and invocation; green arrows indicate notification and reporting; solid
arrows represent the parts of the process dealt with in WP4; dashed arrows represent the parts
of the process flow that need to be done in shared responsibility with other WPs.

• The Orchestration Layer receives a NF-FG and performs the placement of the contained NFs

(i.e. finds locations where they can be instantiated or already running NFs that can fulfil

their requirements), resulting in an instantiable NF-FG which can be verified against

consistency with respect to the resource, capability and topology descriptions. Furthermore,

on this layer the instantiable NF-FG can be verified against policy violations related to

placement of NFs and performance impact on already deployed NF-FGs on the chosen

infrastructure.

• The Controller Layer consists of a set of different controllers for both compute and

networking resources. The verification functionality in this layer targets consistency of

VNF Developer
Service Developer

54 Deliverable D4.1 10.02.2015

specific configuration instances, such as inconsistent network configuration in the form of

OpenFlow rules. Verification of the services and service components instantiated in the

infrastructure layer are functionally handled in the virtualized infrastructure management

layer, following SDN principles. Therefore we have not planned any verification or validation

functionality directly in the infrastructure layer. The verification functionality for the

infrastructure and the virtualized infrastructure management layer is implemented in the

"Verification" functional block.

4.2.2.3 Troubleshooting process and associated functional blocks
With troubleshooting, we mean the localization of the source of a problem (the “trouble”)

related to a certain process. Troubleshooting mechanisms will need to operate on several levels

of the architecture and will largely take advantage of the Verification and Observability

mechanisms and tools introduced as part of the processes described above. By methodically

ruling out potential causes, the actual root cause can be identified.

A troubleshooting process is triggered either manually by a developer, or by automated Service

and Orchestration layer components based on reports or notifications provided by deployed

Observability points. A requested troubleshooting process aims to follow up on reported bugs,

faults, and anomalous states that require further investigation when the faulty or anomalous

condition cannot be immediately localized from existing observations and reports. This includes

automated deployment and re-deployment of relevant verification and Observability points in

order to isolate the root-cause of detected bugs, faults and anomalies.

Fault localization reports are also generated asynchronously in the infrastructure layer, as in-

network troubleshooting capabilities in the infrastructure layer run autonomous fault

localization and root-cause analysis by analysing exchanged information (estimates, log or audit

information, states, counter values, etc.). Detected and localized faults and performance

degradations in the infrastructure layer are reported to the virtualized infrastructure

management layer (and forwarded if necessary to higher layers) where further investigation may

happen, or other tools may be triggered etc. This differs from manual triggers or those

generated by higher layers as the fault localization may already be completed by the

infrastructure itself.

55 Deliverable D4.1 10.02.2015

Figure 22: Troubleshooting process in relation to architecture layers: Yellow arrows indicate
the troubleshooting requests and invocation; green arrows indicate notification and reporting;
solid arrows represent the parts of the process dealt with in WP4; dashed arrows represent the
parts of the process flow that need to be done in shared responsibility with other WPs.

The troubleshooting process depicted in Figure 22 shows the different ways troubleshooting /

fault detection may be triggered:

VNF Developer
Service Developer

56 Deliverable D4.1 10.02.2015

• The Service Layer participates in the troubleshooting process mainly as a conduit of

troubleshooting requests and by providing an interface to the troubleshooting capabilities

for developers. This is done by the “Troubleshooting” functional block in the service

layer.

• The “Global Troubleshooting” functional block in the Orchestration Layer receives

triggers from layers above and below to the “Global Troubleshooting” functional block,

as well as triggers from other functional blocks in the same layer, the “Global Analytics”

and “Global / KPI Observer” blocks. The “Global Troubleshooting” block in the

orchestration layer is also responsible for automating various troubleshooting tasks using

measurements in the orchestration layer and troubleshooting capabilities of lower layers

(e.g. by triggering the creation of new Observability points and analysing their results).

The “Global Troubleshooting” block is also responsible for presenting these automated

workflows as troubleshooting capabilities to the Service layer above it.

• The “Domain Troubleshooting” block in the Controller Layer serves a very similar role as

its counterpart in the Orchestration layer but on a domain level, typically without a

global view of the system. It receives triggers from layers above and below, as well as

internal triggers from the “Domain Observability / KPI Observer” and “Observability point

CP component” functional blocks. It also makes available domain-level troubleshooting

capabilities to higher layers for automating troubleshooting workflows.

• The Infrastructure Layer provides troubleshooting capabilities to the higher layers

mainly in the form of Observability points (the “Observability point CP component” and

“Observability point DP component” functional blocks) and Verification tools (in the

“Verification” block) that can be created and configured by higher layers. Some of these

Observability points may additionally perform in-network fault localization and thus

independently locate faults and report these to higher layers.

4.2.2.4 VNF Development support
When applied in the unified production environment, the VNF Development process supports the

team developing functionality of a network function in line with the DevOps principle “Develop

and test against production-like systems” mentioned in Section 4.2. The unified production

environment provides the means to instantiate a newly developed or updated VNF onto the

infrastructure. It also provides the means to identify the resources where a particular instance is

being executed, which is important for debugging purposes. Note that the VNF Development

process includes only the interactions with entities belonging to the unified production

environment, i.e. neither considering the Developer’s IDE nor functionality of traditional

57 Deliverable D4.1 10.02.2015

OSS/BSS systems (a discussion about the split between orchestration and management can be

found in D2.1). For example, the actual copying of the code to the production environment, as

well as configuration tasks to be performed before and after the instantiation, are part of the

interaction with the OSS/BSS and thus not depicted in our process.

Figure 23: Processes supporting Development of VNFs: Yellow arrows indicate the downstream
requests; green arrows indicate upstream responses; solid arrows represent the parts of the
process dealt with in WP4; dashed arrows represent the parts of the process flow that need to
be done in shared responsibility with other WPs.

In order to facilitate VNF development to be performed directly in the production system, there

needs to be a set of supporting functions by the architecture towards the VNF developer on top

of the Service Layer. We consider three sub-processes which will provide this functionality. Once

VNF Developer

Richer data, more
frequent intervals

Finer-grained
placement for
observability
capabilities

58 Deliverable D4.1 10.02.2015

a VNF under development is deployed within the production system, VNF developers will be

supported with the observability, verification and troubleshooting capabilities described in the

preceding subsections. During the VNF development process, we envision the observability

capabilities for the specific network function to be placed more extensively in the infrastructure

(finer-grained placement) and produce data in higher frequencies (as depicted as the right-hand

flow in Figure 23).

The three additional sub-processes are described below, and are depicted as the left-hand flow

in Figure 23:

● Adding a new VNF to the production environment: This sub-process allows developers to add

their new VNF (or a new version of an existing VNF) to the production environment for testing

and debugging purposes. To start with, the developer submits a description of the VNF

capabilities and resource requirements to the Service Layer, which in turn informs the

Orchestration about the existence of the new VNF. The Service Layer also stores the

description of the new VNF in the service catalogue or inventory. The “adding a new VNF”

view is also employed when updating an existing VNF. In this case, the updated VNF is stored

in the service catalogue and the Orchestration is informed about any changes in terms of

resource requirements that might have been introduced by the update. Optionally, if the

resource model of the VNF is not yet known, then the Service Layer forwards a request to the

Orchestration layer which determines by creating a simple service graph what are the

resources allocated to the sample instance of the VNF.

● Modifying an already deployed service graph with a new or updated VNF: Besides debugging

isolated VNFs, developers can proactively minimize bugs by testing their new VNF code

embedded in a complete service graph, interacting with other VNFs used in the production

environment. Here, the developer announces their intention to deploy a particular VNF

(identified through a VNF id) in a particular service graph (identified through a Service Graph

id) instantiated in the unified production environment. The request is received at the Service

Layer, forwarded to the Orchestration layer which queries the service catalogue for the

resources allocated to the current instance of the VNF and what resources need to be

allocated to the new instance. The Controller Layer is responsible for allocating the new

resources and it configures the policies associated to steering traffic towards the new VNF

instance. Once the policies are in place, the developer is informed about the availability,

identifiers and possibly location of the resources and can proceed with the actual copying of

the binary VNF distribution, which takes place outside the VNF Development process.

59 Deliverable D4.1 10.02.2015

● Attach VNF to software IDE: This sub-process is an enabler for actual VNF debugging

activities. The developer queries the Service Layer by providing a Service Graph identifier and

the type of the VNF in order to determine where the instance they are interested in is being

executed. The Service Layer forwards the request to the Orchestration, which determines

what resources are used for the VNF instance and provides the developer with an identifier

for the resources and the VNF instance. The developer can then connect to the running VNF

instance by means of tools such as distributed software debuggers, developed outside of

UNIFY, and perform the debugging activity. The assumption of the “Attach VNF to software

IDE” view is that no special needs have to be fulfilled in order to enable to connect to the

VNF using a software debugger. In cases when special functionality needs to be deactivated or

modified (for example, when the VNF instance is protected by a firewall), the developer

needs to submit to the Service Layer a request to change the service graph accordingly.

4.3 Research challenges and proposed tools
After the generic description of the SP-DevOps related processes targeted by WP4, the following

subsections will highlight specific research questions identified within the scope of the various

processes. We will describe the challenges in connection with first indications of the tools and

methods that are planned to be investigated and developed in WP4 Task 4.2 and 4.3, and

eventually implemented in the SP DevOps prototyping Task 4.4. In Annex 2 we present a

mapping of the research challenges against the objectives defined for the Work Package in the

Description of Work document.

4.3.1 Observability
The UNIFY service provider will depend on the ability to monitor fault- and performance metrics

for various reasons, ranging from SLA assurance to real-time and in-depth observability needs

supporting increased velocity and dynamicity of tasks such as network planning, performance

analysis and optimization. However, programmable monitoring capabilities will not only support

the operational aspect of a provider, but also support any type of service developer (which

might be a role within the providers organization, a role within a trusted partner of the

provider, or in the future even a 3rd party developer) with greater visibility into the performance

characteristics of the virtualized infrastructure, thereby facilitating verification, troubleshooting

and service performance evaluation.

A major problem related to frequent and fine-grained observability updates from many

components, as envisioned in UNIFY, is scalability and resource-efficiency. In WP4, we will study

and propose multiple complementing approaches to tackle this challenge, including distributed-

60 Deliverable D4.1 10.02.2015

and centralized- (i.e. controller-based) solutions, as well as generic extensions to existing

passive SDN counter collection approaches.

4.3.1.1 Distributed monitoring framework for SDN
Current SDN-frameworks are from a fault and performance management and monitoring

perspective in general very limited, offering at most the possibility to measure flow statistics

based on simple counters in the switches ([42], [46], [43], [41]). To ensure telecom operator-

scale for deployed UNIFY service platforms, it is crucial for the observability capabilities to be

scalable and resource-efficient, since observability points can and will be instantiated in large

numbers at various network locations, instructed to collect diverse measurements at high

frequencies in order to meet carrier requirements such as failure-resilience, service-deployment

flexibility, and dynamic scaling. We plan to advance state of the art of SDN fault and

performance management tools in the following aspect:

• RC1: Probabilistic in-network monitoring methods: Efficient monitoring functions are crucial

for enabling the UNIFY vision of dynamic and flexible service-chaining. This requires scalable

and resource-efficient modelling of various performance indicators, as well as fast and

flexible detection of the source of performance degradations with low level and high

precision monitoring data, while minimizing control/data plane overhead. In UNIFY, we will

develop scalable and adaptive approaches for performance monitoring, based on

probabilistic methods for efficient calculation of statistical estimates of performance

measurements for modelling of flow and link metrics, using distributed methods when

applicable. To achieve scalability we aim to calculate the estimates as locally as possible,

and provide the results as compact and expressive parametric distributions. The monitoring

functions will be adaptive and controllable through high-level performance objectives, which

will contribute to operational resource-efficiency and simplified configuration. In order to

pursue these design goals, certain requirements on node resources need to be fulfilled for

modelling of flow and link metrics (as listed in Section 5.1.1). These requirements include

e.g. basic computational and storage facilities at the nodes for local estimation and

aggregation, and additional counters in the data plane for obtaining richer statistics of the

observed network behaviour at varying time scales. We believe that a distributed,

probabilistic approach is absolutely necessary in order to deliver sufficiently precise data and

predictions on monitored performance indicators with modest demands on infrastructure

resources.

• RC2: Scalable observability data transport and processing : The data collected by

observability points needs to be propagated to the control plane component of the virtual

61 Deliverable D4.1 10.02.2015

monitoring function, centrally located at the Controller Layer (controller). Typically, the

data is aggregated to compute the final metrics required by the monitoring objective on this

central location. However, this puts pressure on both the underlying network capacity, and

also on the processing capabilities of the central aggregator. We will propose a method to

optimize the processing and transport of observability data through the use of in-network

aggregation. We will introduce in-network aggregation points (AP) to effectively reduce the

load on both the network and the control plane component on the Controller Layer. APs will

be deployed deeply into the network (e.g. as local CP components) in order to attract data

from observability points in their proximity, aggregate and pre-process the data by a

function specified by the monitoring objective, and send the data (with greatly reduced

overhead) up to the control plane component. Here, one key problem will be finding the

optimal placements of APs while trading-off between traffic load benefits and costs

associated with instantiating APs. Existing work in this area, especially the VirtuCast

algorithm [82], only consider commutative and associative aggregation or filtering functions.

However, as monitoring functions are in general not commutative, the main research

challenge is to extend the existing algorithmic framework of [82] to incorporate arbitrary

monitoring functions, while still optimizing both AP placements and traffic usage. In

summary, we plan to develop a scalable observability data transport and processing system

that builds on the general ideas of VirtuCast and is adapted to the UNIFY architecture and

Use-Cases.

4.3.1.2 Controller based performance monitoring for SDN
 As noted in section 2.3.1.2 most of the performance monitoring solutions for Openflow networks

operate under assumptions that are usually not met in a service provider scenario as envisioned

in UNIFY: they assume re-active flow instantiation, triggered by the arrival of an unknown flow

at a switch; and/or they assume fine-grained flow definitions with fully specified matching

structures. Both of these assumptions are not met in most service provider networks, where

operators typically will proactively populate flow tables during provisioning time (e.g. for

routing purposes), and take advantage of the possibilities to aggregate traffic by coarse-grained

flow definitions (i.e. by applying wildcards in certain fields of the flow definition table).

Additionally, due to the inherently centralized nature of existing SDN control planes, controller

based methods often suffer from the resulting scalability challenges with respect to signalling

and notification load.

• RC3: Low-overhead performance monitoring for SDN: Motivated by the shortcomings of

current solutions, it is our goal to design a scalable and programmable method that provides

62 Deliverable D4.1 10.02.2015

generic SDN performance data in a service provider scenario as depicted in UNIFY (e.g. use

case in Section 3.1). In summary, the design goals are the following:

• Accurate determination of link and flow performance (i.e. loss, delay, throughput)

• Generic, technology independent solution based on the existing SDN components

• Programmable interfaces to facilitate automation (e.g. for troubleshooting purposes)

• Effectiveness against granularity of flow definitions and flow-deployment mode (reactive
vs proactive)

• Scalability with respect to signalling and data-plane overhead

We will investigate a method for estimating network performance metrics (at first focusing

on packet loss and delay) which contributes to the observability capabilities of the network

infrastructure in UNIFY. The method will take advantage of user traffic transported using

pre-deployed aggregated Openflow flow descriptors. Employing user traffic will reduce

network overhead compared to most OAM tools that rely on active measurement methods,

i.e. injection of packets or packet trains into the network. We will explore how to adapt

existing ideas on low-cost monitoring (FlowSense [42]) to pre-provisioned and aggregated

flow definitions in order to keep signalling overhead between control and data planes

minimal. We will also investigate a programmable devolving mechanism of aggregated flow-

definitions (defined with wildcards) into isolated microflows (with fully defined flow

definitions) which can be used as measurement samples. This idea is inspired by DevoFlow

[83], but requires extensions to support various performance metrics while being steered by

policies on control and orchestration layers. Further ideas for potential extensions of the

method include extensions for additional network performance metrics (such as throughput,

packet reordering, etc.) and expandability toward non-network resources (i.e. integration

with compute resources e.g. for a combined delay metric). With respect to deployment of

the observability method, conditional activation of the capability will be considered, as well

as consistent configuration across the network path in question.

4.3.1.3 Passive measurement extensions to SDN
OpenFlow-enabled switches passively gather statistics in several places of the OpenFlow switch

model, based on counting the packets and bytes traversing a particular part of a switch

configuration. In the latest OpenFlow version (1.4.0 at the time of writing) these statistics are

available for individual flow table entries, aggregate flow table entries, whole flow tables, group

entries, meters, queues and ports. While these counter-based statistics provide a wealth of

information about the system, the “rawness” of the measurements and the protocol used to

63 Deliverable D4.1 10.02.2015

access them makes using the data efficiently to calculate network metrics a difficult process

with a large overhead. We are planning to extend various parts of the statistics system with

capabilities on the switch to reduce overhead on both the network and the central controller.

The extensions we will investigate involve the inclusion of new metrics into existing structures,

for example adding latency statistics to queuing and flow table statistics. Such metrics can

easily be calculated locally on the switch, but require heavy overhead to calculate it at the

centralized controller. Other extensions we will investigate are mechanisms for retrieval and use

of existing statistics in a different manner. Such type of protocol messaging extensions can

involve the inclusion of thresholds and associated alarms where today frequent polling would be

necessary, as well as methods for obtaining for example the top 100 flow entries based on e.g.

throughput rather than having to poll each individual installed flow table entry.

This work will be integrated as much as possible with both the distributed and controller-based

monitoring approaches described above. The primary goal of the extensions is the proactive

gathering of various metrics on link, queues, and nodes, such as their utilization and current

latency, in order to support the orchestration and resource placement and optimization

algorithms developed in WP3. At the moment the focus is on two extensions described below

(RC4 and RC5), but this will be reconsidered if WP3 work shows the need for further metrics.

• RC4: Novel metrics in counter structures: Passive latency estimates could be obtained via

monitoring the status of buffers in the network. Network buffers exists as a way to

temporarily store bursts of incoming packets before transmitting them on an outgoing link,

instead of dropping the packets. They are intended to perform this job transiently, quickly

emptying the buffer after it has been used to store a burst. However, in many cases the

buffers get filled up and stay full (obtaining a “standing queue”), losing their function of

absorbing temporary bursts since they cannot buffer any more packets. Instead they just act

as a source of latency in the network and cause additional packet drops. Active queue

management (AQM) techniques, such as Random Early Detection, is intended to help mitigate

this problem, known as “bufferbloat”, but are notoriously difficult to configure correctly.

Newer AQM such as Codel [84] measure the local standing queue and use it as a way of

indicating when packets should be dropped. We believe the same metric gathered from

multiple nodes could be used to predict the current latency over a path (for WP3, assisting in

resource allocation) and provide insight as to the cause of network problems (as a

troubleshooting tool). This requires extensions of existing statistics structures in OpenFlow.

• RC5: Efficient counter retrieval: Flow entry utilization (or “flow popularity”) can be

measured using OpenFlow statistics and used to indicate how to dynamically allocate and

64 Deliverable D4.1 10.02.2015

route flow entries in the network, in order to reduce overall latency, congestion, and

network resource usage, by prioritizing the allocation of the most popular entries (which

often conform to a Zipf distribution [85]). However, existing methods require continuous

polling of all installed flow entries in order to determine the relative popularity of each flow.

This is one of the problems that could be solved by adding new mechanisms in OpenFlow for

retrieving statistics, by distributing the work of e.g. sorting the local flow entries based on a

metric and periodically updating a controller with a small subset of entries and their

statistics.

4.3.2 Verification
Enabling ongoing verification of code is an important goal of continuous integration as part of

the DevOps concept. Here we mean verification with respect to the service definitions and

configurations initiated by the Service Developer. Automated verification functions on each

layer of the architecture facilitate verification as part of each step in the deployment process,

allowing identification of problems early in the service lifecycle.

• RC6: Deploy-time functional verification of dynamic Service Graphs: The role of verification

is key in the SDN scenario. A completely programmable network cannot disregard procedures

to check the correctness of a network configuration set before it is deployed in the real

system, especially if this comes from a user/customer with relatively low expertise. With this

in mind, several tools have been proposed with the aim of enabling a (formal) verification of

specific SDN configurations (e.g. with respect to availability of a path to the destination,

absence of routing loops, access control policies, or isolation between virtual networks).

Among the others, NICE [53], VeriFlow [65], and NetPlumber [66] represent significant

examples in this direction (see Sections 2.3.3 and 2.3.4 for more details).

The majority of these tools operate on network configuration rules (commonly OpenFlow),

and in any case all of them do not consider active network functions (i.e. VNFs or middle-

boxes that dynamically change the forwarding path of a flow according to local algorithms,

as e.g. the IDS in the UC described in Section 3.1). In other words, these tools operate on the

(centralized) programmability of the control plane only. This might be a limitation if we

consider a possible network deploying active network functions, i.e. an environment that

also enables programmability of the data plane in a distributed fashion. With this respect,

novel tools for SDN verification are required, which could extend existing ones toward a fully

programmable environment, such as one that includes network function virtualization.

This also is particularly relevant in the context of the UNIFY project, which considers a

network architecture made of virtual network functions running on physical network nodes.

65 Deliverable D4.1 10.02.2015

Tools like NICE, Veriflow or NetPlumber should be extended or adapted, in order to be able

to work in this context too. Moreover, in the UNIFY architecture, network functions can be

more than passive packet processing elements, simply combined into chains by means of

proper forwarding rules set by a control plane level. For example, active network functions

such as load balancers, packet marking modules, and intrusion detection systems might

modify packet forwarding paths at run-time, or even the incoming traffic itself. For this

reason, the adaptation of the standard SDN verification tools such as NICE and VeriFlow to

the UNIFY architecture should be done not only to check the correctness of chain creation

rules, but a more in depth verification of the resulting traffic paths should be done when

active network functions are deployed into chains.

We will develop tools supporting the verification process during deployment of a Service

Graph. For each step of the deployment process through the UNIFY architecture (from

Service- to Infrastructure layer) we will investigate appropriate verification functions.

Starting from a high-level verification of the customer input (i.e. the Service Graph), the

verification process will then go more in depth in the chain configuration procedure by

operating on the Network Function Forwarding Graph (NF-FG), which maps the Service Graph

to the available network functions. If verification at this layer gives a positive feedback too,

the tool will finally consider the low-layer information represented by the actual set of

forwarding rules and other chain configuration parameters. Verification at the higher layers

will be operated on graph descriptions and hence will mainly focus on topological properties

(e.g., absence of forwarding loops or deadlocks). As this process involves lower layers of the

architecture, it will have the opportunity to access additional information. This enables the

verification of more quantitative properties (e.g. compliance with resource availability), as

well as a more detailed and precise verification of the abovementioned topological ones. At

the Infrastructure Layer, the tool will also handle possible active network functions, if any is

deployed in the chain. This last verification step represents the most relevant advance

beyond the current state of the art, as already mentioned. Here, the challenges stand in

extending the already known verification techniques that operate on the control plane (e.g.

on Openflow rules) so that virtual and active network functions can also be considered. This

has to be done without a relevant degradation of verification times, so as to still allow fast

SP-DevOps cycles. After the study of the already existing tools, our work will proceed with

the design of adapted tools to the new context.

• RC7: Run-time verification of forwarding configurations by enhanced ATPG: The existing

Automatic Test Packet Generation (ATPG) [51] tool for verification of deployed flow rules is

very specific to one type of network and has many shortcomings and overheads. One of the

66 Deliverable D4.1 10.02.2015

overheads of ATPG is polling the network periodically for the forwarding state and

performing all-pairs reachability. If this polling interval is significantly large, there are more

chances that ATPG will have incorrect information of the network state as the state may

change over time. If the polling interval is small, it brings additional load in the network. In

addition, the current implementation of ATPG is only able to verify and test the action part

of the forwarding rule. Therefore, the matching part of the forwarding rule remains

untested. Furthermore, with the current ATPG implementation, only active rules can be

tested: for example, an error in a backup rule cannot be detected in a normal operation or

an error in the working path cannot be detected in a failure operation. Moreover, ATPG

modifies a packet to add a history field: an ordered list of rules the packet matched so far in

the network. ATPG uses this history field to localize the root cause of the issues.

The main goal of our enhanced test packet generation tool is to solve all the aforementioned

limitations of ATPG by testing both matching part and action part and also test the inactive

rules for protection paths. For this purpose, our tool will periodically send test packets in the

network to verify its operational status and therefore, these errors can be reported

automatically to the network engineers. For verification of data plane connectivity, it can

verify the network state periodically and can report if errors are present.

4.3.3 Troubleshooting
Implementing the UNIFY architecture or a similar SDN architecture supporting traffic chaining

necessarily leads to complex systems consisting of a large number of components. These

components are located at several abstraction layers of the architectures. In order to identify

the source of problems in such a complex and multi-layered environment, both Service

developers and VNF Developers will require support of advanced and troubleshooting

mechanisms which need to be available during development, deployment and operation phases

of the SP-DevOps cycle. Troubleshooting tools will need to operate on several levels of the

architecture and will largely take advantage of verification and observability tools introduced

above (Sections 4.3.1 and 4.3.2), as well as complementing existing tools (Section 2.3). These

tools will be used collectively for localizing the cause of a problem such as fault or performance

degradation. By ruling out sources of the problem the actual root cause can be narrowed down.

• RC8: Automated troubleshooting workflows: The problem of integrated network

troubleshooting was first described profoundly in [52]. In UNIFY, we will follow a similar

approach that automatically addresses the whole architecture to debug Service Graph

deployment, configuration and troubleshoot operational problems. For this, we will go

beyond the state of the art in SDN debugging / troubleshooting at more than one area. First,

67 Deliverable D4.1 10.02.2015

we intend to design a debugging system for the multi-layered UNIFY architecture.

Components of the multi-layer architecture will be able to define monitoring and debugging

information accessible through a common interface. This interface will employ layer hopping

logic for allowing the debugger to follow execution across layers and components. To enable

such an automatic troubleshooting logic, we will consider interfaces towards the

observability and verification capabilities developed in UNIFY, allowing, fine-grained and

automatic on-demand control for integration with other fault and performance measurement

mechanisms and tools.

• RC9: In-network troubleshooting: Empirical parameters for metric models, obtained via

probabilistic in-network monitoring as described in Section 4.3.1.1, will be used for fault

management and troubleshooting purposes. Working towards the objectives of increased

scalability, automation and adaptability in a timely manner, we will investigate how typically

centralized SDN monitoring could be augmented with distributed and autonomous

approaches for in-network detection and localization of performance degradations to

physical and logical network devices. For these purposes, we will consider change detection

and event correlation methods, which will require e.g. resource-efficient information

exchange between nodes and access to local log data stored in the nodes. The overall

approach of detecting changes in local estimators enables early warning of potential

degradations, which is an important aspect to address towards dynamic and flexible

deployment and operation of service-chains.

• RC10: Troubleshooting with active measurement methods: Besides run-time verification of

forwarding configurations, the automated test packet generation (ATPG) method can also be

used to debug many errors dealing with forwarding rules, actions, links, bandwidth usage,

latency, and network elements. While the core algorithm of ATPG is targeting the

minimization of test-packet sets for maximal forwarding rule verification, the tool can also

be used as active measurement method for observability metrics such as delay, bandwidth

usage, loss etc. For troubleshooting, it can thus be integrated into an automated workflow to

perform verification and active performance measurements.

4.3.4 VNF development support
The VNF Development process supports any VNF developer to conform to the DevOps principle

“Develop and test against production-like systems”. Developing, debugging, and deploying a VNF

in a live system raises many architectural, performance, and security issues we plan to address.

For example, in a multi-layer architecture like UNIFY, it is not trivial to identify lower-layer

instances of a high-level service description, e.g., identify a running VNF process on a specific

68 Deliverable D4.1 10.02.2015

machine inferred from high-level service graphs. From the perspective of performance and

security, the appropriate isolation is the most important issue to address in order to protect

already configured and running service graphs. Most of these issues are highly dependent on

parts of the UNIFY architecture developed in other WPs and will need to be studied in close

cooperation, such as functionality related to deployment of VNFs within the orchestration layer

(WP3) or actual instantiation on the infrastructure layer (WP5). For example, well-defined

troubleshooting interfaces are required for software components implementing the

functionalities of all UNIFY layers.

• RC11: VNF development support: We investigate in details and elaborate on several

functionalities required by VNF developer that shed light on possible solutions. These include

the following:

o adding a new version of a VNF to the service catalogue (optionally with a blank

resource model).

o VNF-developer initiated queries for access points of instantiated network functions.

These access points then can be used, for instance, to attach a debugger to the VNF

under development.

o automatically determining VNF resource model by creating a special service chain.

This service chain consists of the VNF in question, necessary Observation Points, and

possibly traffic sources.

o upgrading an instantiated service graph on the fly with a new version of a VNF. This

probably should result in gradually driving traffic to the new VNF as old flows

terminate.

o accessing a network debugger like break pointing tool from multilayer debugger. This

multi-layer debugger concept enables the support/definition of novel troubleshooting

mechanisms between arbitrary layers of the architecture.

69 Deliverable D4.1 10.02.2015

5 Requirements for realizing SP-DevOps in UNIFY

This section presents initial requirements defined from the perspective of the SP-DevOps

concept (detailed in Section 4), and is a revisited and extended version of the high level

requirements towards the UNIFY architecture documented in Section 4.3 of D2.1 [3].

Most of the requirements and processes in the scope of UNIFY SP-DevOps will be centred on

observability and troubleshooting of service chains and its building blocks. As we noted in

Section 4.2.1, a monitoring function consist of one or several observability points (OP)

instantiated on one or several nodes together with a control plane component for analysis and

control of lower-level monitoring operations towards the observability points. In turn, an

observability point operates in terms of a node-local control and data plane components for

local analytics and measurement purposes.

The requirements fall into two main categories: The first (and larger part) of the requirements

express technical demands on the UNIFY architecture, i.e., what the architecture should provide

in order to meet the needs of the SP-DevOps concept (technical requirements, in short).

Fulfilling the technical requirements is expected to be done in collaboration between WP4 and

WP3 and WP5. The second part of the requirements formulates further guiding principles in

terms of usefulness criteria from the users’ point of view, which we call operational

requirements. In Annex 2 we present a mapping of both technical and operational requirements

onto the objectives of the Work Package as specified in the Description of Work.

It is important to note that the requirements documented below will be revised with technical

concepts evolving in other technical work-packages and updates will be documented in

forthcoming WP4 milestone reports and deliverables.

In the following, the key requirements are written in bold. Some of these requirements are of

more general aspect and broken down to more detailed requirements.

5.1 Technical Requirements
Technical requirements are expressed towards both the infrastructure (node-level, NL) and

towards higher layers of the UNIFY architecture, primarily the orchestration layer (OL). The

requirement of the SP-DevOps concept toward the infrastructure level will explicitly target the

Universal Node given that it is under development within the project and would thus be a better

candidate for adding advanced programmable functionality, compared to other UNIFY

infrastructure targets. The requirements towards the higher layers will put demands mainly on

70 Deliverable D4.1 10.02.2015

the orchestration layer and target all of its sub-layers defined in the overarching architecture,

but most commonly the virtualized infrastructure manager (i.e. SDN controller) sub-layer.

5.1.1 Node-level (infrastructure) requirements
One of the key questions in terms of observability is how the UN will support observability

components. This subsection collects the identified requirements on the Universal Node, which

are a refinement of the initial monitoring requirements documented Section 4.5 of D5.1 [86], as

well as Section 4.3 of D2.1 [3]

• NL1: The UN must support advanced monitoring capabilities

This high-level requirement corresponds to SP-DevOps Req. 3-2 in D2.1. With advanced

monitoring capabilities we mean that observability points (OP) will go beyond collecting simple

statistics and counters from physical and virtual infrastructure resources. As an example, it is

envisioned that observability points provide scalable and detailed performance metrics. These

components can in turn require support from the UNIFY architecture and infrastructure, which

must provide means for the OPs to, for example, perform packet manipulation (e.g., adding

timestamps, marking certain types of packets for monitoring, etc. as further detailed in NL4)

and to implement simple decision functions on virtual infrastructure resources dedicated to the

specific OP (thresholds for notifications, aggregation of events, etc.).

• NL1.1: Observability components must have access to read the resource state on physical

and virtual levels and access to timestamped log data stored in infrastructure resources.

• NL1.2: Universal Nodes should provide required resources (e.g. memory, CPU, storage)

resources for node-local analytics.

• NL1.3: Observability components must be able to access data required to derive basic

network metrics (throughput, loss, delay, jitter) on different levels of granularity

(packet, flow, links, etc.) on physical and virtual infrastructure resources (corresponds to

D5.1,Monitoring Req. 1)

• NL1.4: Observability components must be allowed to perform node-local analytics in the

UN, based on counters capable of performing arithmetic operations directly in the data

plane (e.g. for the purpose of aggregation, filtering, etc.) (corresponds to

D5.1,Monitoring Req. 9).

• NL1.5: Observability components must be able to apply sampling strategies on

measurement data at different levels of granularity (packet, flow, etc.) (corresponds to

D5.1,Monitoring Req. 4)

71 Deliverable D4.1 10.02.2015

• NL2: The UN must provide interfaces to access observability metrics of services and their
associated components in a desired timely manner.

This high-level requirement corresponds to SP-DevOps Req. 3-5 in D2.1. It should support

dynamic service optimization by mandating interfaces that propagate monitoring information in

various time-scales, including close to real-time. This means, for example, that the monitoring

capabilities of the OpenFlow protocol are not sufficient: counters in the data plane need to

perform arithmetic operations allowing for modelling of flow counters at high sampling rates

(i.e., less than 100 ms).

• NL2.1: Observability components must be able to regularly report observability data.

Reporting should be done in user specified time intervals, or alternatively the interval

can be controlled through deterministic/probabilistic limits or other conditions.

• NL 3: Observability Points must allow for dynamic installation, activation and deactivation
on request for service provisioning and operational aspects.

The high level requirement NL3 corresponds to SP-DevOps Req. 3-6 in D2.1. It specifies that the

UN needs to support dynamic activation and deactivation of observability components in order to

realize conditional observability points.

• NL4: The UN should provide monitoring information to higher layers in suitable level of
detail and granularity through Observability Points.

The high-level requirement NL4 corresponds to node-level aspect of SP-DevOps Req. 3-7 in D2.1.

It implies that in order to provide information through OPs to higher-layers, the UN also needs to

implement capabilities that can provide OPs with necessary low-level information in line with

the previously listed requirements.

Both of the above two requirements (NL3 and NL4) demand interfaces to the Universal Node for

interaction with its advanced capabilities. On the other hand, they necessitate providing

advanced capabilities for the monitoring and troubleshooting tasks. The following list details

these two aspects.

• NL4.1: Observability components must be able to perform packet manipulation (e.g.,
adding timestamps, mark a certain packet for monitoring, etc.) (corresponds to D5.1,
Monitoring Req.3)

• NL4.2: Observability components should be able to dynamically instantiate software-

defined counters executed directly in the data plane (corresponds to D5.1, Monitoring

Req.9).

72 Deliverable D4.1 10.02.2015

• NL4.3: Universal Nodes should support instantiation of additional counters in the data

plane as it enables modelling of counter values observed with fine granularity.

• NL4.4: Universal Nodes should allow for implementation of simple decision functions on

virtual switches (thresholds for notifications, aggregation of events, etc.)

• NL4.5: Observability components must be able to perform active and passive

measurements to observe and model different aspects of the network behaviour for

monitoring and troubleshooting purposes. The use of active measurements means that

observability-defined packets would need to be created within a Universal Node and

inserted in the datapath such that they share the faith of the flows under test.

• NL4.6: Observability components and/or the infrastructure management layer must be

able to instantiate, maintain and update sets of counters on virtual infrastructure

resource.

• NL4.7: Observability components should also be able to instantiate, maintain and update

more complex structures (e.g., Arrays) instead of single values for counters (corresponds

to D5.1,Monitoring Req.2)

• NL4.8: Observability components need to exchange messages directly between physical

and virtual infrastructure resources for efficient use and re-use of monitoring data as

well as for troubleshooting purposes. However, observability components should not

exchange information directly when they are situated in different administrative

domains, for example customer VNFs “under observation” shall not receive information

directly from observability components belonging to the infrastructure provider.

5.1.2 Orchestration level requirements
This subsection collects the identified requirements on the higher layers of the UNIFY

architecture, primarily the orchestration layer, but also aspects of the service layer. The aim of

these requirements is to outline the consequences and associated SP-DevOps requirements that

arise given the overarching key requirements from D2.1.

• OL1: The UNIFY architecture must support capabilities to develop and test components.

This high-level requirement corresponds to SP-DevOps Req. 3-1 in D2.1. It aims to facilitate

increased service velocity towards customers by continuous deployment and integration

practices. This reflects DevOps principles by making it possible to develop and test VNFs and NF-

FGs in production-like systems. These capabilities can for example include creation and isolation

of resources slices (computer, network, storage) and isolation or special treatment of

73 Deliverable D4.1 10.02.2015

downstream traffic from development virtual network functions (VNF). The architecture must

also be capable of running different versions of the same VNF at the same time.

• OL2: The UNIFY architecture must support automated integration of monitoring,
troubleshooting and verification capabilities.

This high-level requirement corresponds to SP-DevOps Req. 3-3 in D2.1. It mandates

programmable interfaces towards monitoring and verification capabilities on all architecture

layers to support automation of operational processes. Automation of operational processes will

allow adaptation and coordination of workflows for service design, development and operations

teams.

• OL3: The UNIFY architecture should be able to react accordingly to reports and
notifications generated by observability and verification components.

This high-level requirement corresponds to SP-DevOps Req. 3-4 in D2.1. Since observability and

verification components will asynchronously generate reports and notifications (e.g., exceptions

with respect to pre-configured or adaptively set thresholds and limits, such as changes,

performance degradations, SLO breaches, etc), the above requirement specifies that the UNIFY

orchestration and service layers will need to provide means to react in a way to mitigate the

reported problem. This could be, e.g., to forward the notification through a service layer

interface to the application logic, or to trigger an appropriate function within the orchestration

or service layer (e.g., a scaling function, or a function providing some sort of re-optimization

through changes in VNF placement or rerouting).

• OL3.1: The OL must provide parameter updates and other information relevant for (re-)

configuration of monitoring functions upon operational changes in the network and

service-chains, in order to obtain accurate monitoring information and maintain the

capability of making near-optimal management decisions in a timely manner.

• OL3.2: The OL should include deployment of monitoring functions within the deployment

of a service chain. This includes deployment of virtual monitoring functions (including all

necessary OPs) as well as configuration input on the appropriate level of detail for the

specific network functions (e.g. KQIs translated to KPIs, etc.)

• OL 3.3: Management-related functional components in the architecture should provide an

observability components operating in the physical/virtual devices with relevant

timestamped historical data, logs, events and other data (such as topology) upon request

or as part of instantiating an observability component (e.g. topology).

74 Deliverable D4.1 10.02.2015

• OL3.4: All components within UNIFY architecture should report all errors in each round of
tests

• OL3.5: The OL must provide observability components with specified conditions for

dynamic activation and deactivation of OP operations (allowing for conditional OPs).

• OL4: The UNIFY architecture and its components should provide monitoring information
in suitable level of detail and granularity according to the needs of applications or
functional blocks within the architecture.

This high-level requirement corresponds to SP-DevOps Req. 3-7 in D2.1. Here, the demand for

appropriate information for different abstraction and virtualisation needs is covered. For

example, information might be needed per application, user or even fine-grained element in the

architecture.

• OL4.1: Monitoring functions and observability components must be able to send reports

and asynchronous notifications to the Virtualized Infrastructure Management Layer (e.g.,

exceptions with respect to pre-configured or adaptively set thresholds and limits, such as

changes, performance degradations, SLO breaches, etc)

• OL4.2: The UNIFY architecture should contain analytics functions on all architectural

layers capable of aggregating different types of metrics collected and pre-aggregated by

multiple components into domain or service chain wide KPIs

• OL4.3: Management functions and observability components must be allowed to perform

in-network aggregation and processing in the infrastructure layer, in order to produce

monitoring information at the specified detail and granularity in a resource efficient and

timely manner.

• OL5: The UNIFY architecture must support automated verification of services and their
formal representations.

This high-level requirement corresponds to SP-DevOps Req. 3-8 in D2.1. Verification tools offer

possibilities to debug service components during design time to ensure intended functionality, as

well as ensuring resource availability and verification of parameters settings during deployment

time based on the specifications of service graphs and components. During deployment time, the

validation and verification tools may need to operate within specified bounds (e.g., time limits)

to ensure rapid service-chain deployment or re-deployment.

The interfaces supporting automated verification of services and forwarding graphs of the above

requirement must work on all architectural layers (i.e., levels of abstraction), e.g., formal

75 Deliverable D4.1 10.02.2015

verification of definitions and configurations with respect to validity and inconsistency. To

support verification functions, relevant pieces of information must be provided by the UNIFY

architecture.

• OL5.1: The network operator must be able to verify the successful deployment and

operation of virtual functions and service graphs consisting thereof.

• OL5.2: Verification of the operation of different paths in the service graph must be

supported dynamically and on-the-fly.

• OL5.3: Verification module at Service Layer must receive (or be able to access)

information about the service graph representing the service graphs to be verified and

other related parameters, e.g., the ordered list of VNFs in a service graph.

• OL5.4: Verification module at Orchestration Layer must receive (or be able to access)

information about the NF-FG representing the service graphs to be verified and a

description of the underlying resources and topology.

• OL5.5: Verification module at controller layer must receive (or be able to access)

information about the overlay topology of the service graphs to be verified and a

description of the available computing and storage resources and of the VNF chain

configuration rules.

• OL5.6: Verification modules must receive (or be able to access) possible verification

policies to verify for a specific service graph (e.g., "all packets must pass through a given

firewall").

• OL6: The verification functions should operate at design and (re-)deployment time.

This high-level requirement corresponds to SP-DevOps Req. 3-9 in D2.1. It is in line with the

verification module described previously, but it additionally stresses the importance its place

within the different workflows the users interacts with the UNIFY architecture.

5.2 Operational Requirements
This last part of the requirements formulates further guiding principles from the operators point

of view, which we refer to as operational requirements. In part, these requirements reflect back

on the SP-DevOps concept itself and will be taken into account during method development and

interface specification. They are relevant in particular for the interaction with WP3 and our

contributions to the integrated prototype.

76 Deliverable D4.1 10.02.2015

• OR1: The impact of monitoring, verification and troubleshooting on the performance of
the UNIFY architecture should be as low as possible.

The scalability requirements can be broken down at many levels. For example, one aspect is the

efficiency of the measurement data transport. For the purpose of resource-efficiency, scalability

and timeliness, monitoring functions based on in-network aggregation and processing in certain

types of observability components are needed. For measurement intensive monitoring

applications, the transport of measurement data collected by observation components needs to

be efficient in the use of bandwidth. In-network processing also provides increased scalability in

the processing of large amounts of fine-grained measurement data as the computational load is

distributed. The degree to which in-network monitoring function can be instantiated during

deployment and operation in the UNIFY framework is a trade-off between the type of

observability needed, level of detail desired and available resources.

• OR2: The proposed SP-DevOps methods and tools must be in harmony with existing
operational processes.

For authentication, authorization and accounting purposes, the operator must be capable to

validate the type/class/quality of service that a customer receives. Accountability is also

important for the sake of SLAs monitoring and billing processes, but also to avoid customers'

misuse or malicious behaviour. Additionally, the network operator must be able to verify the

successful development and operation of virtual functions and service chains consisting thereof.

Moreover, the verification of the operations of different paths in the service graph must be

supported dynamically and on-the-fly. The network operator should be able to dynamically

resolve/troubleshoot issues with VNFs or service graphs and in a flexible manner, which also

includes the possibility to temporarily start, stop, configure and deploy observability points as

necessary. Automatic monitoring and troubleshooting processes could be employed (even

periodically), instead of manual or ad-hoc procedures that involves human intervention.

77 Deliverable D4.1 10.02.2015

6 Conclusions

In this deliverable, we present a sketch of the SP-DevOps concept as a proposal that would

enable telecom providers to support faster introduction of new services. We identified

characteristics that differentiate DevOps in a telecom provider environment compared to the

datacentre, where the concept originates. We identified two developer roles – the Service

Developer defines a service graph associated to a new service, and the VNF developer

implements the software associated with a new virtual network function and maintains existing

ones. We also identified the need for an Operator role that, in addition to the regular daily

operation duties from the eTOM and ITIL frameworks, empowers the developers to troubleshoot

problems with their code in conditions close to a real production environment. In our definition,

SP-DevOps reposes on three pillars aligned towards the Work Package objectives specified in the

Description of Work: observability, troubleshooting and verification. Processes associated to

each one of these areas were described, pinpointing components of the functional architecture

that would be involved in the implementation.

We outlined the fact that the concept of SP-DevOps is wider than WP4 and requires cooperation

with WP3 and WP5. In this respect, we formulated a set of technical requirements towards the

programmability framework, the Universal Node as well as towards the overall architecture

developed in WP2. WP4 will also have a role in fulfilling parts of the technical requirements.

These requirements are complemented by two generic operational requirements aimed at the

observability, verification and troubleshooting areas to be approached in this Work Package.

We surveyed the state of the art for the areas of software-defined infrastructure monitoring,

verification and troubleshooting, with a focus on software-defined networks. Several key issues

were identified and preliminary ways of addressing them in the duration of the project were

outlined. Monitoring and troubleshooting approaches were found to be highly limited in terms of

the level observability that can be efficiently provided in a UNIFY context. We will address this

by designing resource-efficient, scalable and controllable methods capable of operating

dynamically relative to specified KPIs and adapt to performance changes in service graphs. This

will include development of more advanced methods based on capabilities of the OpenFlow

standard as well as extended OAM mechanisms for obtaining richer information about the

virtualized infrastructure behaviour while lowering the operational overhead. We discussed the

need for and presented a definition for Observability points, which are virtual network functions

that implement advanced monitoring functionality. Verification approaches assume a centralized

and statically-controlled network configuration, which is different from the dynamic UNIFY

production environment. We will design verification mechanisms that exploits the

78 Deliverable D4.1 10.02.2015

programmability of the UNIFY environment to provide dynamic adaptation to service graphs

deployments and runtime evolution. The VNF Development framework provides the service

developer the necessary means for testing, debugging and deploying services, and relies partially

on the monitoring, troubleshooting, and verification processes. Main research challenges to be

addressed include efficient tracking and identification of different VNF processes common to a

service graph running in the UNIFY multi-layer architecture, as well as maintaining the specified

performance of service-chains. The research challenges we outlined cover all the objectives

proposed in the Work Package description document.

The following steps will be taken to advance the SP-DevOps sketch towards an initial concept

that will be detailed in MS4.1. We will identify and specify interfaces associated to passing SP-

DevOps-relevant information between components of the functional architecture. In cooperation

with the service instantiation and deployment framework developed in WP3, we will work on

specifying how to describe monitoring and verification capabilities such that they could be

integrated in the UNIFY production environment. Together with the work on the infrastructure

and hardware aspects in WP5, we will work on further understanding how the Universal Node

can support our requirements for programmable monitoring capabilities. The progress of these

discussions, along with the progress made by partners in designing monitoring, verification and

troubleshooting capabilities will be reported in MS4.1. As the map of capabilities and interfaces

becomes more complete, we will start documenting how an integrated WP4 prototype could be

built for demonstrating the advantages of our combined approaches. The progress in this

direction will too be documented in MS4.1.

79 Deliverable D4.1 10.02.2015

7 References

[1] “Managed Services : Assuring Customer Experiences from End-to-End,” [Online]. Available:
www.tmforum.org/browse.aspx?linkID=52167&docID=20279.

[2] “Business Process Framework Primer, GB921-P,” TMForum , 2014.

[3] “D2.1 Initial Architecture Framework,” FP7 UNIFY project, 2014.

[4] “TR229 ZOOM/NFV User Stories V1.3.1,” TMForum, 2014.

[5] “GB921- W Working Together - ITIL and eTOM , v 11.3,” TMForum, 2011.

[6] ITIL Service Transition, London: The Stationary Office, 2011.

[7] ITIL Service Operation, London: The Stationary Office, 2011.

[8] E. Minick and J. Fredrick, “White Paper: Enterprise Continuous Delivery Maturity Model,”
May 2013.

[9] S. Thair and J. Smith, “Maturing the Continuous Delivery Pipeline,” Feb 2013. [Online].
Available: http://blog.devopsguys.com/2013/02/06/maturing-the-continuous-delivery-
pipeline/.

[10] A. Rehn, T. Palmborg and P. Boström, “Continuous Delivery Maturity Model,” Feb 2013.
[Online]. Available: http://www.infoq.com/articles/Continuous-Delivery-Maturity-Model.

[11] S. Inbar, S. Yaniv, P. Gil, S. Eran, S. Ilan, K. Olga and S. Ravi, “DevOps and OpsDev: How
Maturity Model Works,” April 2013. [Online]. Available:
http://h30499.www3.hp.com/t5/Business-Service-Management-BAC/DevOps-and-OpsDev-
How-Maturity-Model-Works/ba-p/6042901#.UqXiVMu9KSM.

[12] “DevOps, the IBM Approach,” 2013. [Online]. Available:
http://public.dhe.ibm.com/common/ssi/ecm/en/raw14323usen/RAW14323USEN.PDF.

[13] R. Seroter, “ Exploring the ENTIRE DevOps Toolchain for (Cloud) Teams,” [Online].
Available: http://www.infoq.com/articles/devops-toolchain.

[14] S. Sharma, DevOps for dummies, IBM limited edition, 2013.

80 Deliverable D4.1 10.02.2015

[15] “An Overview of Chef,” [Online]. Available:
http://docs.opscode.com/chef_overview.html. [Accessed 18 07 2014].

[16] “Puppet Enterprise Product Brief,” [Online]. Available:
http://puppetlabs.com/sites/default/files/Product%20Brief_3x.pdf. [Accessed 18 07
2014].

[17] “Ansible Documentation,” [Online]. Available: http://docs.ansible.com/index.html.

[18] “SDNCentral Plexxi & SolarWinds DevOps Demo,” 5 12 2013. [Online]. Available:
http://www.sdncentral.com/education/plexxi-devops-solarwinds-sdn-demo/2013/12/.
[Accessed 18 07 2014].

[19] “What does the DevOps Tool Landscape Look Like?,” [Online]. Available:
http://www.sdncentral.com/education/devops-tool-landscape-look-like-derick-
winkworth/2014/05/. [Accessed 18 07 2014].

[20] “Cisco 10000 Series Router Software Configuration Guide,” 2010. [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/routers/10000/10008/configuration/guides/broa
dband/bba.pdf.

[21] “ Network Management Solution: Optimize Infrastructure for IPTV Services,” 2010.
[Online]. Available:
http://www.cisco.com/en/US/technologies/tk869/tk769/technologies_white_paper0900a
ecd80730d28.pdf. [Accessed 26 05 2014].

[22] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and Issues, RFC 3234,” 2002.

[23] M. Honda, Y. Nishida and C. Raiciu, “Is it still possible to extend TCP?,” in Sigcomm 2011,
Toronto, 2011.

[24] J. Sherry and S. Hasan, “Making Middleboxes Someone Else’s Problem: Network Processing
as a Cloud Service,” in Sigcomm 2012 , Helsinki, 2012.

[25] “SmoothWall Express: Express Open Source Firewall Project,” [Online]. Available:
http://www.smoothwall.org/.

[26] “HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer,” [Online]. Available:
http://www.haproxy.org/.

[27] “squid : Optimising Web Delivery,” [Online]. Available: http://www.squid-cache.org/.

81 Deliverable D4.1 10.02.2015

[28] “ntop: Open Source Network Trac Monitoring,” [Online]. Available:
http://www.ntop.org/.

[29] “Bro Intrusion Detection System,” [Online]. Available: http://bro-ids.org/.

[30] “SNORT,” [Online]. Available: http://www.snort.org/.

[31] LightReading, “Management Needs in an Age of Network Change,” 25 07 2014. [Online].
Available: http://www.lightreading.com/spit-%28service-provider-it%29/oss/management-
needs-in-an-age-of-network-change/d/d-id/710109. [Accessed 25 07 2014].

[32] “D4.1 - Cloud Monitoring Tool v1,” 30 Sep 2013. [Online]. Available:
http://www.celarcloud.eu/wp-content/uploads/2013/11/Cloud-Monitoring-Tool-V1.pdf .
[Accessed 26 05 2014].

[33] “Amazon CloudWatch Developer Guide (API Version 2010-08-01),” [Online]. Available:
http://awsdocs.s3.amazonaws.com/AmazonCloudWatch/latest/acw-dg.pdf . [Accessed 26
05 2014].

[34] “vCenter Hyperic Resource Configuration and Metrics Guide,” [Online]. Available:
http://pubs.vmware.com/hyperic-58/topic/com.vmware.ICbase/PDF/vcenter-hyperic-58-
resource-config-guide.pdf. [Accessed 26 05 2014].

[35] “VMware vCenter Operations Enterprise: Automated Operations Management for Your
Enterprise,” [Online]. Available: http://www.vmware.com/files/pdf/vcenter/VMware-
vCenter-Operations-Enterprise-Standalone-Automated-Operations-Mgmt-WP-EN.pdf .
[Accessed 26 05 2014].

[36] “Ceilometer developer documentation,” [Online]. Available:
http://docs.openstack.org/developer/ceilometer/ . [Accessed 26 05 2014].

[37] R. Kiyanchuk, “OpenStack Metering Using Ceilometer,” 3 Jul 2013. [Online]. Available:
http://www.mirantis.com/blog/openstack-metering-using-ceilometer. [Accessed 26 05
2014].

[38] “cAdvisor,” Google, 2014. [Online]. Available: https://github.com/google/cadvisor.
[Accessed 21 07 2014].

[39] D. W. D. Katz, “Bidirectional Forwarding Detection (BFD),” RFC 5880, June 2010.

[40] W. John and a. et, “SPARC Deliverable D3.3: Split Architecture for Large Scale Wide Area
Networks,” EU FP7 SPARC, 2012.

82 Deliverable D4.1 10.02.2015

[41] M. Moshref, M. Yu and R. Govindan, “Resource/Accuracy Tradeoffs in Software-Defined
Measurement,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking, HotSDN’13, 2013.

[42] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang and H. V. Madhyastha, “Flowsense:
monitoring network utilisation with zero measurement cost,” in Proceedings of the 14th
International Conference on Passive and Active Measurement, PAM’13, 2013.

[43] M. Yu, J. Lavanya and R. Miao, “Software defined traffic measurement with opensketch,”
in Proceedings 10th USENIX Symposium on Networked Systems Design and Implementation,
NSDI'13, 2013.

[44] “Flexible NetFlow Command Reference,” Jul 2011. [Online]. Available:
http://www.cisco.com/c/en/us/td/docs/ios/fnetflow/command/reference/fnf_book.pdf.
[Accessed 26 05 2014].

[45] M. Wang, B. Li and Z. Li, “sflow: Towards resource-efficient and agile service federation in
service overlay networks,” in 24th International Conference on Distributed Computing
Systems, 2004.

[46] K. Phemius and M. Bouet, “Monitoring latency with OpenFlow,” in 9th International
Conference on Network and Service Management (CNSM'13), 2013.

[47] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar, M. Wolf and C. Huneycutt,
“VScope: middleware for troubleshooting time-sensitive data center applications,” in 13th
International Middleware Conference, 2012.

[48] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu and M. Wolf, “A flexible architecture
integrating monitoring and analytics for managing large-scale data centers,” in The 8th
ACM international conference on Autonomic Computing, 2011.

[49] M. Kim, R. Sumbaly and S. Shah, “Root cause detection in a service-oriented
architecture,” in ACM SIGMETRICS/international conference on measurement and
modeling of computer systems, 2013.

[50] A. Wundsam, D. Levin, S. Seetharaman and A. Feldmann, “OFRewind: Enabling Record and
Replay Troubleshooting for Networks,” in Usenix Anual Technical Conference , 2011.

[51] H. Zeng, P. Kazemian, G. Varghese and N. McKeown, “Automatic Test Packet Generation,”
in 8th International Conference on emerging Networking EXperiments and Technologies
(CoNEXT), Nice, 2012.

83 Deliverable D4.1 10.02.2015

[52] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng, S. Whitlock, V.
Jeyakumar, N. Handigol, J. McCauley, K. Zarifis and P. Kazemian, “Leveraging SDN
layering to systematically troubleshoot networks,” in ACM HotSDN, 2013.

[53] M. Canini, D. Venzano, P. Peresini, D. Kostic and J. Rexford, “A NICE Way to Test
Openflow Applications,” in 9th USENIX Conference on Networked Systems Design and
Implementation (NSDI'12), San Jose, 2012.

[54] C. Scott, A. Wundsam, S. Whitlock, A. Or, E. Huang, K. Zarifis and S. Shenker, “How Did
We Get Into This Mess? Isolating Fault-Inducing Inputs to SDN Control Software,” Technical
Report UCB/EECS-2013-8, EECS Department, University of California, Berkeley.

[55] P. Kazemian, G. Varghese and N. McKeown, “ Header Space Analysis: Static Checking For
Networks,” in 9th USENIX conference on Networked Systems Design and Implementation
(NSDI'12), 2012.

[56] S. Bouchenak, G. Chockler, H. Chockler, G. Gheorghe, N. Santos and A. Shraer, “Verifying
Cloud Services: Present and Future,” ACM SIGOPS Operating Systems Review, pp. Volume
47 Issue 2, 6-19, Jul 2013.

[57] A. Shraer, C. Cachin, A. Cidon, I. Keidar, Y. Michalevsky and D. Shaket, “Venus:
verification for untrusted cloud storage,” in ACM workshop on Cloud computing security,
2010.

[58] A. J. Feldman, W. P. Zeller, M. J. Freedman and E. W. Felten, “SPORC: group
collaboration using untrusted cloud resources,” in 9th USENIX conference on Operating
systems design and implementation, 2010.

[59] I. Papagiannis and P. Pietzuch, “CloudFilter: practical control of sensitive data
propagation to the cloud,” in ACM Workshop on Cloud computing security workshop, 2012.

[60] C. Wang and Y. Zhou, “A collaborative monitoring mechanism for making a multitenant
platform accountable,” in 2nd USENIX conference on Hot topics in cloud computing
(HotCloud), 2010.

[61] V. Sekar and P. Maniatis, “Verifiable resource accounting for cloud computing services,” in
3rd ACM workshop on Cloud computing security, 2011.

[62] A. Gouglidis, I. Mavridis and V. C. Hu, “Security policy verification for multi-domains in
cloud systems,” International Journal of Information Security , pp. Volume 13, Issue 2,
pages 97-111, 2014.

84 Deliverable D4.1 10.02.2015

[63] A. Al Falasi and M. A. and Serhani, “A Framework for SLA-Based Cloud Services Verification
and Composition,” in International Conference on Innovations in Information Technology
(IIT), 2011.

[64] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson and G. Gu, “A Security Enforcement
Kernel for OpenFlow Networks,” in First ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN ’12), 2012.

[65] A. Khurshid, W. Zhou, M. Caesar and P. B. Godfrey, “VeriFlow: Verifying Network-Wide
Invariants in Real Time,” in First ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN ’12), 2012.

[66] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown and S. Whyte, “Real Time
Network Policy Checking using Header Space Analysis,” in 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI '13), 2013.

[67] R. C. Scott, A. Wundsam, K. Zarifis and S. Shenker, “What, Where, and When: Software
Fault Localization for SDN.,” Technical Report UCB/EECS-2012-178, EECS Department,
University of California, Berkeley, 2012.

[68] X. Bai, M. Li, B. Chen, W.-T. Tsai and J. Gao, “Cloud testing tools,” in IEEE 6th
International Symposium on Service Oriented System Engineering (SOSE'11), 2011.

[69] S. Vilkomir, “Cloud Testing: A State-of-the-Art Review,” Information & Security: An
International Journal , vol. 28, no. 2, pp. 213-222, 2012.

[70] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov and G. Candea, “Cloud9: a software testing
service,” ACM SIGOPS Operating Systems Review, vol. 43, no. 4, pp. 5-10, 2010.

[71] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov, S. Patil,
A. Fox and D. Patterson, “Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0.,” in Cloud Computing and its Application, 2008.

[72] M. Kuzniar, M. Canini and D. Kostic, “OFTEN Testing OpenFlow Networks,” in European
Workshop on Software Defined Networks (EWSDN'12), Darmstadt, 2012.

[73] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières and N. McKeown, “Where is the
Debugger for my Software-Defined Network?,” in First ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN ’12), 2012.

[74] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey and S. T. King, “Debugging the
data plane with anteater,” in ACM SIGCOMM conference (SIGCOMM '13), , 2013.

85 Deliverable D4.1 10.02.2015

[75] S. Schmid and J. Suomela, “Exploiting Locality in Distributed SDN Control,” in The Second
ACM SIGCOMM workshop on Hot topics in software defined networking (HotSDN'13), Hong
Kong, 2013.

[76] J. Schulz-Zander, N. Sarrar and S. Schmid, “AeroFlux: A Near-Sighted Controller
Architecture for Software-Defined Wireless Networks,” in Open Networking Summit, 2014.

[77] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman and a. R. Kompella, “Towards an elastic
distributed sdn controller,” in The Second ACM SIGCOMM workshop on Hot topics in
software defined networking (HotSDN'13), 2013.

[78] M. Canini, D. D. Cicco, P. Kuznetsov, D. Levin, S. Schmid and S. Vissicchio, “STN: A Robust
and Distributed SDN Control Plane,” in Open Networking Summit (ONS), Research Track,
Santa Clara, 2014.

[79] “The Real-Time Cloud - Ericsson Whitepaper,” February 2014. [Online]. Available:
http://www.ericsson.com/res/docs/whitepapers/wp-sdn-and-cloud.pdf. [Accessed 18 07
2014].

[80] R. Steinert, “Probabilistic Fault Management in Networked Systems,” Doctoral
dissertation. TRITA-CSC-A ; 2014:06. KTH Royal Institute of Technology, Stockholm, 2014.

[81] “D5.2 Universal Node Interfaces and Software Architecture,” FP7 UNIFY project, 2014.

[82] M. Rost and S. Schmid, “VirtuCast: Multicast and Aggregation with In-Network Processing
(An Exact Single-Commodity Algorithm),” in 17th International Conference on Principles of
Distributed Systems (OPODIS), Nice, 2013.

[83] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis and S. Banerjee,
“DevoFlow: Cost-Effective Flow Management for High Performance Enterprise Networks,”
in Ninth ACM Workshop on Hot Topics in Networks (HotNets-IX), Monterey, CA, 2010.

[84] K. Nichols and V. Jacobson, “Controlling queue delay,” Communications of the ACM, vol.
55, no. 7, pp. 42-50, 2012.

[85] N. Sarrar, A. Feldmann, S. Uhlig, R. Sherwood and X. Huang, “FIBIUM: Towards Hardware
Accelerated Software Routers,” Deutsche Telekom Laboratories, Berlin, 2010.

[86] “D5.1 Universal Node functional specification and use case requirements on data plane,”
FP7 UNIFY project, 2014.

86 Deliverable D4.1 10.02.2015

87 Deliverable D4.1 10.02.2015

Annex 1 : Detailed service configuration steps

Example #1: VPN service

In Figure 24, an MPLS VPN network is depicted.

Figure 24: MPLS VPN Network [20]

Below, we present the tasks that need to be completed by a network operator to configure,

monitor and maintain, and trouble-shoot such an MPLS VPN network.

A. Configuration

1. Configuring the MPLS Core Network
a. Enabling Label Switching of IP Packets on Interfaces
b. Configuring Virtual Routing and Forwarding Instances
c. Associating VRFs
d. Configuring Multiprotocol BGP PE to PE Routing Sessions

2. Configuring Access Protocols and Connections
e. Configuring a Virtual Template Interface
f. Configuring PPP (or PPPoE) over ATM Virtual Connections and Applying Virtual

Templates

3. Configuring and Associating Virtual Private Networks
g. Creating a VRF Configuration for a VPN
h. Associating a VRF Configuration for a VPN with a Virtual Template Interface

4. Configuring RADIUS User Profiles for RADIUS-Based AAA

88 Deliverable D4.1 10.02.2015

5. Verification

• Configuration of PPPoE to MPLS VPN

o Drawbacks: manual configuration, complexity

o Number of commands in CLI: 183

o Probability of mistake: Very high

B. Monitoring and maintenance

1. Monitoring and maintenance of the MPLS Configuration
a. Verification of Successful Running of the Routing Protocol
b. Verification of MPLS
c. Verification of Connections Between Neighbors
d. Verification of Label Distribution
e. Verification of Label Bindings
f. Verification of Labels Are Set

2. Monitoring and maintenance of the MPLS VPN
a. Verification of VRF Configurations
b. Verification of the Routing Table
c. Verification of PE to PE Routing Protocols
d. Verification of PE to CE Routing Protocols
e. Verification of the MPLS VPN Labels
f. Testing the VRF

• Monitoring and maintenance of PPPoE to MPLS VPN

o Drawbacks: manual, high frequency, prone to mistakes

Example #2:IPTV service

A. IPTV network management drawbacks/challenges

• Multi-vendor equipment such as head-end equipment, middleboxes, VoD servers,

CAS/DRM equipment, etc.

• Careful configuration of multiple systems and network devices; necessary to avoid post-

installation issues.

• Critical monitoring of QoS across the network, i.e. from head-end to the access network.

• Complex trouble-shooting and isolation of problems.

• Constant capacity monitoring and instant switch to an alternative (back-up) path to carry

the video.

B. Service provisioning – tasks to be fulfilled

89 Deliverable D4.1 10.02.2015

1. Service activation: CRM, DSLAM EMS’s, subscriber management, CPE provisioning system,

identity and access control (AAA servers), billing system for service enablement.

2. Configuration management.

3. Service assurance: execution of proactive and reactive maintenance to ensure that the

IPTV service performs according to the QoS levels defined in SLAs.

4. Fault management.

C. Network management and maintenance

1. VoD monitoring

2. Video quality monitoring

3. Performance management

• IPTV service KPIs: Packet loss, jitter, latency, channel change time

• Device KPIs: CPU, memory, buffer utilization

• Network KPIs: CIR utilization, queue drops, dropped frames

• Methodology: probes, device instrumentation

90 Deliverable D4.1 10.02.2015

Annex 2 : Mapping onto WP4 Objectives

Table 1: Research Challenges described in D4.1, mapped on the WP4 Objectives in the DoW

DoW WP4 Objective Research Challenges

O4.1 Evaluate and demonstrate, in an agile manner,

the SP-DevOps concept for selected scenarios,

including the development of the Service Provider

DevOps prototype (DevOpsPro)

N/A

O4.2 Define conditional observability points located

on Universal Nodes and develop an automated

approach for deploying them consistently

Partly addressed by RC1, RC2, RC3, RC8, RC9, RC10

O4.3 Develop scalable service monitoring

approaches, adapted to software-defined networks,

that are efficient in reducing the number of manual

diagnosing steps and amount of observation data

transiting on the network

RC1: Probabilistic in-network monitoring methods

RC2: Scalable observability data transport and

processing

RC3: Low-overhead performance monitoring for SDN

RC4: Novel metrics in counter structures

RC5: Efficient counter retrieval

RC9: In-network troubleshooting

RC10: Troubleshooting with active measurement

methods

O4.4 Design methods for verifying service chain

functionality at runtime and locating service chain

faults

RC7: Run-time verification of forwarding

configurations by enhanced ATPG

O4.5 Enable automatic definition of workflows for

verification and activation tests for dynamic service

chains

RC8: Automated troubleshooting workflows

RC11: VNF development support

O4.6 Enable the possibility to verify service chains

within the limit of one development cycle

RC6: Deploy-time functional verification of dynamic

Service Graphs

91 Deliverable D4.1 10.02.2015

Table 2: High-level requirements described in D4.1, mapped on the WP4 Objectives in the DoW

DoW WP4 Objective High-level requirements

O4.1 Evaluate and demonstrate, in an agile manner,

the SP-DevOps concept for selected scenarios,

including the development of the Service Provider

DevOps prototype (DevOpsPro)

N/A

O4.2 Define conditional observability points located

on Universal Nodes and develop an automated

approach for deploying them consistently

NL1: The UN must support advanced monitoring

capabilities

NL 3: Observability points must allow for dynamic

installation, activation and deactivation on request

for service provisioning and operation aspects

NL4: The UN should provide monitoring information

to higher layers in suitable level of detail and

granularity through Observability Points

O4.3 Develop scalable service monitoring

approaches, adapted to software-defined networks,

that are efficient in reducing the number of manual

diagnosing steps and amount of observation data

transiting on the network

NL1: The UN must support advanced monitoring

capabilities

NL2: The UN must provide interfaces to access

observability metrics of services and their

associated components in a desired timely manner

NL4: The UN should provide monitoring information

to higher layers in suitable level of detail and

granularity through Observability Points

OL4: The UNIFY architecture and its components

should provide monitoring information in suitable

level of detail and granularity according to the

needs of applications or functional blocks within

the architecture

OR1: The impact of monitoring, verification and

troubleshooting on the performance of the UNIFY

92 Deliverable D4.1 10.02.2015

architecture should be as low as possible

OR2: The proposed SP-DevOps methods and tools

must be in harmony with existing operational

processes

O4.4 Design methods for verifying service chain

functionality at runtime and locating service chain

faults

OL1: The UNIFY architecture must support

capabilities to develop and test components

OL5: The UNIFY architecture must support

automated verification of services and

representations

OR2: The proposed SP-DevOps methods and tools

must be in harmony with existing operational

processes

O4.5 Enable automatic definition of workflows for

verification and activation tests for dynamic service

chains

OL1: The UNIFY architecture must support

capabilities to develop and test components

OL2: The UNIFY architecture must support

automated integration of monitoring, trouble-

shooting and verification capabilities

O4.6 Enable the possibility to verify service chains

within the limit of one development cycle

OL5: The UNIFY architecture must support

automated verification of services and

representations

OL6: The verification functions should operate at

design and (re-)deployment time.

OL3: The UNIFY architecture should be able to

react accordingly to reports and notifications

generated by observability and verification

components

	1 Introduction
	1.1 Project vision
	1.2 Relation with other work packages
	1.3 Scope of the deliverable

	2 State of the Art and related work
	2.1 Management approaches
	2.1.1 Best practice models in telecom: eTOM
	2.1.2 Best practice models in IT: ITIL
	2.1.3 Modern agile development and operations models in IT: CD and DevOps

	2.2 Current practices in service graph operations
	2.2.1 Service examples
	2.2.2 The effect of middle boxes on management

	2.3 SDN and cloud management
	2.3.1 Observability and monitoring
	2.3.1.1 Cloud monitoring
	2.3.1.2 SDN monitoring
	2.3.1.3 Conclusion

	2.3.2 Troubleshooting
	2.3.2.1 Cloud troubleshooting
	2.3.2.2 SDN troubleshooting
	2.3.2.3 Conclusion

	2.3.3 Verification and policy checking
	2.3.3.1 Verification of cloud computing functionality
	2.3.3.2 Verification of SDN functionality
	2.3.3.3 Conclusion

	2.3.4 Testing and debugging
	2.3.4.1 Cloud testing
	2.3.4.2 SDN debugging
	2.3.4.3 Conclusion

	2.3.5 Distributed SDN control planes

	3 Summary of relevant UNIFY results
	3.1 Exemplary use-case: Secure, content aware IP VPN
	3.2 UNIFY process model and service lifecycle
	3.3 Initial UNIFY Architecture

	4 SP-DevOps concept
	4.1 Sketch of SP-DevOps concept
	4.2 SP-DevOps applied on UNIFY
	4.2.1 Definition of Monitoring Functions
	4.2.1.1 Observability points and components
	4.2.1.2 Interfaces

	4.2.2 SP-DevOps process flows
	4.2.2.1 Observability process and associated functional components
	4.2.2.2 Verification process and associated functional blocks
	4.2.2.3 Troubleshooting process and associated functional blocks
	4.2.2.4 VNF Development support

	4.3 Research challenges and proposed tools
	4.3.1 Observability
	4.3.1.1 Distributed monitoring framework for SDN
	4.3.1.2 Controller based performance monitoring for SDN
	4.3.1.3 Passive measurement extensions to SDN

	4.3.2 Verification
	4.3.3 Troubleshooting
	4.3.4 VNF development support

	5 Requirements for realizing SP-DevOps in UNIFY
	5.1 Technical Requirements
	5.1.1 Node-level (infrastructure) requirements
	5.1.2 Orchestration level requirements

	5.2 Operational Requirements

	6 Conclusions
	References

