
 

 

Deliverable D3.2a 
Network Function Forwarding Graph specification (Supplement to D3.2) 

Dissemination level  Public  

Version  1.0  

Due date    

Version date  17.11.2015  

 
This project is co-funded 

 by the European Union   



 

1 Deliverable D3.2a 17.11.2015 
 

Document information 

Editors and Authors: 

Editors: Pontus Sköldström (ACREO) 

Contributing Partners and Authors:  

ACREO Pontus Sköldström 

 
DTAG Mario Kind 

EAB Wolfgang John 

EHU Jokin Garay, Jon Matias 

ETH David Jocha, Róbert Szabó 

IMINDS Wouter Tavernier 
 

Project Coordinator 

Dr. András Császár 

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB 

KONYVES KALMAN KORUT 11 B EP 

1097 BUDAPEST, HUNGARY  

Fax: +36 (1) 437-7467 

Email: andras.csaszar@ericsson.com 

Project funding 

7th Framework Programme 

FP7-ICT-2013-11 

Collaborative project 

Grant Agreement No. 619609 

Legal Disclaimer 

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the information is fit 
for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind 
including without limitation direct, special, indirect, or consequential damages that may result from the use of these 
materials subject to any liability which is mandatory due to applicable law. 

 



 

2 Deliverable D3.2a 17.11.2015 
 

Table of contents 

1 Introduction 7 

2 State of the art 8 

2.1 Topology and Orchestration Specification for Cloud Applications (TOSCA) 8 

2.2 OpenStack HEAT 8 

2.3 ETSI NFV 10 

3 Service-centric NF-FG model 13 

3.1 Main changes since D3.1 and process overview 13 

3.2 Support for UNIFY main components and features in the NF-FG 16 

3.3 Updated NF-FG model 19 

3.4 Topology and resource model 22 

3.5 NF-FG examples 24 

3.5.1 Service Graph 24 

3.5.2 Single node infrastructure 26 

3.5.3 Three node infrastructure 27 

3.5.4 Request over single node infrastructure 29 

3.5.5 Request over three node infrastructure 32 

3.5.6 Request with shared NF 39 

4 Virtualizer-based NF-FG model and mapped resource requests 42 

4.1 Simple infrastructure view 46 

4.2 Advanced infrastructure view 47 

4.3 Simple Request 49 

4.4 Requests with resource demands 51 
4.5 Capability reporting 54 

4.6 Constraints handling 56 

4.7 Resource sharing 62 

4.8 The full data model 64 

4.9 Relation to NETCONF 65 

5 Conclusion 66 



 

3 Deliverable D3.2a 17.11.2015 
 

6 References 69 

Annex 1 Service-oriented and Virtualizer-based NF-FG models 70 

A.1.1 Service-oriented NF-FG model defined in YANG 70 

Annex 2 Virtualizer-based NF-FG model 80 

A.2.1 Virtualizer-based NF-FG model defined in YANG 80 

A.2.2 Single node infrastructure report example 85 

A.2.3 3-node infrastructure report example 86 

A.2.4 Single node with delay matrix example 88 

A.2.5 Single request example 90 

A.2.6 Request with BiS-BiS internal links example 92 

A.2.7 Request with NF internal links example 94 

A.2.8 Link sharing example 96 

 



 

4 Deliverable D3.2a 17.11.2015 
 

List of figures 

Figure 2.1: UNIFY and TOSCA. ......................................................................................................................................................................................... 8 

Figure 2.2: UNIFY and OpenStack Heat..................................................................................................................................................................... 9 

Figure 2.3: Network Service as defined in ETSI NFV MANO ......................................................................................................................... 10 

Figure 3.1: Example of Service Graph, Resource Graph and Network Function Forwarding Graph .......................................... 14 

Figure 3.2: Comparison with D2.2 Exemplary mapping of a SG to NF-FGs (figure 6 in D2.2) .................................................... 16 

Figure 3.3: Service Graph with 3 Network Functions ..................................................................................................................................... 25 

Figure 3.4: Resource Graph with a Single Node ................................................................................................................................................. 27 

Figure 3.5: Resource Graph with 3 nodes ............................................................................................................................................................. 28 

Figure 3.6: Request of NF-FG with 3NFs on a Resource Graph with a single node ........................................................................ 30 

Figure 3.7: Request of NF-FG with 3NFs over a Resource Graph with 3 nodes ................................................................................ 33 

Figure 3.8: Request of NF-FG with 3NFs where one is shared .................................................................................................................. 39 

Figure 4.1: Example topology for Virtualizer message chart......................................................................................................................... 44 

Figure 4.2: Service Orchestrator’s view of the topology shown in Figure 4-1. ..................................................................................... 44 

Figure 4.3: Resource Orchestrator’s view of the topology shown in Figure 4-1..................................................................................45 

Figure 4.4: Controller Adaptor’s view of the topology shown in Figure 4-1. .........................................................................................45 

Figure 4.5: Virtualizer example message chart .................................................................................................................................................. 46 

Figure 4.6: Simple infrastructure example ........................................................................................................................................................... 47 

Figure 4.7: Topology abstraction as internal link characteristics .............................................................................................................. 48 

Figure 4.8: Simple request of 3 NFs mapped to a single BiS-BiS node ................................................................................................. 50 

Figure 4.9: Request with NF (internal) requirements..................................................................................................................................... 53 

Figure 4.10: Physical resources and Multiple-level Virtualizations ........................................................................................................... 58 

Figure 4.11: Example service graph ............................................................................................................................................................................ 59 

Figure 4.12: Service requirements in a service graph ...................................................................................................................................... 59 

Figure 4.13: Mapping of Service Level Requirements to the BiS-BiS Virtualization View .............................................................. 61 
Figure 4.14: Infrastructure (left), and Service graph requests (right) for the resource sharing example ............................. 62 

Figure 4.15: Result of subsequent requests in the Infrastructure: a resource sharing example............................................... 63 

Figure A2-6.1: UML diagram of the YANG model .............................................................................................................................................. 84 

Figure A2-6.2: Single node ........................................................................................................................................................................................... 85 

Figure A2-6.3: 3 nodes ................................................................................................................................................................................................... 86 

Figure A2-6.4: Delay matrix ......................................................................................................................................................................................... 88 

Figure A2-6.5: Simple request of 3NFs on a single BiS-BiS ........................................................................................................................ 90 

Figure A2-6.6: Request with BiS-BiS internal requirements ..................................................................................................................... 92 

Figure A2-6.7: Request with NF internal requirements ................................................................................................................................ 94 

 



 

5 Deliverable D3.2a 17.11.2015 
 

List of Tables 

Table 2.1: Elements in the ETSI NFV MANO Network Service and comparison to the UNIFY service-oriented NF-FG 12 

Table 3.1: Details of the Service-centric NF-FG 19 

Table 3.2: Service Graph 25 

Table 3.3: Single node Resource Graph 27 

Table 3.4: Three node Resource Graph 28 

Table 3.5: NF-FG with 3 NFs over single node Resource Graph 30 

Table 3.6: NF-FG with 3 NFs over a three node Resource Graph 33 

Table 3.7: NF-FG with 3 NFs over three node Resource Graph: subgraph handled to Domain A 35 

Table 3.8: NF-FG with 3 NFs over three node Resource Graph: subgraph handled by Domain B 36 

Table 3.9: NF-FG with 3 NFs where one is shared 39 

Table 4.1: Simple infrastructure model tree view 47 

Table 4.2: Advanced infrastructure model tree view 49 

Table 4.3: Simple request model tree view 50 

Table 4.4: Advanced request with flow requirements model tree view 52 

Table 4.5: Advanced request with NF requirements model tree view 54 

Table 4.6: Capability reporting tree view 56 

Table 4.7: Combined model tree view 64 

Table A.1: Service-oriented NF-FG YANG Model 70 

Table A.2: YANG model of the Virtualizer 80 

Table A.3: Single node infrastructure report example 85 

Table A.4: 3-node infrastructure report example 86 

Table A.5: Delay matrix infrastructure report example 89 

Table A.6: Single request example 90 

Table A.7: Request with Bis-Bis internal requirements example 93 

Table A.8: Request with NF internal requirements example 95 

Table A.9: Request with link sharing example, step 1. 96 

Table A.10: Request with link sharing example, step 2. 96 

Table A.11: Request with link sharing example, step 3. 98 



 

6 Deliverable D3.2a 17.11.2015 
 

 

 



 

7 Deliverable D3.2a 17.11.2015 
 

1 Introduction 

The main information element of the UNIFY architecture is the Network Function Forwarding Graph (NF-FG), 
introduced in [D2.2] and refined in [D3.1]. A range of different prototypes have adapted the initial NF-FG definitions, 
interpreted the requirements, and solved the problems discovered with the initial definition in different ways. This 
resulted in an evolution into two branches, each focused on solving separate problems for different use-cases and 
business models. At the time of the submission deadline of D3.2 the main content (service decomposition, scalable 
orchestration algorithms, scalable and resilient services, traffic steering and forwarding state, and scalable 
orchestration architectures) was ready and have been timely submitted. However, the discussions surrounding the 
NF-FG models was still ongoing, with the conclusion that merging these different branches into a single NF-FG data 
model was not possible without further evaluating the pros and cons of the different solutions. It became 
increasingly clear that the best way to continue the work was to allow the models to evolve separately in different 
prototypes and later evaluate how the different issues faced during prototyping were solved in the different NF-FG 
models. The current conclusion is that both of the definitions are valid. 

The two NF-FG models are documented in this document which consists of three parts: Section ‎2 documenting the 
state of the art outside of the UNIFY project with respect to  NF-FG modelling, Section ‎3 documenting a Service-
centric NF-FG model and Section ‎4 documenting a Virtualizer-based NF-FG model. Finally in Section ‎5 we evaluate 
the two different models, draw conclusions with respect to main differences, advantages and disadvantages of 
either approach as well as potential roadmaps in order to consolidate both. 



 

8 Deliverable D3.2a 17.11.2015 
 

2 State of the art 

2.1 Topology and Orchestration Specification for Cloud Applications (TOSCA) 
TOSCA addresses the automation of the application deployment and management lifecycle, in a portable, 
infrastructure-independent manner [TOSCA]. Compared to the UNIFY NF-FG, the TOSCA specification 1) describes 
application services, 2) is strong in describing relations between service components, and 3) is weak in networking 
description, as Layer 2 is not in scope while Layer 3 service components are assumed. The NF-FG models in UNIFY 
on the other hand  focus not on service description but is strong in description forwarding, as Layer 2 bump-in-the-
wire NFs are fully in scope.  

TOSCA has the approach of substitution of Abstract Node Types by Service Templates, which corresponds to the 
high level service decomposition approach taken in UNIFY. To match a TOSCA and a UNIFY domain, the whole UNIFY 
framework could be a “cloud provider” for a TOSCA client. This way UNIFY’s advanced resource orchestration acts as 
a cloud domain, while the advanced service related functionality is realized by the TOSCA implementation, as shown 
in Figure ‎2.1. 

    

Figure ‎2.1: UNIFY and TOSCA. Left side: TOSCA in the UNIFY view. Right side: UNIFY in the TOSCA view 

2.2 OpenStack HEAT 
OpenStack’s orchestration, HEAT, was designed to automate the configuration and setup of OpenStack resources 
and is therefore specific to OpenStack [OSheat]. HEAT has a template-driven engine called HEAT Orchestration 
Template (HOT) which describes and automates the deployment of infrastructure. A guide to HEAT Orchestration 
Template is available at [OShot], while an introduction to OpenStack can be found in [D3.1]. 

HEAT has an auto-scaling mechanism; however we see various limitations compared to what we need in UNIFY. 
First of all, we need transparent Layer 2 NFs, while HEAT assumes Layer 3; additionally the scaling actions in HEAT 
are limited to start/stop a VM. 



 

9 Deliverable D3.2a 17.11.2015 
 

Regarding the VM Placement constraints, HEAT doesn’t provide more than what Nova (the OpenStack compute 
resource controller) supports, e.g. networking aspect are not taken into account at VM Placement. Regarding 
networking, HEAT doesn’t support more than what Neutron (the OpenStack network controller) does, e.g. SDN-like 
forwarding is not supported [Nova, Neutron]. As a consequence, the shortcoming is that HEAT does not support the 
creation of Layer 2 forwarding rules between VMs. (A workaround could have been setting up L2 over IP tunnelling 
between VMs. However, only wait conditions are supported between HEAT resources, e.g. VM2 is started after VM1. 
To configure the tunnel endpoint in VM1, VM2 should already be up and running to get the current networking 
parameters, e.g. IP address). L2 tunnels are possible in Unify. 

We see two possible connection points between UNIFY and HEAT, as shown in Figure ‎2.2 from both points of view.  

In the first scenario (depicted on the left side of Figure ‎2.2) HEAT could provide a template as input to the Service 
Layer. The Service layer could then translate the received HEAT Orchestration Template to a UNIFY NF-FG, if a 
HEAT-capable infrastructure domain is available and advertised as being HEAT capable. However, HEAT is missing 
many important UNIFY concepts (like transport, L2 networking, multi-domain) and is very OpenStack specific,  

In the second scenario (depicted on the right side of Figure ‎2.2) HEAT could be used to control an OpenStack 
infrastructure domain under UNIFY.  Such an infrastructure domain would be a HEAT capable domain, which could 
advertise available NFs using HEAT Orchestration Templates. This could be useful because of some abstractions and 
features of HEAT, e.g.  auto-scaling. However, this does not address Neutron’s lack of Layer 2 forwarding support.  

          

Figure ‎2.2: UNIFY and OpenStack Heat. Left side: Heat in the UNIFY view. Right side: UNIFY in the Heat view 



 

10 Deliverable D3.2a 17.11.2015 
 

2.3 ETSI NFV 
ETSI NFV defines the Network Service (NS) as “composition of Network Functions and defined by its functional and 
behavioural specification”. The Management and Orchestration framework [ETSIMANO] details the corresponding 
information element, which is composed by several sub-elements: Virtual Network Functions (VNFs), Physical 
Network Functions (PNFs), Virtual Links (VLs) interconnecting VNFs to PNFs and endpoints, and VNF Forwarding 
Graphs (VNFFGs) describing the topology of the NS (either the complete service or part of it). The VNFFG in turn 
contains Network Forwarding Paths that describe policies. Figure ‎2.3 depicts the elements included in a Network 
Service, Monitoring and other SP-DevOps related functionality is scattered through the different information 
elements in the ETSI NS. The UNIFY service-oriented NF-FG explicitly targets this adding the option to define KPIs 
and MEASURE controlled functionality in the main elements. 

 

Figure ‎2.3: Network Service as defined in ETSI NFV MANO 

Monitoring and other DevOps related functionality is scattered through the different information elements in the 
ETSI NS. The UNIFY service-oriented NF-FG explicitly targets this adding the option to define KPIs and MEASURE 
controlled functionality in the main elements. 

  



 

11 Deliverable D3.2a 17.11.2015 
 

Table ‎2.1 compares them to the UNIFY NF-FG and below the main differences between both models are 
summarized: 

 NS model in ETSI only targets service description, whereas both UNIFY NF-FG models also covers resource 
description. The UNIFY Virtualizer-based NF-FG model represents deployment decisions to support the 
requested services (described in Service Graphs). 

 Mapping of the service elements to the infrastructure is explicit and per-element in the UNIFY NF-FG. The ETSI 
model includes resource reservation for the overall NS and the reference of the Virtual Infrastructure Managers 
that will manage each Virtual Link. 

 ETSI NFV differentiates between internal and external virtual links, whereas in the UNIFY NF-FG the same 
model covers both. Also the connectivity information is spread between different elements, with the VNFFG 
defining traffic flows and the NFP defining policies. In the UNIFY NF-FG models all the connectivity and traffic 
flow information is described in either the Service Links for the Service-centric model, or as forwarding 
information associated with the Infrastructure Nodes in the Virtualizer-based model. 

 The service-oriented NF-FG in UNIFY also considers the scenarios with hierarchical orchestration, supporting a 
progressive refinement of the resource requirements. ETSI NFV is more oriented to a single layer approach with 
resource requirements described at the lowest level of detail (CPU, PCIe parameters, etc.). 

 Monitoring and other DevOps related functionality is scattered through the different information elements in 
the ETSI NS. The UNIFY service-oriented NF-FG explicitly targets this adding the option to define KPIs and 
MEASURE controlled functionality in the main elements. 

  



 

12 Deliverable D3.2a 17.11.2015 
 

Table ‎2.1: Elements in the ETSI NFV MANO Network Service and comparison to the UNIFY service-oriented NF-FG 

 

Element Description SC-NFFG VB-NFFG 

Network Service 

Descriptor (NSD)  

Deployment template for a NS referencing all other 

descriptors which describe components that are part of 

that NS.  

Service Graph  Virtualizer  

VNF Forwarding 

Graph Descriptor 

(VNFFGD)  

Deployment template which describes a topology of the 

NS or a portion of the NS, by referencing VNFs and PNFs 

and VLs that connect them. Also contains a NFP element.  

Service Links with 

mapping to 

Infrastructure Links 

Forwarding 

information in 

Infrastructure 

Nodes 

Virtual Link 

Descriptor (VLD)  

Deployment template which describes the resource 

requirements that are needed for a link between VNFs, 

PNFs and endpoints of the NS.  

Resource 

requirements in the 

Service Links  

Resource 

requirements for 

infrastructure (or 

virtual) Links  

VNF Descriptor 

(VNFD)  

Deployment template which describes a VNF in terms of 

its deployment and operational behaviour requirements. 

Also contains connectivity, interface and KPIs 

requirements. 

Network Functions (single model for all 

types) 

PNF Descriptor 

(PNFD)  

Describes the connectivity, Interface and KPIs 

requirements of VLs to an attached PNF.  

Network Functions (single model for all 

types) 

Network 

Forwarding Path 

(NFP)  

Include policies (e.g., MAC forwarding rules, routing 

entries, etc.) and references to Connection Points (e.g., 

virtual ports, virtual NIC addresses, etc.)  

Service Links with 

mapping to 

Infrastructure Links, 

Flowrules assigned 

to Service Access 

Points and Service 

Links 

Forwarding 

information in 

Infrastructure 

Nodes 



 

13 Deliverable D3.2a 17.11.2015 
 

3 Service-centric NF-FG model  

3.1 Main changes since D3.1 and process overview 
Based on the input from the prototypes, the NF-FG definition has been updated from the version described in [D3.1] 
to provide a joint model capable of covering service description as Service Graph (SG), resource information as 
Resource Graph (RG) and mapping of requests to resources as NF-FG. This is shown in Figure ‎3.1, where RGs are 
represented in green at the right-hand side, SG in blue at the top and the NF-FGs in the different levels with both 
green and blue elements (link mappings are not represented to improve readability). 

The Service Graph (SG) defines the network functions composing the service and their logical connectivity, the 
access points to the service and the Service Level Specification to meet the Service Level Agreement. Most of the 
time, the SG will be coupled with an RG, except in the Service Layer, where it is used as an isolated element as there 
are no resources involved yet. It is composed by: 

 Network Functions (NFs): one type of nodes in the SG (same as in the previous version of the NF-FG). 

 Service Access Points (SAPs): another type of nodes in the SG that represent a reference point that defines the 
attachment of the SG to other elements outside in the context of the service (corresponding to endpoints in the 
previous version of the NF-FG).  Examples could be "ACME Company office 1", "All users with the gold service”, 
“Internet”, etc. 

 Service Links (SLs): edges in the SG (not included in the previous version of the NF-FG). 

The Resource Graph (RG) describes the (virtual) resources exposed from the bottom layers that will be used to 
deploy the requested services. It provides a homogeneous representation of the (virtualized) infrastructure, in terms 
of both capacities and capabilities, at the defined abstraction level (for additional detail see section ‎3.4). For example, 
in domains with hierarchical orchestration processes, the RG in the higher level orchestrators has a wider scope and 
abstracts away the finer grain details of the underlying resources, whereas the RG in the lower level orchestrators 
has a fine grain detail of the resources. It is composed of the following elements: 

 Infrastructure Nodes (INs): one type of nodes in the RG (corresponding to the Network Elements of the previous 
version of the NF-FG). 

 Endpoints (EPs): another type of nodes in the RG that represent a reference point that defines the attachment of 
the RG to other elements outside in the context of the infrastructure (not included in the previous version of the 
NF-FG). 

 Infrastructure Links (ILs): edges in the RG (not included in the previous version of the NF-FG). 



 

14 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎3.1: Example of Service Graph, Resource Graph and Network Function Forwarding Graph 

The origin of the NF-FG is in the Service Layer, from a SG requested by the User Layer above and a RG provided by 
the Orchestration Layer below, where it will be deployed. The NF-FG extends the information in the SG with the 
assignment of its elements to the virtualized resources in the RG. The description of the NF-FG is based on the two 
main elements it is composed of, which follow a modular design aligned with the different process to be supported. 
As a result, the operations to be performed on the NF-FG as a result of each of those processes can be clearly 
defined.  



 

15 Deliverable D3.2a 17.11.2015 
 

The mapping between SG and RG elements is represented under a 'Resource Assignment' section of the SG 
elements (both nodes and edges) with the following considerations: 

 NFs are mapped to Infrastructure Nodes. Several NFs can be mapped to the same Infrastructure Node if it has 
enough capacity but each NF is mapped to only one Infrastructure Node (N:1 mapping, see D3.2 for some 
considerations about resiliency). If during the decomposition process a NF is replaced by a group of NFs, each of 
them would be mapped also to single Infrastructure Node (could be the same for all or different nodes 
depending on the Virtual Network Embedding (VNE) process, but each resulting NF would be mapped to a single 
Infrastructure Node). The NFs can also be mapped to running NF instances provided they can be shared among 
different NF-FGs (i.e. a single running instance realizes a NF in different NF-FGs). This can be signalled either 
referencing the related NF-FG and NF including the NF instance to be shared or referencing the identifier of the 
running NF instance if provided by the lower layer. The configuration related to the NF to be shared that must be 
included in the NF-FG could vary depending on the mechanisms offered by the NF to support the sharing (e.g. 
the NF could mandate that the traffic corresponding to each NF-FG must reach and leave the NF through 
different ports).  

 SAPs are mapped to one or multiple Endpoints. The mapping could be more straightforward and require a 
lighter VNE process than for NFs or Service links, such as just picking one element from a list of available 
Endpoints or even just a direct assignment, such as selecting the Endpoint corresponding to the requesting User. 
Nevertheless, the separation of the SAP and EP elements allows for a coherent and complete description of the 
SG and RG and prevents changes in the infrastructure (e.g. adding one more endpoint) impacting the service 
definition. For example: a SAP can be requested to be mapped to all available endpoints (so the service can be 
accessed by users connected to any endpoint). In this scenario, the addition of a new endpoint would just be a 
change in the infrastructure that would be handled by the RO (not having to modify the service to follow 
infrastructure changes and vice versa). Also, depending on the scenario the SAP to EP mapping could be 
impacted by the VNE process, for example if the infrastructure where the NF-FG will be deployed on has several 
possible EPs offering connection to the Internet (as a SAP example) the one selected must be reachable 
(optimally) from the Infrastructure Nodes the NFs are deployed in. 

 Service Links are mapped to an Infrastructure Node internal connection (if both ends of the Service Link are 
mapped to the same Infrastructure Node), a single Infrastructure Link or a sequence of them forming a path. 
Several Service Links can be mapped to the same Infrastructure Link if it has enough capacity (N:M mapping) 
thus sharing it.  

Besides the resource requirements at the individual elements, we also consider the possibility to detail networking 
requirements for the service to be deployed related to its end to end behaviour or between specific subsections of 
the service.  



 

16 Deliverable D3.2a 17.11.2015 
 

Figure ‎3.2 compares the SG to NF-FG mapping described in D2.2, based on the previous version of NF-FG, with the 
mapping according to the version described in this document. In the D3.2 version, blue dashed arrows represent the 
Service Links, black thick arrows the mapping of SG to RG elements and the black dashed lines the mapping of 
Service Links to paths in the RG.  

 

Figure ‎3.2: Comparison with D2.2 Exemplary mapping of a SG to NF-FGs (figure 6 in D2.2) 

3.2 Support for UNIFY main components and features in the NF-FG 
Deliverable [D2.2] identified the main components of the UNIFY architecture, as well as its main features and 
benefits. How the NF-FG relates to each of them is detailed next: 



 

17 Deliverable D3.2a 17.11.2015 
 

 Virtualizers: the Resource Graph contains the exposed virtualized view and it’s explicitly included in the NF-FG, 
with the description of resource elements classified as nodes, links and endpoints. This structure also eases the 
translation of the NF-FG from the exposed RG to the underlying RG. In order to optimize the operations and 
transmissions of the NF-FG, the information of the RG could be substituted by a reference to the corresponding 
RG or reduced to only the elements used in the mapping. 

 Service management and adaptation functions / Service decomposition: the definition of the Service Graph has 
been aligned with the definition in the NF-FG so a joint model covers both. The clear separation of the service 
information in the NF-FG supports an easier replacement of NFs by new sub graphs during the decomposition 
process. 

 Resource Orchestrator / Recursive orchestration: the NF-FG now contains an explicit mapping of the elements 
of the Service Graph to the elements in the Resource Graph. Moreover, the modularity of the resource-related 
information in the SG elements allows using different levels of abstraction in hierarchical orchestration 
scenarios, where the resource description and requirements can be refined through the different layers. In these 
scenarios, the RG exposed to the upper layer would be constructed by the RGs received from the layers below. 
The explicit declaration of SG, RG and their mapping in the NF-FG allows clearly identifying the scope for the re-
orchestration based on the mapping already done by the layer above (and contained in the NF-FG) and relation 
between the RG exposed to the layer above and the RG received from the layer below. 

 Monitoring: the defined model considers the inclusion of KPIs in the SG that get transferred to the NF-FG, and 
MEASURE language annotations to support the DevOps processes with two different scopes: either related to 
specific elements (NFs, SAPs or SLs) or related to the whole NF-FG or arbitrary points of it (in which case the 
reference points must be specified in the definition of the KPI). The KPIs can be expressed as single values, range 
of values or probability distributions. Examples of KPIs could be: Maximum latency, Maximum jitter, Minimum 
throughput, Maximum Packet loss, Link protection / Availability, either as strict restriction or probability 
distribution of type X (e.g. 95% max 10 ms). KPIs transferred to the NF-FG are used during the orchestration 
process as constraints on the mapping of the NF-FG to the substrate (discussed in section 4 of [D3.2]). The 
MEASURE NF-FG annotations describe which monitoring functions are needed, how to configure them, and how 
to react on measurement results (MEASURE was initially described in [D4.1], with more details to follow in D4.2). 
Additionally, the RG (either as a standalone element or contained in a NF-FG) provides the mechanism for the 
lower layers to report resource-related information to the upper layers and support performance queries as 
described in section ‎3.4. The description of the resources can also include the probability distribution of the KPIs 
so they can be considered also in the embedding process. The difference between resources that must be 
allocated and KPIs that must be measured can be considered as a matter of timescale (for the allocation process 
the resource availability must also be measured, either at the request or periodically to update the availability 
information). 



 

18 Deliverable D3.2a 17.11.2015 
 

 Control and data plane split design: the definition of a common resource model for all infrastructure nodes 
allows for joint treatment of all NF-FG elements, be they related to the Control or Data plane. 

 Cf-Or reference point: the NF-FG details which NFs will make use of this interface and which port has to be used 
for this purpose. The inclusion of the RG presented by the corresponding virtualizer in the NF-FG for the service 
provides the grounds for requesting self-modifications or new deployments based on the same RG. This 
simplifies the scaling process as the entity responsible for the scaling decision is aware of the current 
configuration. 

 Scalable and resilient services: The approach defined for resource assignment allows for resiliency to be 
provided by either the Resource Orchestrator or the Infrastructure layer (or next Orchestration Layer in case of 
recursion). 

o Orchestrator-based resiliency: the output of the embedding process will determine both the primary 
resources for deployment of the SG as well as a set of secondary resources. All of them will be detailed in the 
corresponding 'Resource Assignment' section. The Orchestration Layer will be responsible for deploying the 
monitoring (e.g. through the MEASURE language described in WP4) and requesting the switch to the 
secondary resources in case of failure. 

o Infrastructure-based resiliency: the elements included in the Resource Graph offer resiliency and the details 
are hidden from the Resource Orchestrator (e.g. a single link in the RG represent multiple different links in 
the Infrastructure Layer so if anyone of them fails, the Infrastructure Layers switches to a backup link 
without this change being propagated to the Orchestration Layer). The Resource Orchestrator would select 
those resources offering the capability and signal the layer below that such capacity must be used and to 
which extent. 

Also, the model support the Resource Orchestrator mapping a single Service Link into several Infrastructure Links 
(or paths) simultaneously to provide multipath links and offer more possibilities for the embedding. In such case, it 
must also define the flow space corresponding to each of the available paths which will be active at the same time 
(as opposed to resiliency where only a single link/path would be active). 

Statistical multiplexing of different NF-FGs over shared resources can be handled either in or below an 
Orchestration layer: 

 In the layer: In this scenario, the embedding process in the Resource Orchestrator of layer N considers the 
multiplexing gain to decide if a resource has enough capacity to deploy a NF-FG. Thus, the sum of all the NF-FGs 
mapped in layer N over the same RG would exceed the nominal capacity of the resources in the RG exposed by 
layer N-1. 



 

19 Deliverable D3.2a 17.11.2015 
 

 Below the layer: in this scenario, the Virtualizer in layer N considers the multiplexing gain to determine the 
capacity to be included in the RGs exposed to layer N+1. Thus, the sum of all the RGs exposed to layer N+1 above 
would exceed the nominal capacity of the resources in the RG constructed in layer N. 

3.3 Updated NF-FG model 
The updated Network Function Forwarding has been modelled in YANG and the detailed definition is included in 
‎Annex 1, as well as an example in JSON which has been selected as interchange format. In order to boost 
consolidation between the current prototypes, to hide the low level details of the NF-FG structure and to provide 
isolation to possible future changes to the NF-FG structure, a UNIFY NF-FG library module providing a common set 
of functionality for NF-FG parsing, interpretation and manipulation is being developed and will be covered in future 
WP3 deliverables. For the communication between the different modules there are still different potential options 
being considered (REST, messaging based on ZeroMQ, protocol over TCP/IP). The final decision will be taken aligned 
with Task 2.3 Integration of prototyping activities in WP2. 

The main elements of the NF-FG structure are covered in Table ‎3.1. 

Table ‎3.1: Details of the Service-centric NF-FG 

NF-FG Header 

+--rw nffg    

      +--rw parameters 

      |  +--rw id 

      |  +--rw name? 

      |  +--rw version 

      |  +--rw tenant? 

      |  +--rw template?  

NF-FG header information. All management 
information pertaining the NF-FG entity would be 
included here 

      |  +--rw constraints 

      |     +--rw resiliency? 

      |     +--rw location? 

      |     +--rw privacy? 

This section includes possible placement constraints 
affecting the whole NF-FG related, for example, to 
privacy (so resources are not shared among NF-FGs or 
isolation is guaranteed), geography, etc.  

      +--rw monitoring 

      |  +--rw monitoring_params*  

      |     +--rw KPI_desc   

      |     +--rw KPI_value  

      |     +--rw scope      

      |     +--rw priority?  

      |     +--rw MEASURE?   

Monitoring parameters applying to the whole NF-FG 
(end-to-end) or arbitrary subsections of it (i.e., those 
not applicable to single sub-elements) as, for example, 
Service availability, latency between SAPs or between 
two NFs not directly connected. Each KPI can also 
contain a priority to signal possible Orchestrators in the 
layers below which KPI they should optimize in the 
embedding process (if possible). 

SG Information 

      +--rw sg 

      |  +--rw nfs*  Information of the NFs composing the service, 



 

20 Deliverable D3.2a 17.11.2015 
 

      |  |  +--rw specification 

      |  |  |  +--rw deployment_type?    

      |  |  |  +--rw image_uri?          

      |  |  |  +--rw vnf_type?           

      |  |  +--rw resources 

      |  |  |  +--rw requirements 

      |  |  |  |  +--rw compute 

      |  |  |  |  |  +--rw cpu?         

      |  |  |  |  |  +--rw memory?      

      |  |  |  |  |  +--rw capacity?    

      |  |  |  |  +--rw storage 

      |  |  |  |  |  +--rw hdd?    

      |  |  |  |  +--rw networking 

      |  |  |  |  |  +--rw delay?              

      |  |  |  |  |  +--rw bandwidth?          

      |  |  |  |  |  +--rw programmability? 

      |  |  |  |  |  +--rw isolation?          

      |  |  |  |  +--rw constraints 

      |  |  |  |     +--rw resiliency?    

      |  |  |  |     +--rw location?      

      |  |  |  |     +--rw privacy?       

      |  |  |  +--rw assignment* 

      |  |  |     +--rw inf_id            

      |  |  |     +--rw inf_domain        

      |  |  |     +--rw nffg_id?          

      |  |  |     +--rw running_nf_id?    

      |  |  +--rw ports 

      |  |  |  +--rw ports* 

      |  |  |     +--rw id           

      |  |  |     +--rw property*    

      |  |  +--rw nf_monitoring 

      |  |  |  +--rw monitoring_params*  

      |  |  |     +--rw KPI_desc      

      |  |  |     +--rw KPI_value     

      |  |  |     +--rw scope         

      |  |  |     +--rw priority?     

      |  |  |     +--rw MEASURE?      

      |  |  +--rw id                  

      |  |  +--rw name?               

      |  |  +--rw functional_type     

including: 

 Specification and deployment information. 

 Resource requirements and assignment  
including assignment to running NFs for 
sharing. 

 Ports for connectivity description. 

 Monitoring information for the NF as a single 
entity. As with the global KPIs, they can also 
include a priority and scope (for example, to 
specify the delay between two ports of the NF). 

      |  +--rw saps* 

      |  |  +--rw ports 

      |  |  |  +--rw ports* 

      |  |  |     +--rw flow_rules 

      |  |  |     |  +--rw flowrules*  

      |  |  |     |     +--rw match      

      |  |  |     |     +--rw action     

      |  |  |     +--rw id             

      |  |  |     +--rw property*      

      |  |  +--rw resources 

      |  |  |  +--rw requirements 

      |  |  |  |  +--rw compute 

      |  |  |  |  |  +--rw cpu?         

      |  |  |  |  |  +--rw memory?      

      |  |  |  |  |  +--rw capacity?    

      |  |  |  |  +--rw storage 

      |  |  |  |  |  +--rw hdd?    

      |  |  |  |  +--rw networking 

Information of the SAPs composing the service, 
including: 

 Resource requirements and assignment. 

 Ports for connectivity description with 
associated flow spaces as described in D3.1. 



 

21 Deliverable D3.2a 17.11.2015 
 

      |  |  |  |  |  +--rw delay?              

      |  |  |  |  |  +--rw bandwidth?          

      |  |  |  |  |  +--rw programmability?    

      |  |  |  |  |  +--rw isolation?          

      |  |  |  |  +--rw constraints 

      |  |  |  |     +--rw resiliency?    

      |  |  |  |     +--rw location?      

      |  |  |  |     +--rw privacy?       

      |  |  |  +--rw assignment* 

      |  |  |     +--rw ep_id          

      |  |  |     +--rw inf_domain     

      |  |  |     +--rw ep_ports*  

      |  |  |        +--rw ep_port     

      |  |  +--rw id            

      |  |  +--rw name?         

      |  +--rw sls*  

      |     +--rw resources 

      |     |  +--rw requirements 

      |     |  |  +--rw delay?        

      |     |  |  +--rw bandwidth?    

      |     |  +--rw assignment* 

      |     |     +--rw source       

      |     |     +--rw src_port     

      |     |     +--rw target       

      |     |     +--rw dst_port     

      |     +--rw flowclass?    

      |     +--rw source        

      |     +--rw src_port      

      |     +--rw target        

      |     +--rw dst_port      

Information of the links connecting the NFs and 
SAPs composing the service, including: 

 Connectivity description. 

 Resource requirements and assignment 
considering resiliency. Monitoring information 
for the link as a single entity.  

 Flow spaces for infrastructure supported traffic 
steering. 

RG Information 

      +--rw rg 

         +--rw infs* 

         |  +--rw resources 

         |  |  +--rw compute 

         |  |  |  +--rw cpu?         

         |  |  |  +--rw memory?      

         |  |  |  +--rw capacity?    

         |  |  +--rw storage 

         |  |  |  +--rw hdd?    

         |  |  +--rw networking 

         |  |  |  +--rw delay?              

         |  |  |  +--rw bandwidth?          

         |  |  |  +--rw programmability?    

         |  |  |  +--rw isolation?          

         |  |  +--rw constraints 

         |  |     +--rw resiliency?    

         |  |     +--rw location?      

         |  |     +--rw privacy?       

         |  +--rw id            

         |  +--rw domain        

         |  +--rw name?         

         |  +--rw type          

         |  +--rw ports* 

         |     +--rw id           

         |     +--rw property*    

Information of the Infrastructure Nodes including: 

 Resource description. 

 Ports for connectivity description. 

 Monitoring information on the infrastructure 
provided by the layer below. 



 

22 Deliverable D3.2a 17.11.2015 
 

         +--rw eps* 

         |  +--rw resources 

         |  |  +--rw compute 

         |  |  |  +--rw cpu?         

         |  |  |  +--rw memory?      

         |  |  |  +--rw capacity?    

         |  |  +--rw storage 

         |  |  |  +--rw hdd?    

         |  |  +--rw networking 

         |  |  |  +--rw delay?              

         |  |  |  +--rw bandwidth?          

         |  |  |  +--rw programmability?    

         |  |  |  +--rw isolation?          

         |  |  +--rw constraints 

         |  |     +--rw resiliency?    

         |  |     +--rw location?      

         |  |     +--rw privacy?       

         |  +--rw id            

         |  +--rw domain?       

         |  +--rw name?         

         |  +--rw type          

         |  +--rw ports* 

         |     +--rw id           

         |     +--rw property*    

Information of the Endpoints  including: 

 Resource description. 

 Ports for connectivity description. 

 Monitoring information on the infrastructure 
provided by the layer below. 

         +--rw ils* 

            +--rw resources 

            |  +--rw delay?        

            |  +--rw bandwidth?    

            +--rw source        

            +--rw src_port      

            +--rw target        

            +--rw dst_port      

Information of the Infrastructure Links including: 

 Resource description.  

 Monitoring information on the infrastructure 
provided by the layer below. 

 

3.4 Topology and resource model 
The UNIFY approach of describing the topology and resources based on a Resource Graph allows an easier 
integration of information, both for the top-down processes (the explicit relation between NF-FG and RG makes 
visible what service elements are deployed where) and the bottom-up (information of the status of the running 
infrastructure). Moreover, two complementary approaches are supported for the reporting of instantaneous 
resource information:  

 Information related to the complete resource view (e.g. as an updated input for the VNE process with current 
resource availability) would be included in updates to the Resource Graph sent from the lower layers through the 
primitives related to resource information defined in [D2.2]. 

 Information related to the resources assigned to a specific NF-FG would be included in the NF-FG itself and be 
sent through the primitives related to observability information defined in [D2.2]. 

Based on the layers of the UNIFY architecture we envision the Resource Graph being subject to several aggregations 
(composing of RGs of different domains into a single RG) and abstractions (creation of new RGs to be exposed 



 

23 Deliverable D3.2a 17.11.2015 
 

upwards hiding details from RGs received from below, Section 6.7.1 in D3.1 described different alternatives for 
abstraction) as it progresses up the layers: 

 For scenarios without recursion (a single Orchestration layer) the Controller Adaptation would construct an 
aggregated Resource Graph based on the input of the different Infrastructure domains and present a 
homogenous view to the Resource Orchestrator hiding the details of the inter-domain connections, which will be 
reintroduced when an NF-FG must be split to be deployed in several domains. The Virtualizer in the Resource 
Orchestrator maps the Resource Graph received from the Controller Adapter to the Resource View defined for 
each consumer of its services (see D2.2, section 3.2.1 for more detail), potentially increasing its abstraction to hide 
the details of the infrastructure. 

 For scenarios with recursion (multiple Orchestration layers), besides those considerations for scenarios without 
recursion, each Orchestration layer will aggregate the Resource Graphs of the different Orchestration layers 
below and further abstract the Resource Graph before exposing it to the layer above. In the top-down process, 
the Orchestration Layer would add again the required functions and features (e.g. the interconnection between 
different domains). 

This approach for resource abstraction allows for two different models for resiliency support, which could be 
provided either in the upper layer (consumer of the Resource Graph) including in the NF-FG mapping multiple 
nodes (as primary and backups) or in the lower layer (provider of the Resource Graph) including it in the resource 
abstraction provided (e.g. nodes representing a cluster of nodes, links representing several disjoint paths, big switch 
abstraction for a network with multiple paths). 

The resource model included in the Resource Graph is built around three main abstractions, compute, networking 
and storage, described in terms of capacities (which are finite and consumed by the requests) and capabilities 
(which further characterize the resource and are not consumed by the requests). Examples of capacities are the 
number of vCPUs an Infrastructure Node can handle or the bandwidth of an Infrastructure Link. Examples of 
capabilities are redundancy for a link, the delay matrix for a node abstracting a network or the presence of a 
hardware accelerator for SSL. Support for Hardware NFs, for example, is included in this model based on a capability 
describing the type of VNFs the Infrastructure Node can handle (aligned with the NF Functional and Deployment 
Types introduced in the previous version of the NF-FG). This way, a Universal Node would have the capability of 
running different Deployment Types (VMs, containers, etc.) without a priori restrictions in the Functional Type, 
whereas a Hardware NF would be restricted to a single Deployment Type (Physical NF) and the corresponding 
Functional Types. The elements in the Resource Graph are assigned to domains, which group all the elements 
managed by the same entity from the perspective of the layer handling the NF-FG and determine the splitting to be 
performed by the CA. For example, for an Orchestration Layer on top of three Universal Nodes, each of them would 
constitute a different domain, as each of them would manage independently the part of the NF-FG it has to deploy. 
As an opposite example, if an Orchestration Layer exposed to a higher level Orchestrator a RG with three nodes in it, 



 

24 Deliverable D3.2a 17.11.2015 
 

all of them would belong to the same domain for the higher level Orchestrator, as a single entity would be managing 
them. 

In order to efficiently support the recursive orchestration approach proposed in UNIFY, we envision this description 
to be different in each level, increasing the abstraction of the resource/infrastructure description in the higher 
layers, aligned with the service description. In this vision, the two extremes would be a descriptive / quantitative 
view where the resource description would be oriented to what the resources are (more meaningful in the lower 
layers, described in example A below) and a functional / qualitative view where the resource description would be 
oriented to what the resources can do (more meaningful in the upper layers, described in example B below).  

 Example A: Resource Graph contains multiple "Virtual" hardware resources such as 4 vCPUs, 100 MB of vMem, 1 
GB vStorage. As the RG goes up the layers these resources can be: 

o Completely aggregated considering all resources equal: 4 vCPUs from one node and 4 vCPUs from another 
domain or node equals 4+4=8 vCPUs in the next layer. 

o Clustered to show the relation between some resources: a node with a quad-core is 4 vCPU, two quad-core 
nodes are 2x(4 vCPU) (instead of 8 vCPUs). 

 Example B: Resource Graph contains functional capabilities with per-function parameters such as 
"Firewall(100mbit, 100 users)". As the RG goes up the layers these resources can be: 

o Aggregated without considering additional requirements: two nodes each capable two of “Firewall(100mbit, 
100 users)” are aggregated to “Firewall(200mbit, 200 users)”. 

o Aggregated considering additional requirements: two nodes each capable two of “Firewall(100mbit, 100 
users)” requires an additional "Loadbalancer(200 mbit)" to be combined into a “Firewall(200mbit, 200 
users)”. 

In the non-recursive scenario, this change of view is present in the decomposition of the Service Graph, where 
abstract NFs with SLAs/KQIs (functional view) are transformed into deployable NFs with resource requirements 
(descriptive view). In recursive scenarios, this change could be realized gradually in the different layers, keeping the 
resource description from the Resource Graph aligned with the resource requirements in the NF-FG. 

3.5 NF-FG examples 
3.5.1 Service Graph 
The first example corresponds to a Service Graph, as initially requested to the Service Layer, composed of three 
Network functions and to be provided between two SAPs. The NFs are traversed in the way forward (left to right) 
but not in the way back (right to left) The output from NF1 is split according to two defined traffic classes and 
forwarded to either NF2 or NF3.  



 

25 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎3.3: Service Graph with 3 Network Functions 

Table ‎3.2: Service Graph 

{ "sg": { 

    "parameters" : { "template": 2, 

             "version": "1.0", 

             "id": 579, 

             "name": "D3.2 Example", 

             "tenant": 131124 } 

    "sls":  [  { "resources": { "requirements": { "bandwidth": "1G", 

                            "delay": "50ms" } }, 

           "source": 0, "src_port": 1, 

           "target": 1,"dst_port": 1 }, 

           { "resources": { "requirements": { "bandwidth": "1G", 

                            "delay": "50ms" } }, 

           "source": 1, "src_port": 2, 

           "target": 2, "dst_port": 1, 

           "flowclass": "class-a"  }, 

           { "resources": { "requirements": { "bandwidth": "1G", 

                            "delay": "50ms" } }, 

           "source": 1, "src_port": 2, 

           "target": 3, "dst_port": 1, 

           "flowclass": "class-b" }, 

           { "resources": { "requirements": { "bandwidth": "1G", 

                            "delay": "50ms" } }, 

           "source": 2, "src_port": 2, 

           "target": 3, "dst_port": 1 }, 

           { "resources": { "requirements": { "bandwidth": "1G", 

                            "delay": "50ms" } }, 

           "source": 3, "src_port": 2, 

           "target": 4, "dst_port": 2 } ], 

    "nfs": [ { "functional_type": 101, 

           "id": 1, 

           "monitoring": { "KQI_desc": "Numer of Users", 

                   "KQI_value": 100 }, 

           "name": "NF1", 

           "ports": [ { "id": 1, "property": "In port" }, 

                { "id": 2, "property": "Out port" }], 

           "resources": { "requirements": {  

                     "compute" : { "capacity": "medium", 

                           "cpu": "1", 

                           "memory": "512M" }, 

                     "networking" : { "bandwidth": "1G" }, 

                     "storage" : { "hdd": "10G" } } }, 

           "specification": { "deployment_type": 2201, 

                    "image_uri": "/opt/elwud/2201.json", 



 

26 Deliverable D3.2a 17.11.2015 
 

                    "max_KQI_value": 250, 

                    "vnf_type": 2 } }, 

         { "functional_type": 102, 

           "id": 2, 

           "monitoring": { "KQI_desc": "Number of connections", 

                   "KQI_value": 10000 }, 

           "name": "NF2", 

           "ports": [ { "id": 1, "property": "In port" }, 

                { "id": 2, "property": "Out port" }], 

           "resources": { "requirements": {  

                     "compute" : { "capacity": "medium", 

                           "cpu": "1", 

                           "memory": "512M" }, 

                     "networking" : { "bandwidth": "1G" }, 

                     "storage" : { "hdd": "10G" } } }, 

           "specification": { "deployment_type": 2202, 

                    "image_uri": "/opt/elwud/2202.json", 

                    "max_KQI_value": 10000, 

                    "vnf_type": 2 } }, 

         { "functional_type": 103, 

           "id": 3, 

           "location": null, 

           "monitoring": { "KQI_desc": "Number of connections", 

                   "KQI_value": 10000 }, 

           "name": "NF3", 

           "ports": [ { "id": 1, "property": "In port" }, 

                 { "id": 2, "property": "Out port" } ], 

           "resources": { "requirements": {  

                     "compute" : { "capacity": "medium", 

                           "cpu": "1", 

                           "memory": "512M" }, 

                     "networking" : { "bandwidth": "1G" }, 

                     "storage" : { "hdd": "10G" } } }, 

          "specification": { "deployment_type": 2203, 

                   "image_uri": "/opt/elwud/2203.json", 

                   "max_KQI_value": 10000, 

                    "vnf_type": 2 } } ], 

    "saps": [ { "id": 0, 

          "name": "SAP0", 

          "ports": [ { "id": 1, "property": "Inbound SAP" } ] }, 

        { "id": 4, 

          "name": "SAP1", 

          "ports": [ { "id": 1, "property": "Outbound SAP" } ] } ] 

}  }  

 
 

3.5.2 Single node infrastructure  
The second example corresponds to a Resource Graph, composed of a single infrastructure node and two endpoints, 
all of them belonging to the same domain (domain_0). 

 



 

27 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎3.4: Resource Graph with a Single Node 

Table ‎3.3: Single node Resource Graph 

{ "rg": { 

    "parameters" : { "id": 8, 

             "name": "UNIFY 1 node", 

             "version": "1.0" }, 

    "ils": [ { "resources": { "bandwidth": "1G", 

                  "delay": "50ms" }, 

           "source": 0, "src_port": "1", 

           "target": 1, "dst_port": "0" }, 

         { "resources": { "bandwidth": "1G", 

                  "delay": "50ms" }, 

           "source": 1, "src_port": "1", 

           "target": 2, "dst_port": "1" } ], 

    "infs": [ { "domain": "domain_0", 

          "id": 1, 

          "name": "node0", 

          "ports": [ { "id": "0", "property": "abstract" }, 

                 { "id": "1", "property": "abstract" } ], 

          "resources": { "compute": { "capacity": "high", 

                        "cpu": 60 }, 

                   "networking": { "bandwidth": "10G", 

                           "delay": "50ms", 

                           "isolation": "yes", 

                           "programmability": "yes" } }, 

          "type": "BiS-BiS" } ] 

    "eps": [ { "domain": "domain_0", 

           "id": 0, 

           "name": "ep0", 

           "ports": [ { "id": "1", "property": "sap" } ], 

           "type": "endpoint" }, 

         { "domain": "domain_0", 

           "id": 2, 

           "name": "ep1", 

           "ports": [ { "id": "1", "property": "internet" } ], 

           "type": "endpoint" } ]   

} 

 
3.5.3 Three node infrastructure  
 
The third example corresponds to a Resource Graph, composed of three infrastructure nodes and three endpoints. 
One of the infrastructure nodes and endpoints (node 11 and EP0 respectively) belong to one domain (domain_a), 
whereas the rest of infrastructure nodes and endpoints belong to a different domain (domain_b). 

 



 

28 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎3.5: Resource Graph with 3 nodes  

Table ‎3.4: Three node Resource Graph 

{ "rg": { 

    "parameters" : { "id": 9, 

             "name": "UNIFY 3 node", 

             "version": "1.0" }, 

    "ils": [ { "resources": { "bandwidth": "1G", 

                  "delay": "50ms" }, 

           "source": 0, "src_port": "1", 

           "target": 1, "dst_port": "0" }, 

         { "resources": { "bandwidth": "1G", 

                  "delay": "50ms" }, 

           "source": 1, "src_port": "2", 

           "target": 2, "dst_port": "2" }, 

{ "resources": { "bandwidth": "1G", 

"delay": "50ms" }, 

           "source": 1, "src_port": "1", 

           "target": 3, "dst_port": "2" }, 

{ "resources": { "bandwidth": "1G", 

"delay": "50ms" }, 

           "source": 2, "src_port": "1", 

           "target": 3, "dst_port": "0" }, 

{ "resources": { "bandwidth": "1G", 

"delay": "50ms" }, 

           "source": 2, "src_port": "1", 

           "target": 4, "dst_port": "1" }, 

{ "resources": { "bandwidth": "1G", 

"delay": "50ms" }, 

           "source": 3, "src_port": "0", 

           "target": 5, "dst_port": "1"} ], 

    "infs": [ { "domain": "domain_a", 

          "id": 1, 

          "name": "node11", 

          "ports": [ { "id": "0", "property": "abstract" }, 

                 { "id": "1", "property": "abstract" }, 

                 { "id": "2", "property": "abstract" } ], 

          "resources": { "compute": { "capacity": "high", 

                        "cpu": 20 }, 

                   "networking": { "bandwidth": "10G", 

                           "delay": "50ms", 

                           "isolation": "yes", 

                           "programmability": "yes" } }, 

          "type": "BiS-BiS" }, 

          { "domain": "domain_b", 

          "id": 2, 



 

29 Deliverable D3.2a 17.11.2015 
 

          "name": "node12", 

          "ports": [ { "id": "0", "property": "abstract" }, 

                 { "id": "1", "property": "abstract" }, 

                 { "id": "2", "property": "abstract" } ], 

          "resources": { "compute": { "capacity": "high", 

                        "cpu": 20 }, 

                   "networking": { "bandwidth": "10G", 

                           "delay": "50ms", 

                           "isolation": "yes", 

                           "programmability": "yes" } }, 

          "type": "BiS-BiS" }, 

          { "domain": "domain_b", 

          "id": 3, 

          "name": "node13", 

          "ports": [ { "id": "0", "property": "abstract" }, 

                 { "id": "1", "property": "abstract" }, 

                 { "id": "2", "property": "abstract" } ], 

          "resources": { "compute": { "capacity": "high", 

                        "cpu": 20 }, 

                   "networking": { "bandwidth": "10G", 

                           "delay": "50ms", 

                           "isolation": "yes", 

                           "programmability": "yes" } }, 

          "type": "BiS-BiS" } ] 

    "eps": [ { "domain": "domain_a", 

           "id": 0, 

           "name": "ep0", 

           "ports": [ { "id": "1", "property": "sap" } ], 

           "type": "endpoint" }, 

         { "domain": "domain_b", 

           "id": 4, 

           "name": "ep1", 

           "ports": [ { "id": "1", "property": "internet" } ], 

           "type": "endpoint" }, 

         { "domain": "domain_b", 

           "id": 5, 

           "name": "ep2", 

           "ports": [ { "id": "1", "property": "internet" } ], 

           "type": "endpoint" } ]   

} 

3.5.4 Request over single node infrastructure 
The fourth example corresponds to a NF-FG, resulting from the mapping of the example Service Graph over the 
single node Resource Graph. All examples consider a single link between RG nodes, so mapping of SLs to RG is 
represented as the sequence of RG nodes to be traversed. To support multiple links between RG nodes, the mapping 
would be expressed as a sequence of pairs {source node:source port, destination node:destination:port} thus fully 
identifying the IL to use (or triplets {source node, destination node, key} if a key is defined to identify each IL 
connecting the same pair of nodes). 



 

30 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎3.6: Request of NF-FG with 3NFs on a Resource Graph with a single node 

Table ‎3.5: NF-FG with 3 NFs over single node Resource Graph 

{ "nffg":  

  { "sg": { 

      "parameters" : { "template": 2, 

               "version": "1.0", 

               "id": 578, 

               "name": "D3.2 Example", 

               "tenant": 131124 } 

      "sls":  [  { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 0 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 0, "src_port": 1, 

             "target": 1,"dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 2, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 3, "dst_port": 1}, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 2, "src_port": 2, 

             "target": 3, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 2 } ] ] }, 

             "source": 3, "src_port": 2, 

             "target": 4, "dst_port": 1 }, 



 

31 Deliverable D3.2a 17.11.2015 
 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 2 }, 

                              { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 0 } ] ] }, 

             "source": 4, "src_port": 1, 

             "target": 0, "dst_port": 1 } ], 

      "nfs": [ { "functional_type": 101, 

             "id": 1, 

             "monitoring": { "KQI_desc": "Numer of Users", 

                     "KQI_value": 100 }, 

             "name": "NF1", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": [ 

                                              {"port": 1, bandwidth: "1G" }, 

                                              {"port": 2, bandwidth: "1G" }]} , 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_0", 

                            "node": 1 } ] }, 

             "specification": { "deployment_type": 2201, 

                      "image_uri": "/opt/elwud/2201.json", 

                      "max_KQI_value": 250, 

                      "vnf_type": 2 } }, 

           { "functional_type": 102, 

             "id": 2, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF2", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_0", 

                            "node": 1 } ] }, 

             "specification": { "deployment_type": 2202, 

                      "image_uri": "/opt/elwud/2202.json", 

                      "max_KQI_value": 10000, 

                      "vnf_type": 2 } }, 

           { "functional_type": 103, 

             "id": 3, 

             "location": null, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF3", 

             "ports": [ { "id": 1, "property": "In port" }, 

                   { "id": 2, "property": "Out port" } ], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 



 

32 Deliverable D3.2a 17.11.2015 
 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_0", 

                            "node": 1 } ] }, 

            "specification": { "deployment_type": 2203, 

                     "image_uri": "/opt/elwud/2203.json", 

                     "max_KQI_value": 10000, 

                      "vnf_type": 2 } } ], 

      "saps": [ { "id": 0, 

            "name": "SAP0", 

            "ports": [ { "id": 1, "property": "Inbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_0", 

                             "endpoint": 0, 

                             "port": "1" } ] } }, 

            { "id": 4, 

            "name": "SAP1", 

            "ports": [ { "id": 1, "property": "Outbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_0", 

                             "endpoint": 2, 

                             "port": "1" } ] } } ] 

  }  } 

  { "rg": { 

      "parameters" : { "id": 8, 

               "name": "UNIFY 1 node", 

               "version": "1.0" }, 

      "ils": [ ... ], 

      "infs": [ ... ] 

      "eps": [ ... ]   

  } 

} 

 
3.5.5 Request over three node infrastructure 
 The fifth example corresponds to another NF-FG, resulting from the mapping of the example Service Graph over 
the three node Resource Graph.  This could be the result of mapping the SG over a different Infrastructure domain, 
or a subsequent mapping of the previous NF-FG in a hierarchical orchestration scenario. As the Resource Graph 
contains elements from two different domains, the NF-FG must be subsequently split. 

 



 

33 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎3.7: Request of NF-FG with 3NFs over a Resource Graph with 3 nodes 

Table ‎3.6: NF-FG with 3 NFs over a three node Resource Graph 

{ "nffg":  

  { "sg": { 

      "parameters" : { "template": 2, 

               "version": "1.0", 

               "id": 579, 

               "name": "D3.2 Example", 

               "tenant": 131124 } 

      "sls":  [  { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_a", "node": 0 }, 

                              { "domain": "domain_a", "node": 1 }, 

                              { "domain": "domain_b", "node": 3 } ] ] }, 

             "source": 0, "src_port": 1, 

             "target": 1,"dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 3 }, 

                              { "domain": "domain_b", "node": 2 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 2, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 3 }, 

                              { "domain": "domain_b", "node": 2 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 3, "dst_port": 1}, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 2 }, 

                              { "domain": "domain_b", "node": 2 } ] ] }, 

             "source": 2, "src_port": 2, 

             "target": 3, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 2 }, 

                              { "domain": "domain_b", "node": 4 } ] ] }, 

             "source": 3, "src_port": 2, 



 

34 Deliverable D3.2a 17.11.2015 
 

             "target": 4, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 4 }, 

                              { "domain": "domain_b", "node": 2 }, 

                              { "domain": "domain_a", "node": 1 }, 

                              { "domain": "domain_a", "node": 0 } ] ] }, 

             "source": 4, "src_port": 1, 

             "target": 0, "dst_port": 1 } ], 

      "nfs": [ { "functional_type": 101, 

             "id": 1, 

             "monitoring": { "KQI_desc": "Numer of Users", 

                     "KQI_value": 100 }, 

             "name": "NF1", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_b", 

                            "node": 3 } ] }, 

             "specification": { "deployment_type": 2201, 

                      "image_uri": "/opt/elwud/2201.json", 

                      "max_KQI_value": 250, 

                      "vnf_type": 2 } }, 

           { "functional_type": 102, 

             "id": 2, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF2", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_b", 

                            "node": 2 } ] }, 

             "specification": { "deployment_type": 2202, 

                      "image_uri": "/opt/elwud/2202.json", 

                      "max_KQI_value": 10000, 

                      "vnf_type": 2 } }, 

           { "functional_type": 103, 

             "id": 3, 

             "location": null, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF3", 

             "ports": [ { "id": 1, "property": "In port" }, 

                   { "id": 2, "property": "Out port" } ], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 



 

35 Deliverable D3.2a 17.11.2015 
 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_b", 

                            "node": 2 } ] }, 

            "specification": { "deployment_type": 2203, 

                     "image_uri": "/opt/elwud/2203.json", 

                     "max_KQI_value": 10000, 

                      "vnf_type": 2 } } ], 

      "saps": [ { "id": 0, 

            "name": "SAP0", 

            "ports": [ { "id": 1, "property": "Inbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_a", 

                             "endpoint": 0, 

                             "port": "1" } ] } }, 

            { "id": 4, 

            "name": "SAP1", 

            "ports": [ { "id": 1, "property": "Outbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_b", 

                             "endpoint": 4, 

                             "port": "1" } ] } } ] 

  }  } 

  { "rg": { 

      "parameters" : { "id": 9, 

               "name": "UNIFY 3 node", 

               "version": "1.0" }, 

      "ils": [ ... ], 

      "infs": [ ... ] 

      "eps": [ ... ]   

  } 

} 

 

Table ‎3.7: NF-FG with 3 NFs over three node Resource Graph: sub graph handled to Domain A 

{ "nffg":  

  { "sg": { 

      "parameters" : { "template": 2, 

               "version": "1.0", 

               "id": 579, 

               "name": "D3.2 Example", 

               "tenant": 131124 } 

      "sls":  [  { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_a", "node": 0 }, 

                              { "domain": "domain_a", "node": 1 }, 

                              { "domain": "domain_a", "node": 11 } ] ] }, 

             "source": 0, "src_port": 1, 

             "target": 11, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_a", "node": 12 }, 

                              { "domain": "domain_a", "node": 1 }, 

                              { "domain": "domain_a", "node": 0 } ] ] }, 

             "source": 12, "src_port": 1, 

             "target": 0, "dst_port": 1 } ], 

      "nfs": [], 

      "saps": [ { "id": 0, 

            "name": "SAP0", 



 

36 Deliverable D3.2a 17.11.2015 
 

            "ports": [ { "id": 1, "property": "Inbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_a", 

                             "endpoint": 0, 

                             "port": "1" } ] } }, 

            { "id": 11, 

            "name": "xSAP1", 

            "ports": [ { "id": 1, "property": "Cross domain SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_a", 

                             "endpoint": 11, 

                             "port": "1" } ] } }, 

            { "id": 12, 

            "name": "xSAP2", 

            "ports": [ { "id": 1, "property": " Cross domain SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_a", 

                             "endpoint": 12, 

                             "port": "1" } ] } } ] 

  }  } 

  { "rg": { 

      "parameters" : { "id": 19, 

               "name": "UNIFY Domain A", 

               "version": "1.0" }, 

      "ils": [ ... ], 

      "infs": [ ... ] 

      "eps": [ { "domain": "domain_a", 

             "id": 0, 

             "name": "ep0", 

             "ports": [ { "id": "1", "property": "sap" } ], 

             "type": "endpoint" }, 

           { "domain": "domain_a", 

             "id": 11, 

             "name": "xepA1", 

             "ports": [ { "id": "1", "property": "cross-domain" } ], 

             "type": "endpoint" }, 

           { "domain": "domain_a", 

             "id": 12, 

             "name": "xepA2", 

             "ports": [ { "id": "1", "property": " cross-domain " } ], 

             "type": "endpoint" } ]   

  } 

} 

 

Table ‎3.8: NF-FG with 3 NFs over three node Resource Graph: sub graph handled by Domain B 

{ "nffg":  

  { "sg": { 

      "parameters" : { "template": 2, 

               "version": "1.0", 

               "id": 579, 

               "name": "D3.2 Example", 

               "tenant": 131124 } 

      "sls":  [  { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 11 }, 

                              { "domain": "domain_b", "node": 3 } ] ] }, 

             "source": 11, "src_port": 1, 

             "target": 1,"dst_port": 1 }, 

{ "resources": { "requirements": { "bandwidth": "1G", 



 

37 Deliverable D3.2a 17.11.2015 
 

"delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 3 }, 

                              { "domain": "domain_b", "node": 2 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 2, "dst_port": 1 }, 

{ "resources": { "requirements": { "bandwidth": "1G", 

"delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 3 }, 

                              { "domain": "domain_b", "node": 2 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 3, "dst_port": 1}, 

{ "resources": { "requirements": { "bandwidth": "1G", 

"delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 2 }, 

                              { "domain": "domain_b", "node": 2 } ] ] }, 

             "source": 2, "src_port": 2, 

             "target": 3, "dst_port": 1 }, 

{ "resources": { "requirements": { "bandwidth": "1G", 

"delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 2 }, 

                              { "domain": "domain_b", "node": 4 } ] ] }, 

             "source": 3, "src_port": 2, 

             "target": 4, "dst_port": 1 }, 

{ "resources": { "requirements": { "bandwidth": "1G", 

"delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_b", "node": 4 }, 

                              { "domain": "domain_b", "node": 2 }, 

                              { "domain": "domain_b", "node": 12 } ] ] }, 

             "source": 4, "src_port": 1, 

             "target": 12, "dst_port": 1 } ], 

      "nfs": [ { "functional_type": 101, 

             "id": 1, 

             "monitoring": { "KQI_desc": "Numer of Users", 

                     "KQI_value": 100 }, 

             "name": "NF1", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_b", 

                            "node": 3 } ] }, 

             "specification": { "deployment_type": 2201, 

                      "image_uri": "/opt/elwud/2201.json", 

                      "max_KQI_value": 250, 

                      "vnf_type": 2 } }, 

           { "functional_type": 102, 

             "id": 2, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF2", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 



 

38 Deliverable D3.2a 17.11.2015 
 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_b", 

                            "node": 2 } ] }, 

             "specification": { "deployment_type": 2202, 

                      "image_uri": "/opt/elwud/2202.json", 

                      "max_KQI_value": 10000, 

                      "vnf_type": 2 } }, 

           { "functional_type": 103, 

             "id": 3, 

             "location": null, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF3", 

             "ports": [ { "id": 1, "property": "In port" }, 

                   { "id": 2, "property": "Out port" } ], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_b", 

                            "node": 2 } ] }, 

            "specification": { "deployment_type": 2203, 

                     "image_uri": "/opt/elwud/2203.json", 

                     "max_KQI_value": 10000, 

                      "vnf_type": 2 } } ], 

      "saps": [ { "id": 11, 

            "name": "xSAP1", 

            "ports": [ { "id": 1, "property": "Inbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_b", 

                             "endpoint": 11, 

                             "port": "1" } ] } }, 

            { "id": 12, 

            "name": "xSAP2", 

            "ports": [ { "id": 1, "property": "Inbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_b", 

                             "endpoint": 12, 

                             "port": "1" } ] } }, 

 

            { "id": 4, 

            "name": "SAP1", 

            "ports": [ { "id": 1, "property": "Outbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_b", 

                             "endpoint": 4, 

                             "port": "1" } ] } } ] 

  }  } 

  { "rg": { 

      "parameters" : { "id": 21, 

               "name": "UNIFY Domain B", 

               "version": "1.0" }, 

      "ils": [ ... ], 

      "infs": [ ... ] 

      "eps": [ { "domain": "domain_a", 

             "id": 0, 

             "name": "ep0", 

             "ports": [ { "id": "1", "property": "sap" } ], 



 

39 Deliverable D3.2a 17.11.2015 
 

             "type": "endpoint" }, 

           { "domain": "domain_b", 

             "id": 11, 

             "name": "xepB1", 

             "ports": [ { "id": "1", "property": "cross-domain" } ], 

             "type": "endpoint" }, 

           { "domain": "domain_b", 

             "id": 12, 

             "name": "xepB2", 

             "ports": [ { "id": "1", "property": " cross-domain " } ], 

             "type": "endpoint" } ]   

  } 

} 

 
3.5.6 Request with shared NF 
The sixth and final example is a variation of the last example, where one of the NFs (shown with a stronger blue in 
the figure) is shared with another NF-FG. 

 

Figure ‎3.8: Request of NF-FG with 3NFs where one is shared 

Table ‎3.9: NF-FG with 3 NFs where one is shared 

{ "nffg":  

  { "sg": { 

      "parameters" : { "template": 2, 

               "version": "1.0", 

               "id": 578, 

               "name": "D3.2 Example", 

               "tenant": 131124 } 

      "sls":  [  { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 0 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 0, "src_port": 1, 

             "target": 1,"dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" } }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 1, "src_port": 2, 



 

40 Deliverable D3.2a 17.11.2015 
 

             "target": 2, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 1, "src_port": 2, 

             "target": 3, "dst_port": 1}, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 1 } ] ] }, 

             "source": 2, "src_port": 2, 

             "target": 3, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 2 } ] ] }, 

             "source": 3, "src_port": 2, 

             "target": 4, "dst_port": 1 }, 

             { "resources": { "requirements": { "bandwidth": "1G", 

                              "delay": "50ms" }, 

                    "assignment": [ [ { "domain": "domain_0", "node": 2 }, 

                              { "domain": "domain_0", "node": 1 }, 

                              { "domain": "domain_0", "node": 0 } ] ] }, 

             "source": 4, "src_port": 1, 

             "target": 0, "dst_port": 1 } ], 

      "nfs": [ { "functional_type": 101, 

             "id": 1, 

             "monitoring": { "KQI_desc": "Numer of Users", 

                     "KQI_value": 100 }, 

             "name": "NF1", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_0", "node": 1, 

                                      "nffg": 576, "running_nf": 1 } ] }, 

             "specification": { "deployment_type": 2201, 

                      "image_uri": "/opt/elwud/2201.json", 

                      "max_KQI_value": 250, 

                      "vnf_type": 2 } }, 

           { "functional_type": 102, 

             "id": 2, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF2", 

             "ports": [ { "id": 1, "property": "In port" }, 

                  { "id": 2, "property": "Out port" }], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_0", 



 

41 Deliverable D3.2a 17.11.2015 
 

                            "node": 1 } ] }, 

             "specification": { "deployment_type": 2202, 

                      "image_uri": "/opt/elwud/2202.json", 

                      "max_KQI_value": 10000, 

                      "vnf_type": 2 } }, 

           { "functional_type": 103, 

             "id": 3, 

             "location": null, 

             "monitoring": { "KQI_desc": "Number of connections", 

                     "KQI_value": 10000 }, 

             "name": "NF3", 

             "ports": [ { "id": 1, "property": "In port" }, 

                   { "id": 2, "property": "Out port" } ], 

             "resources": { "requirements": {  

                       "compute" : { "capacity": "medium", 

                             "cpu": "1", 

                             "memory": "512M" }, 

                       "networking" : { "bandwidth": "1G" }, 

                       "storage" : { "hdd": "10G" } }, 

                    "assignment": [ { "domain": "domain_0", 

                            "node": 1 } ] }, 

            "specification": { "deployment_type": 2203, 

                     "image_uri": "/opt/elwud/2203.json", 

                     "max_KQI_value": 10000, 

                      "vnf_type": 2 } } ], 

      "saps": [ { "id": 0, 

            "name": "SAP0", 

            "ports": [ { "id": 1, "property": "Inbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_0", 

                             "endpoint": 0, 

                             "port": "1" } ] } }, 

            { "id": 4, 

            "name": "SAP1", 

            "ports": [ { "id": 1, "property": "Outbound SAP" } ], 

            "resources": { "assignment": [ { "domain": "domain_0", 

                             "endpoint": 2, 

                             "port": "1" } ] } } ] 

  }  } 

  { "rg": { 

      "parameters" : { "id": 8, 

               "name": "UNIFY 1 node", 

               "version": "1.0" }, 

      "ils": [ ... ], 

      "infs": [ ... ] 

      "eps": [ ... ]   

  } 

} 

 



 

42 Deliverable D3.2a 17.11.2015 
 

4 Virtualizer-based NF-FG model and mapped resource requests 

In this section we present both the Virtualizer and the mapping of the resource request (also known the NF-FG) 
with a YANG model. This model is based on the principals laid down in D2.2 [D2.2]. The model includes (i) 
infrastructure virtualization (referred to as Resource Graph –RG in previous discussions) combined with (ii) the 
mapping of resource request(s). The virtualization together with the mapping constructs the NF-FG.  

In what follows, we gradually introduce the different concepts with figures and examples. We will use a four-domain 
UNIFY scenario to elaborate on the concept as shown in Figure ‎4.1. The corresponding message sequence chart is 
show in Figure ‎4.5. We will focus on the clients of the virtualizers, namely Service Orchestrator (SO), Resource 
Orchestrators (ROs) and Controller Adaptor (CA). Furthermore, T1 and T2 denotes tenants of Service Provider 0 
(SP0), who operates UNIFY Domain 0. The resources of UNIFY Domain 0 are built of UNIFY Domain 1 and 2 (not 
detailed further); UNIFY Domain 0 provides wholesale resources to UNIFY Domain 3 (U3), who is a retail provider. 
However, technically, both the SO and U3 are similar clients of the UNIFY Domain 0 as we will see later. 

Figure ‎4.2, Figure ‎4.3 and Figure ‎4.4 show the views of the different components (actors) of the system with regard 
to the scoping or responsibility of their operation. Figure ‎4.2 shows that the Service Orchestrator within the service 
layer only sees its own tenants (Tenant-1 and Tenant-2) and the infrastructure view that is presented to it. The 
service graph orchestration from its tenants will be performed like operating over physical infrastructure resources 
directly. Figure ‎4.3 shows the view corresponding to the Unify Resource Orchestrator. The RO sees only two clients: 
the Service Orchestrator of the service layer and the client representing the external UNIFY domain. The tenants of 
the service layer (Tenant-1 and Tenant-2) do not appear in the RO’s view, as the service graph requests are handled 
(orchestrated) by the Service Orchestrator. It is only the aggregated view of the tenant requests that is conveyed as 
updates to the infrastructure use. Both, from operation and reference point of view there is absolutely no difference 
between the two clients of the RO. With this respect the RO multiplexes the requests of its clients. Finally, Figure ‎4.4 
shows the view corresponding to the Controller Adaptor (CA). The CA creates a global resource view to the RO via its 
Virtualizer based on the infrastructure views presented by the underlying domains. The CA has no knowledge of 
whether it operates over physical or virtualized resources, though it converts the resource management operations 
into the northbound API of the underlying domains. For example, the operation could be executed as OpenFlow 1.3 
commands over a physical switch or over a BigSwitch abstraction, however, neither makes any difference operation 
wise in the CA.  

Last but not least, Figure ‎4.5 shows an example message chart related to topology of Figure ‎4.1 (message sequence 
numbers are denoted with {#}). We assume NETCONF operations (see Section ‎4.9): 

- {1}-{2}: SO discovers the infrastructure view 

- {3}: Tenant-1’s service request (SG1) 



 

43 Deliverable D3.2a 17.11.2015 
 

- {4}: Service Orchestration – mapping of SG1 to the infrastructure view 

- {5}: SO edits the resource configuration as a result of the SG1 mapping 

- {6}: RO is notified of the resource configuration updates  

- {7}: RO maps the updated resource allocation of its Virtualizer-1 to the underlying infrastructure view 
(Virtualization-0) and updates the resource configuration at Virtualizer-0 {8} 

- The CA is notified in {9} of the changes and splits the configuration changes according to the two distinct 
resource sets to its south; updates the corresponding configurations in {11} and {12} 

- In {13}-{16} the SO processes Tenant-2’s service request. It is important to note that both Tenant-1 and 
Tenant-2 requests are mapped to the same Virtualizer-1. Therefore, neither Virtualizer-1 nor the RO know if 
the update in {15/16} comes as a result of a single or multiple tenant requests.  

- {16}-{22} are executed as {6}-{12} 

- The resource requests from an external domain {25} are handled exactly the same as the request from the 
SO {5}-{12} and {15}-{22}. 

The NF-FG model appears throughout all communication in Figure ‎4.5 when a Virtualizer is involved, i.e., all 
communication of Figure ‎4.5 but in the Service Graph requests marked with blue. 



 

44 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎4.1: Example topology for Virtualizer message chart 

 

 

Figure ‎4.2: Service Orchestrator’s view of the topology shown in Figure ‎4.1. 



 

45 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎4.3: Resource Orchestrator’s view of the topology shown in Figure ‎4.1. 

 

 

Figure ‎4.4: Controller Adaptor’s view of the topology shown in Figure ‎4.1. 



 

46 Deliverable D3.2a 17.11.2015 
 

 

 Figure ‎4.5: Virtualizer example message chart 

We will incrementally introduce the data model in the following sections.  

4.1 Simple infrastructure view 
First we focus on step 2 of Figure ‎4.5, which is the step where the Virtualizer reports the infrastructure. To report 
the available (virtualized) infrastructure to the upper layer we need the notion of  

- BiS-BiS entities, their resources, and 

- Links interconnecting BiS-BiS nodes. 

Figure ‎4.6 shows a simple example topology, for which the information model (the tree representation of the YANG 
model) is shown in Table ‎4.1. 



 

47 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎4.6: Simple infrastructure example 

Table ‎4.1: Simple infrastructure model tree view 

+--ro virtualizer 

  +--ro id?      string 

  +--ro name?    string 

  +--ro nodes 

  |  +--ro node* [id] 

  |     +--ro id              string 

  |     +--ro name?           string 

  |     +--ro type            string 

  |     +--ro ports 

  |     |  +--ro port* [id] 

  |     |     +--ro id            string 

  |     |     +--ro name?         string 

  |     |     +--ro port_type?    string 

  |     +--ro resources 

  |     |  +--ro cpu        string 

  |     |  +--ro mem        string 

  |     |  +--ro storage    string 

  +--ro links 

  +--ro link* [src dst] 

  +--ro id?          string 

  +--ro name?        string 

  +--ro src          port-ref 

  +--ro dst          port-ref 

  +--ro resources 

     +--ro delay?       string 

     +--ro bandwidth?   string 

There are common elements to all objects, like the Id and the Name of the object. 

The Infrastructure view consists of BiS-BiS entities, which are represented as Nodes. The nodes have Ports and 
Resources (like available CPU or memory). The Ports can either be simple (called abstract) or Service Access Point 
(SAP) type. 

The infrastructure connections between the BiS-BiS nodes are represented by Links in the Virtualizer view. These 
Links are defined between Ports of the nodes, and can have a resource description like available bandwidth or delay. 

Further examples are given in ‎A.2.2 and ‎A.2.3. 

4.2 Advanced infrastructure view 
A single BiS-BiS node from the Virtualizer view may represent the abstract view of a complex underlying 
infrastructure (e.g. data centres, transport network or both). Figure ‎4.7 shows a network topology abstraction into 



 

48 Deliverable D3.2a 17.11.2015 
 

single BiS-BiS node. There may be a need to express some additional limitations of the infrastructure beyond the 
already discussed connectivity. Therefore we introduce optional Links within the Nodes, to be able to describe e.g. 
delay between ports of a BiS-BiS. Note that this new Link of the Node (shown in red in Table ‎4.2) has the same 
structure as the previously introduced infrastructure Link (shown in green). It is important to note here, that there 
may be multiple virtualizers presenting different (abstraction) views of the same underlying infrastructure towards 
different clients, e.g. 1 BiS-BiS node view, 3 BiS-BiS node view, 1 BiS-BiS node view with internal links, etc. This 
enables high flexibility. 

 

Figure ‎4.7: Topology abstraction as internal link characteristics 

  



 

49 Deliverable D3.2a 17.11.2015 
 

Table ‎4.2: Advanced infrastructure model tree view 

+--ro virtualizer 

  +--ro id?      string 

  +--ro name?    string 

  +--ro nodes 

  |  +--ro node* [id] 

  |     +--ro id              string 

  |     +--ro name?           string 

  |     +--ro type            string 

  |     +--ro ports 

  |     |  +--ro port* [id] 

  |     |     +--... 

  |     +--ro links 

  |     |  +--ro link* [src dst] 

  |     |     +--ro id?          string 

  |     |     +--ro name?        string 

  |     |     +--ro src          port-ref 

  |     |     +--ro dst          port-ref 

  |     |     +--ro resources 

  |     |        +--ro delay?       string 

  |     |        +--ro bandwidth?   string 

  |     +--ro resources 

  |     |  +--... 

  +--ro links 

  +--ro link* [src dst] 

  +--ro id?          string 

  +--ro name?        string 

  +--ro src          port-ref 

  +--ro dst          port-ref 

  +--ro resources 

     +--ro delay?       string 

     +--ro bandwidth?   string 

 

Example is given in ‎A.2.4, with a domain abstracted to a BiS-BiS node, and reported by the underlying Virtualizer. 

4.3 Simple Request 
Now we move our focus to the description of a request, corresponding to step 5 of Figure ‎4.5, where a mapping of 
NS to infrastructure nodes as well as the forwarding rules have to be given. In the request the previously reported 
infrastructure is not repeated, however it’s referred to by the IDs of, e.g., BiS-BiS Nodes. 

A simple request consists of assigning NFs to Nodes, and configuring the forwarding between BiS-BiS and/or NF 
ports. An example is shown in Figure ‎4.8 and the information model is extended according to Table ‎4.3. 



 

50 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎4.8: Simple request of 3 NFs mapped to a single BiS-BiS node 

Table ‎4.3: Simple request model tree view 

+--rw virtualizer 

  +--rw id?      string 

  +--rw name?    string 

  +--rw nodes 

  |  +--ro node* [id] 

  |     +--ro id              string 

  |     +--ro name?           string 

  |     +--ro type            string 

  |     +--ro ports 

  |     |  +--ro port* [id] 

  |     |     +--ro id            string 

  |     |     +--ro name?         string 

  |     |     +--ro port_type?    string 

  |     |     +--ro (port-type)? 

  |     +--ro resources 

  |     |  +--ro cpu        string 

  |     |  +--ro mem        string 

  |     |  +--ro storage    string 

  |     +--rw NF_instances 

  |     |  +--rw node* [id] 

  |     |     +--rw id           string 

  |     |     +--rw name?        string 

  |     |     +--rw type         string 

  |     |     +--rw ports 

  |     |     |  +--rw port* [id] 

  |     |     |     +--rw id            string 

  |     |     |     +--rw name?         string 

  |     |     |     +--rw port_type?    string 

  |     +--rw flowtable 

  |        +--rw flowentry* [port match action] 

  |           +--rw port      port-ref 

  |           +--rw match     string 

  |           +--rw action    string 

 

Please note, that the description of NFs (red colour) of the Nodes is equivalent to the existing description of Nodes 
themselves (shown in grey colour, but only for reference: details of nodes are not repeated in a request). The ports 



 

51 Deliverable D3.2a 17.11.2015 
 

in this case represent the ports of the NF, while the resources represent the required resources of the NF. The flow 
entries can refer to (infrastructure) Ports and NF Ports of the Node (shown in purple). 

See ‎A.2.5 for further examples. 

4.4 Requests with resource demands 
A request may contain computes resources (e.g., CPU, memory) for the NFs and networking resources (e.g., delay, 
bandwidth) for the forwarding overlay among NFs and SAPs. This is described as extra parameters to the NF 
instances or to the flow entries (shown in red in Table ‎4.4). We use the same resource fields that have been used for 
the infrastructure description at nodes, external and internal links.  

  



 

52 Deliverable D3.2a 17.11.2015 
 

Table ‎4.4: Advanced request with flow requirements model tree view 

+--rw virtualizer 

  +--rw id?      string 

  +--rw name?    string 

  +--rw nodes 

  |  +--rw node* [id] 

  |     +--rw id              string 

  |     +--ro resources 

  |     |  +--ro cpu        string 

  |     |  +--ro mem        string 

  |     |  +--ro storage    string 

  |     +--ro resources 

  |     |  +--ro cpu        string 

  |     |  +--ro mem        string 

  |     |  +--ro storage    string 

  |     +--ro links 

  |     |  +--ro link* [src dst] 

  |     |     +--ro id?          string 

  |     |     +--ro name?        string 

  |     |     +--ro src          port-ref 

  |     |     +--ro dst          port-ref 

  |     |     +--ro resources 

  |     |        +--ro delay?       string 

  |     |        +--ro bandwidth?   string 

  |     +--rw NF_instances 

  |     |  +--rw node* [id] 

  |     |     +--rw id           string 

  |     |     +--rw name?        string 

  |     |     +--rw type         string 

  |     |     +--rw ports 

  |     |     |  +--rw port* [id] 

  |     |     |     +--rw id            string 

  |     |     |     +--rw name?         string 

  |     |     |     +--rw port_type?    string 

  |     |     +--rw resources 

  |     |        +--rw cpu        string 

  |     |        +--rw mem        string 

  |     |        +--rw storage    string 

  |     +--rw flowtable 

  |        +--rw flowentry* [port match action] 

  |           +--rw port      port-ref 

  |           +--rw match     string 

  |           +--rw action    string 

  |           +--rw resources 

  |              +--rw delay?       string 

  |              +--rw bandwidth?   String 

  +--ro links 

  +--ro link* [src dst] 

  +--ro id?          string 

  +--ro name?        string 

  +--ro src          port-ref 

  +--ro dst          port-ref 

  +--ro resources 

     +--ro delay?       string 

     +--ro bandwidth?   string 

 

 

See ‎A.2.6 for further examples. 

Furthermore, requirements may be formulated on the NF instance itself, for example the requested delay or 
bandwidth between the NF’s ports. Such requirements are input to the orchestrator to select appropriate NF type 
and resource assignment to deliver the requested performance characteristics. Furthermore, an NF may be 

 

 

 

 

For  
node  

internal ports 

 

For infra-
structure 

ports 



 

53 Deliverable D3.2a 17.11.2015 
 

decomposed, hence a compound NF requirement may be mapped to a topology of interconnected NFs. Note 
however, that defining NF requirements is an alternative to assigning resources to the NF, i.e., an orchestrator either 
use one or the other as both might create a conflict unless clear precedence is assigned. Such NF requirements can 
be described similarly to interconnection links between NF, but the scope is the internal connection of the NF (see 
Figure ‎4.9 for an example). The extended data model is shown with red in Table ‎4.5. Naturally, we reused the existing 
link description format from the infrastructure report (shown grey colour, which is actually not part of a request). 

 

Figure ‎4.9: Request with NF (internal) requirements  

  



 

54 Deliverable D3.2a 17.11.2015 
 

Table ‎4.5: Advanced request with NF requirements model tree view 

+--rw virtualizer 

  +--rw id?      string 

  +--rw name?    string 

  +--rw nodes 

  |  +--rw node* [id] 

  |     +--rw id              string 

  |     +--rw links 

  |     |  +--rw link* [src dst] 

  |     |     +--rw id?          string 

  |     |     +--rw name?        string 

  |     |     +--rw src          port-ref 

  |     |     +--rw dst          port-ref 

  |     |     +--rw resources 

  |     |        +--rw delay?       string 

  |     |        +--rw bandwidth?   string 

  |     +--rw NF_instances 

  |     |  +--rw node* [id] 

  |     |     +--rw id           string 

  |     |     +--rw name?        string 

  |     |     +--rw type         string 

  |     |     +--rw ports 

  |     |     |  +--... 

  |     |     +--rw links 

  |     |     |  +--rw link* [src dst] 

  |     |     |     +--rw id?          string 

  |     |     |     +--rw name?        string 

  |     |     |     +--rw src          port-ref 

  |     |     |     +--rw dst          port-ref 

  |     |     |     +--rw resources 

  |     |     |        +--rw delay?       string 

  |     |     |        +--rw bandwidth?   string 

  |     |     +--rw resources 

  |     |        +--... 

  |     +--rw flowtable 

  |        +--... 

   

See ‎A.2.7 for further examples. 

4.5 Capability reporting 
Finally, BiS-BiS nodes may report their capabilities related to their ability to host different NF types. The goals are 
twofold, (i) once to report the list of supported NF types and (ii) to provide resource figures for the client service or 
resource orchestrator. This later can be considered as some discrete benchmarking values for hosting an NF, for 
example, NF type A with an in/out port can be instantiated with 1 CPU and 600Mbyte memory to handle up to 
20Mbps input traffic rate within 20msec in-out port delay; or 2 CPU with 1Gbyte memory to handle 30Mbps traffic 
within 25msec delay. This report is optional and can be used in a case where the NF developer has provided these 
performance values for the given infrastructure, or maybe in a case, where the infrastructure has this information 
from previous measurements. We provide here the way to represent this information once it’s available. This 
information is of course domain specific, different values may apply for the same NF in a different infrastructure 
domain.  (Note: similar performance to resource “conversion” rules may be contained in the NFIB service 
decomposition rules, to be elaborated in D3.3 ) The capability reporting reuses the data model of NF instances (see 
Table ‎4.6). 



 

55 Deliverable D3.2a 17.11.2015 
 

  



 

56 Deliverable D3.2a 17.11.2015 
 

Table ‎4.6: Capability reporting tree view 

+--rw virtualizer 

   +--ro id?      string 

   +--ro name?    string 

   +--ro nodes 

   |  +--ro node* [id] 

   |     +--... 

   |     +--rw NF_instances 

   |     |  +--rw node* [id] 

   |     |     +--rw id           string 

   |     |     +--rw name?        string 

   |     |     +--rw type         string 

   |     |     +--rw ports 

   |     |     |  +--rw port* [id] 

   |     |     |     +--rw id            string 

   |     |     |     +--rw name?         string 

   |     |     |     +--rw port_type?    string 

   |     |     +--rw links 

   |     |     |  +--rw link* [src dst] 

   |     |     |     +--rw id?          string 

   |     |     |     +--rw name?        string 

   |     |     |     +--rw src          port-ref 

   |     |     |     +--rw dst          port-ref 

   |     |     |     +--rw resources 

   |     |     |        +--rw delay?       string 

   |     |     |        +--rw bandwidth?   string 

   |     |     +--rw resources 

   |     |        +--rw cpu        string 

   |     |        +--rw mem        string 

   |     |        +--rw storage    string 

   |     +--ro capabilities 

   |     |  +--ro supported_NFs 

   |     |     +--ro node* [id] 

   |     |        +--ro id           string 

   |     |        +--ro name?        string 

   |     |        +--ro type         string 

   |     |        +--ro ports 

   |     |        |  +--ro port* [id] 

   |     |        |     +--ro id            string 

   |     |        |     +--ro name?         string 

   |     |        |     +--ro port_type?    string 

   |     |        +--ro links 

   |     |        |  +--ro link* [src dst] 

   |     |        |     +--ro id?          string 

   |     |        |     +--ro name?        string 

   |     |        |     +--ro src          port-ref 

   |     |        |     +--ro dst          port-ref 

   |     |        |     +--ro resources 

   |     |        |        +--ro delay?       string 

   |     |        |        +--ro bandwidth?   string 

   |     |        +--ro resources 

   |     |           +--ro cpu        string 

   |     |           +--ro mem        string 

   |     |           +--ro storage    string 

 

4.6 Constraints handling 
Figure ‎4.10 shows and example of presenting the infrastructure by Virtualizers in a multi-layer scenario. In this 
example the physical infrastructure (consisting of multiple networking nodes, Data Centres and links) is abstracted 



 

57 Deliverable D3.2a 17.11.2015 
 

to a 3-node view by a Virtualizer. Then this 3-node view is further abstracted to a single node view by an upper layer 
Virtualizer. 

  



 

58 Deliverable D3.2a 17.11.2015 
 

 

 Figure ‎4.10: Physical resources and Multiple-level 
Virtualizations  

  



 

59 Deliverable D3.2a 17.11.2015 
 

Figure ‎4.11 shows an example service request, containing 3 Network Functions (NFs). Figure ‎4.12 shows an advanced 
version of the request containing delay requirements on both the whole service and on some components. We will 
use this example in the rest of the document. 

 

Figure ‎4.11: Example service graph 

 

Figure ‎4.12: Service requirements in a service graph  

Service requests must be mapped to the virtualization views, e.g., Figure ‎4.10 presented to the clients. However, 
some of the constraints cannot be / may not be necessarily mapped to the infrastructure view due to lack of details 
(information hiding with the virtualization) or on purpose to delegate final orchestration decision. For example, in 
Figure ‎4.10 the top Virtualizer shows a single node view, while the bottom one has a 3 node view. 

Mapping of software and networking requirements must match (and must be in pair) of the corresponding software 
and networking resources. Software resources, e.g., compute and storage, are assigned to the BiS-BiS nodes. 
Networking resources, e.g. bandwidth and delay, are assigned to external links among BiS-BiS nodes (e.g. bottom 
part of Figure ‎4.10 link between nodes UUID11 and UID13) and between each port pair of a BiS-BiS node. However, 
allocation of Network Functions (NFs) to BiS-BiS introduces additional ports representing the point of the NF 
attachment to the BiS-BiS node (e.g. bottom part of Figure ‎4.10 ports 4 of node UUID13).  

Therefore, we propose to map the resource requirements of the service to 



 

60 Deliverable D3.2a 17.11.2015 
 

 Networking resources, e.g., delay and bandwidth, within a BiS-BiS  

o from an external port to a NF port (e.g. bottom part of Figure ‎4.13 node UUID12, between ports 0 
and 4) 

o from an NF port to another NF port (e.g. bottom part of Figure ‎4.13 node UUID12, between ports 5 
and 6) 

o from an NF port to an external port (e.g. bottom part of Figure ‎4.13 node UUID12, between ports 7 
and 1) 

 Networking resources, e.g., delay and bandwidth, within an NF 

o for each in port out port relation (e.g. bottom part of Figure ‎4.13 node UUID12, NF UUID2, between 
ports 4 and 5) 

 Software resources to each NF allocation 

o (e.g. bottom part of Figure ‎4.13 node UUID13, NF UUID1) 

Here networking resources could be bandwidth, delay, priority / pre-emption, and traffic class, whereas software 
resources could be compute (e.g. CPU), storage (e.g. memory, disk), and I/O capabilities. 

Beyond the explicit allocation of resources, we propose to allow variable binding to any of the above resource 
instances. Constraints related to algebraic operations, min/max and alike can be used to formulate unresolved but 
global constraints.  

Figure ‎4.13 shows a recursive mapping of the Service Graph with the requirements presented in Figure ‎4.12. Figure 
‎4.13 shows both explicit resource assignment and variable binding to resources and global constraints, e.g., 
expressed as delay to be smaller than the sum of different delay variables. 

The example contains a requirement of 0 ms delay. This should be interpreted as “as close as possible”. We could 
allocate a new variable e.g. “R” to this delay, include it to the sum-constraint, and add a further one to “minimize R”. 

To describe Networking resources (e.g. delay and bandwidth) within a BiS-BiS, we propose to extend the OpenFlow-
like forwarding rules deployed to BiS-BiS nodes (consisting of a matching rule and an action) with fields containing 
requirements for the given entry like bandwidth and delay. 

 



 

61 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎4.13: Mapping of Service Level Requirements to the BiS-BiS Virtualization View 

 



 

62 Deliverable D3.2a 17.11.2015 
 

4.7 Resource sharing 
The proposed Virtualizer model supports describing resource sharing, e.g. link sharing or NF sharing. Figure ‎4.14 
contains an infrastructure example (left part), where the upcoming service requests (right part) will be mapped. 

 

Figure ‎4.14: Infrastructure (left), and Service graph requests (right) for the resource sharing example 

The corresponding messages describing the resource sharing can be found in ‎0. 

The resulting configuration of the infrastructure after each update is shown in Figure ‎4.15. 

 



 

63 Deliverable D3.2a 17.11.2015 
 

 

Figure ‎4.15: Result of subsequent requests in the Infrastructure: a resource sharing example 

The examples above show link sharing. NF sharing can be described similarly. 



 

64 Deliverable D3.2a 17.11.2015 
 

4.8 The full data model  
The combined YANG model containing the various options described in the previous sections can be found in the 
appendix ‎A.2.1. The simplified tree view of the model is shown in Table ‎4.7.  

Table ‎4.7: Combined model tree view 

+--rw virtualizer 

  +--rw id?      string 

  +--rw name?    string 

NF-FG header information  

  +--rw nodes 

  |  +--rw node* [id] 

  |     +--ro id              string 

  |     +--ro name?           string 

  |     +--ro type            string 

Infrastructure nodes (BiS-BiS) 

  |     +--ro ports 

  |     |  +--ro port* [id] 

  |     |     +--ro id            string 

  |     |     +--ro name?         string 

  |     |     +--ro port_type?    string 

  |     |     +--ro (port-type)? 

Infrastructure ports of the BiS-BiS.  

Port type can be SAP 

  |     +--ro links 

  |     |  +--ro link* [src dst] 

  |     |     +--ro id?          string 

  |     |     +--ro name?        string 

  |     |     +--ro src          port-ref 

  |     |     +--ro dst          port-ref 

  |     |     +--ro resources 

  |     |        +--ro delay?       string 

  |     |        +--ro bandwidth?   string 

Virtual internal links of the infrastructure 
BiS-BiS to express e.g. delays between ports 

  |     +--ro resources 

  |     |  +--ro cpu        string 

  |     |  +--ro mem        string 

  |     |  +--ro storage    string 

Available resources of the BiS-BiS 

  |     +--rw NF_instances 

  |     |  +--rw node* [id] 

  |     |     +--rw id           string 

  |     |     +--rw name?        string 

  |     |     +--rw type         string 

NFs actually running or to be deployed on 
the BiS-BiS 

  |     |     +--rw ports 

  |     |     |  +--rw port* [id] 

  |     |     |     +--rw id            string 

  |     |     |     +--rw name?         string 

  |     |     |     +--rw port_type?    string 

Ports of the NF 

  |     |     +--rw links 

  |     |     |  +--rw link* [src dst] 

  |     |     |     +--rw id?          string 

  |     |     |     +--rw name?        string 

  |     |     |     +--rw src          port-ref 

  |     |     |     +--rw dst          port-ref 

  |     |     |     +--rw resources 

  |     |     |        +--rw delay?       string 

  |     |     |        +--rw bandwidth?   string 

Virtual internal links of the NF to express e.g. 
delay requirement between NF ports 

  |     |     +--rw resources 

  |     |        +--rw cpu        string 

  |     |        +--rw mem        string 

  |     |        +--rw storage    string 

Required resources of the NF 

  |     +--ro capabilities 

  |     |  +--ro supported_NFs 

  |     |     +--ro node* [id] 

  |     |        +--ro id           string 

  |     |        +--ro name?        string 

  |     |        +--ro type         string 

  |     |        +--ro ports 

Capabilities of the BiS-BiS, e.g. which NFs are 
supported. The whole NF structure is re-
used here, but e.g. internal Links are likely 



 

65 Deliverable D3.2a 17.11.2015 
 

  |     |        |  +--ro port* [id] 

  |     |        |     +--ro id            string 

  |     |        |     +--ro name?         string 

  |     |        |     +--ro port_type?    string 

  |     |        +--ro links 

  |     |        |  +--ro link* [src dst] 

  |     |        |     +--ro id?          string 

  |     |        |     +--ro name?        string 

  |     |        |     +--ro src          port-ref 

  |     |        |     +--ro dst          port-ref 

  |     |        |     +--ro resources 

  |     |        |        +--ro delay?       string 

  |     |        |        +--ro bandwidth?   string 

  |     |        +--ro resources 

  |     |           +--ro cpu        string 

  |     |           +--ro mem        string 

  |     |           +--ro storage    string 

not to be used. 

  |     +--rw flowtable 

  |        +--rw flowentry* [port match action] 

  |           +--rw port         port-ref 

  |           +--rw match        string 

  |           +--rw action       string 

  |           +--rw resources 

  |              +--rw delay?       string 

  |              +--rw bandwidth?   string 

Flow entries of/for the BiS-BiS, between 
infrastructure or NF ports. For a request, 
resources can express e.g. delay requirement 
between ports. 

  +--ro links 

  +--ro link* [src dst] 

  +--ro id?          string 

  +--ro name?        string 

  +--ro src          port-ref 

  +--ro dst          port-ref 

  +--ro resources 

     +--ro delay?       string 

     +--ro bandwidth?   string 

Infrastructure Links between ports of 
different BiS-BiS’ 

4.9 Relation to NETCONF 
The above presented model is used in both directions of the communication. There are read-only (ro) marked fields, 
which are to be modified only by the Virtualizer, and read by the above layer. These fields belong to the 
infrastructure view representation, used e.g. in steps 2 and 24 of Figure ‎4.5. The other type of fields, read-write (rw) 
can be written by the above layer and represent a request towards the Virtualizer, corresponding to steps 5 and 25 
of Figure ‎4.5. These second type fields, however, can also be parts of an infrastructure report, e.g. when reporting 
back the deployed, previously requested NFs. 

There is a single data store (NETCONF terminology for the database) of a Virtualizer, meaning that all infrastructure 
elements and all requests are located in the same structure, i.e., a single instance of Virtualizer, containing many 
elements according to Table ‎4.7. However, the full instance doesn’t have to be communicated each time, because 
reads (get-config) and writes (edit-config) can be scoped to a part of the whole data store. 

 



 

66 Deliverable D3.2a 17.11.2015 
 

5 Conclusion 

Although both models have been evolving based on prototype experiments, some provisional conclusions can be 
made at this point in time. Potential updates resulting from the integration effort and final conclusions on the 
models will be given in the future Deliverable D3.5. Below we give a short overview between both models focusing 
on the core parts of the UNIFY programming and orchestration architecture.  

 Data-model differences 

o The service-centric (SC) model stores service link information as well as requirements on these 
links within the NF-FG data structure, while the Virtualizer-based (VB) model does not. In the 
latter approach, the mapping (and budgeting) between the service links and the NF-FG attributes 
is locally maintained in the Service (Adaptation) Layer.  

o The SC model does introduce a difference between SAPs and EPs. EPs are available in the 
infrastructure layer; SAPs are service constructs dependent on the particular service. A 
mapping/translation between both is supposed to happen at the Service (Adaptation) Layer. 

o The SC model only maps service links to a sequence of BiS-BiS components which the links are 
expected to cross. BiS-BiS components are not configured as switches, how traffic steering is 
implemented when crossing the BiS-BiSes is the responsibility of the CA and network control 
components, once the RO has determined routing.  

o In general, the philosophy of the SC model seems to be more declarative, storing SG attributes in 
the NF-FG to enable maximal flexibility for lower layers to benefit from this information. The VB 
model philosophy on the other hand follows a more prescriptive, step-wise refining approach, 
focusing on the isolation of responsibilities between layers and scalability of the overall hierarchic 
approach. 

 Impact on KPI fulfilment process 

o In the SC model, the Service (Layer) Orchestration is limited to mapping NFs to BiS-BiSes and 
mapping service links to sequences of BiS-BiSes. KPI requirements are merely re-formulated over 
NFs and service links, even when they cross multiple domains/BiS-BiSes. 

o In the VB model initial concept, Service (Layer) Orchestration also the translation of groups of 
service attributes into NF-FG components that are mapped on a Virtualizer. The latter involves 
splitting of KPI requirements related to service components when, for example service links with 
particular delay requirements are split over multiple links between BiS-BiSes in the considered 
virtualizer. This became relaxed with the introduction of constraints handling. 



 

67 Deliverable D3.2a 17.11.2015 
 

o The VB model initial philosophy encourages a pre-planned scheduled orchestration process 
where accurate knowledge of infrastructure capabilities is available in order to maximally 
guarantee fast and successful orchestration. The SC model philosophy is to delay the splitting 
decision on KPI requirements as long as possible, with the intention of avoiding premature 
suboptimal decisions, potentially resulting in a more trial-and-error, iterative orchestration and 
provisioning approach. 

 Impact on resource orchestration processes and capabilities 

o From an algorithmic point of view the difference between both approaches is limited, because 
service-driven constraints and KPI’s are possible in both models.  

o SC model view: The RO and subsequent layers in the SC model might perform (re-)optimizations 
relying on service attributes available in the NF-FG data structure without requiring interaction 
with higher layers. 

o VB model view: The RO and subsequent layers by design should be service-agnostic and focus on 
the orchestration of resources (not services). This reduces information/constraint overload, 
improves scalability of the processes and ensures a pure client-server relationship between layers. 
Lower-layer providers/domains (e.g., UN) could be part of different business entities, and should 
not be aware about which service/customer exactly they serve. Their focus should be on delivering 
requested resources. 

 Impact on monitoring and troubleshooting  

o Monitoring and troubleshooting processes are mainly impacted with respect to service-related 
monitoring. In order to monitor or troubleshoot service-related parameters, the SC model might 
reduce inter layer interaction, because service-related information is available in the NF-FG 
structure across different layers, while the VB model by design enforces isolation of information 
(separation of concerns) between layers. Troubleshooting services at service-level does might 
require to retrieve appropriate mappings across layers.  

 Impact on sharing or resources 

o Both models enable for sharing of resources, although the VB model is more prescriptive in how 
this must be achieved (e.g., enable link sharing through the use of forwarding rules on the BiS-BiS), 
whereas the SC model follows a more declarative approach (merely stating that it must be 
shared). 



 

68 Deliverable D3.2a 17.11.2015 
 

o Sharing of resources seems to be largely independent of the model, but rather on how underlying 
blocks implement it. 

 Current use of the models in prototype implementations 

o The SC model is used in ELwUD and ESCAPEv1, 

o The VB model approach is used in ESCAPEv2, FROG, and OS-ODL  



 

69 Deliverable D3.2a 17.11.2015 
 

6 References 

[D2.2] “Deliverable 2.2: Functional Architecture” Tech. rep. UNIFY Project, 2014. 

[D3.1] “Deliverable 3.1: Programmability framework”. Tech. rep. UNIFY Project, 2014. 

[D4.1] “Deliverable 4.1: Initial requirements for the SP-DevOps concept, universal node capabilities and proposed 
tools”. Tech. rep. UNIFY Project, 2014. 

[ETSIMANO] ETSI GS NFV-MAN 001,”Network Functions Virtualisation (NFV); Management and Orchestration”, 
Accessed 2015-05-06, <http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-
MAN001v010101p.pdf> 

[Neutron] OpenStack, “Neutron – OpenStack”, Accessed: 2015-04-27, https://wiki.openstack.org/wiki/Neutron 

[Nova] OpenStack, “Nova – OpenStack”, Accessed: 2015-04-27, https://wiki.openstack.org/wiki/Nova 

[OSheat] OpenStack, “Heat-OpenStack Orchestration”, Accessed: 2015-04-27, 
<https://wiki.openstack.org/wiki/Heat> 

[OShot] OpenStack. ”Heat Orchestration Template (HOT) Guide.” OpenStack Homepage. Accessed: 2015-04-27 
<http://docs.openstack.org/developer/heat/template_guide/hot_guide.html>. 

[TOSCA] OASIS Standard, “Topology and Orchestration Specification for Cloud Applications Version 1.0”, 2013, 
Accessed: 2015-04-27, http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf 

 

http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.pdf


 

70 Deliverable D3.2a 17.11.2015 
 

Annex 1 Service-oriented and Virtualizer-based NF-FG models 

A.1.1 Service-oriented NF-FG model defined in YANG 

Table A.1: Service-oriented NF-FG YANG Model 

module nffg { 

  namespace "https://gitlab.fp7-unify.eu/wp2/nf-fg"; 

  prefix nffg; 

 

  organization "UPV/EHU"; 

  contact 

    "Jokin Garay <jokin.garay@ehu.eus>, 

     Jon Matias <jon.matias@ehu.eus>,"; 

  description 

    "Network Function Forwarding Graph (NF-FG) data model"; 

 

  revision 2015-06-30 { 

    reference 

      "Data model updated for D3.2a"; 

  } 

  revision 2015-04-22 { 

    reference 

      "Initial version"; 

  } 

 

  grouping link { 

    description 

      "Link definition"; 

    leaf source { 

      type string; 

      mandatory true; 

      description 

       "Source node"; 

    } 

    leaf src_port { 

      type string; 

      mandatory true; 

      description 

       "Source port"; 

    } 

    leaf target { 

      type string; 

      mandatory true; 

      description 

       "Target node"; 

    } 

    leaf dst_port { 

      type string; 

      mandatory true; 

      description 

       "Target port"; 

    } 

  } 

 

  grouping ports { 

    description 

     "Port list"; 



 

71 Deliverable D3.2a 17.11.2015 
 

    list ports { 

      key "id"; 

      min-elements 1; 

      description 

       "Ports"; 

      leaf id { 

        type string; 

        mandatory true; 

        description 

         "Port id"; 

      } 

      leaf-list property { 

        type string; 

        min-elements 1; 

        description 

         "Port properties"; 

      } 

    } 

  } 

 

  grouping ports_flows { 

    description 

     "Port list with flows"; 

    list ports { 

      key "id"; 

      min-elements 1; 

      description 

       "Port list"; 

      container flow_rules { 

        uses flow_rules; 

        description 

         "Flow rules"; 

      } 

      leaf id { 

        type string; 

        mandatory true; 

        description 

         "Port id"; 

      } 

      leaf-list property { 

        type string; 

        min-elements 1; 

        description 

         "Port properties"; 

      } 

    } 

  } 

 

  grouping flow_rules { 

    description 

     "Flow rule list"; 

    list flowrules { 

      key "match action"; 

      description 

       "Flow rule"; 

      leaf match { 

        type string; 

        mandatory true; 

        description 

         "Flow space to match"; 



 

72 Deliverable D3.2a 17.11.2015 
 

      } 

      leaf action { 

        type string; 

        mandatory true; 

        description 

         "Action to perform"; 

      } 

    } 

  } 

 

  grouping node_resource { 

    description 

     "Node resource description"; 

    container compute { 

      description 

       "Compute resource description"; 

      leaf cpu { 

        type string; 

        description 

         "CPU"; 

      } 

      leaf memory { 

        type string; 

        description 

         "Memory"; 

      } 

      leaf capacity { 

        type string; 

        description 

         "Capacity"; 

      } 

    } 

    container storage { 

      description 

       "Storage resource description"; 

      leaf hdd { 

        type string; 

        description 

         "HDD"; 

      } 

    } 

    container networking { 

      description 

       "Networking resource description"; 

      uses link_resource; 

      leaf programmability { 

        type string; 

        description 

         "Programmability"; 

      } 

      leaf isolation { 

        type string; 

        description 

         "Isolation"; 

      } 

    } 

    uses res_constraints; 

  } 

 

  grouping res_constraints { 



 

73 Deliverable D3.2a 17.11.2015 
 

    description 

     "Resource constraint grouping"; 

    container constraints { 

      description 

       "Resource constraints"; 

      leaf resiliency { 

        type string; 

        description 

         "Resiliency constraints"; 

      } 

      leaf location { 

        type string; 

        description 

         "Location constraints"; 

      } 

      leaf privacy { 

        type string; 

        description 

         "Privacy constraints"; 

      } 

    } 

  } 

 

  grouping link_resource { 

    description 

     "Link resource description"; 

    leaf delay { 

      type string; 

      description 

       "Delay"; 

    } 

    leaf bandwidth { 

      type string; 

      description 

       "Bandwidth"; 

    } 

  } 

 

  grouping monitoring { 

    description 

     "Monitoring group"; 

    list monitoring_params { 

      key "KPI_desc KPI_value"; 

      description 

       "Monitoring parameters"; 

      leaf KPI_desc { 

        type string; 

        mandatory true; 

        description 

         "KPI description"; 

      } 

      leaf KPI_value { 

        type string; 

        mandatory true; 

        description 

         "KPO value"; 

      } 

      leaf scope { 

        type string; 

        mandatory true; 



 

74 Deliverable D3.2a 17.11.2015 
 

        description 

         "KPI scope"; 

      } 

      leaf priority { 

        type string; 

        description 

         "KPI priority"; 

      } 

      leaf MEASURE { 

        type string; 

        description 

         "MEASURE script"; 

      } 

    } 

  } 

 

  container nffg { 

    description 

      "Network Function Forwarding Graph container"; 

    container parameters { 

      description 

       "NF-FG general parameters"; 

      leaf id { 

        type string; 

        mandatory true; 

        description 

         "NF-FG id"; 

      } 

      leaf name { 

        type string; 

        description 

         "NF-FG name"; 

      } 

      leaf version { 

        type string; 

        mandatory true; 

        description 

         "NF-FG version"; 

      } 

      leaf tenant { 

        type string; 

        description 

         "NF-FG tenant"; 

      } 

      leaf template { 

        type string; 

        description 

         "NF-FG template"; 

      } 

      uses res_constraints; 

    } 

    container monitoring { 

      description 

        "Monitoring parameters for whole NF-FG"; 

      uses monitoring; 

    } 

    container sg { 

      description 

       "Service Graph"; 

      list nfs { 



 

75 Deliverable D3.2a 17.11.2015 
 

        key "id"; 

        description 

          "Network Function (NF) nodes in the Service Graph"; 

        container specification { 

          description 

           "NF specification"; 

          leaf deployment_type { 

            type string; 

            description 

             "NF deployment type"; 

          } 

          leaf image_uri { 

            type string; 

            description 

             "NF image URI"; 

          } 

          leaf vnf_type { 

            type string; 

            description 

             "VNF type"; 

          } 

        } 

        container resources { 

          description 

            "Resource information of NF"; 

          container requirements { 

            uses node_resource; 

            description 

             "Resource requirements of NF"; 

          } 

          list assignment { 

            key "inf_id"; 

            description 

             "Resource assigment to NF"; 

            leaf inf_id { 

              type string; 

              mandatory true; 

              description 

               "Assigned Inf Node id"; 

            } 

            leaf inf_domain { 

              type string; 

              mandatory true; 

              description 

               "Assigned Endpoint domain"; 

            } 

            leaf nffg_id { 

              type string; 

              description 

               "Assigned NF-FG for NF sharing"; 

            } 

            leaf running_nf_id { 

              type string; 

              description 

               "Assigned NF for NF sharing"; 

            } 

          } 

        } 

        container ports { 

          uses ports; 



 

76 Deliverable D3.2a 17.11.2015 
 

          description 

           "NF ports"; 

        } 

        container nf_monitoring { 

          description 

            "Monitoring parameters for single NFs"; 

          uses monitoring; 

        } 

        leaf id { 

          type string; 

          mandatory true; 

          description 

           "NF id"; 

        } 

        leaf name { 

          type string; 

          description 

           "NF name"; 

        } 

        leaf functional_type { 

          type string; 

          mandatory true; 

          description 

           "NF functional type"; 

        } 

      } 

      list saps { 

        key "id"; 

        min-elements 1; 

        description 

          "SAP nodes in the Service Graph"; 

        container ports { 

          uses ports_flows; 

          description 

           "SAP ports"; 

        } 

        container resources { 

          description 

            "Resource information of SAP"; 

          container requirements { 

            uses node_resource; 

            description 

             "Resource requirements of SAP"; 

          } 

          list assignment { 

            key "ep_id"; 

            description 

             "Resource assigment to SAP"; 

            leaf ep_id { 

              type string; 

              mandatory true; 

              description 

               "Assigned Endpoint id"; 

            } 

            leaf inf_domain { 

              type string; 

              mandatory true; 

              description 

               "Assigned Endpoint domain"; 

            } 



 

77 Deliverable D3.2a 17.11.2015 
 

            list ep_ports { 

              key "ep_port"; 

              description 

               "Assigned Endpoint ports"; 

              leaf ep_port { 

                type string; 

                mandatory true; 

                description 

                 "Ednpoint port"; 

              } 

            } 

          } 

        } 

        leaf id { 

          type string; 

          mandatory true; 

          description 

           "SAP id"; 

        } 

        leaf name { 

          type string; 

          description 

           "SAP Name"; 

        } 

      } 

      list sls { 

        key "source src_port"; 

        description 

         "Service links"; 

        container resources { 

          description 

            "Resource information of Service link"; 

          container requirements { 

            uses link_resource; 

            description 

             "Resource requirements of Service link"; 

          } 

          list assignment { 

            key "source src_port"; 

            description 

             "Resource assigment to Service link"; 

            uses link; 

          } 

        } 

        leaf flowclass { 

          type string; 

          description 

           "Flowclass of the Service link"; 

        } 

        uses link; 

      } 

    } 

    container rg { 

      description 

       "Resource Graph"; 

      list infs { 

        key "id"; 

        min-elements 1; 

        description 

          "Infrastructure nodes in the Resource Graph"; 



 

78 Deliverable D3.2a 17.11.2015 
 

        container resources { 

          description 

           "Resource description of Infrastucture Nodes"; 

          uses node_resource; 

        } 

        leaf id { 

          type string; 

          mandatory true; 

          description 

           "Inf Node id"; 

        } 

        leaf domain { 

          type string; 

          mandatory true; 

          description 

           "Inf Node domain"; 

        } 

        leaf name { 

          type string; 

          description 

           "Inf Node name"; 

        } 

        leaf type { 

          type string; 

          mandatory true; 

          description 

           "Inf Node type"; 

        } 

        list ports { 

          key "id"; 

          min-elements 1; 

          description 

           "Inf Node ports"; 

          leaf id { 

            type string; 

            mandatory true; 

            description 

             "Inf Node port id"; 

          } 

          leaf-list property { 

            type string; 

            min-elements 1; 

            description 

              "Port properties"; 

          } 

        } 

      } 

      list eps { 

        key "id"; 

        min-elements 1; 

        description 

          "Endpoint nodes in the Resource Graph"; 

        container resources { 

          description 

            "Endpoint resource description"; 

          uses node_resource; 

        } 

        leaf id { 

          type string; 

          mandatory true; 



 

79 Deliverable D3.2a 17.11.2015 
 

          description 

            "Endpoint id"; 

        } 

        leaf domain { 

          type string; 

          description 

            "Endpoint domain"; 

        } 

        leaf name { 

          type string; 

          description 

            "Endpoint name"; 

        } 

        leaf type { 

          type string; 

          mandatory true; 

          description 

            "Endpoint type"; 

        } 

        list ports { 

          key "id"; 

          min-elements 1; 

          description 

            "Endpoint ports"; 

          leaf id { 

            type string; 

            mandatory true; 

            description 

            "Endpoint port id"; 

          } 

          leaf-list property { 

            type string; 

            min-elements 1; 

            description 

              "Port properties"; 

          } 

        } 

      } 

      list ils { 

        key "source src_port"; 

        description 

          "Infrastructure Links in Resource Graph"; 

        container resources { 

          description 

            "Resource description of Inf Links"; 

          uses link_resource; 

        } 

        uses link; 

      } 

    } 

  } 

} 
 



 

80 Deliverable D3.2a 17.11.2015 
 

Annex 2 Virtualizer-based NF-FG model 

This Annex contains the proposed virtualizer-based NF-FG model and gives usage examples. 

A.2.1 Virtualizer-based NF-FG model defined in YANG 

The formal specification of the virtualizer-based NF-FG model is given below in Table A.2, containing element to 
describe both infrastructure reports and deployment requests. 

Table A.2: YANG model of the Virtualizer 

module virtualizer { 

  namespace "urn:unify:virtualizer"; 

  prefix "virtualizer"; 

 

  revision 2015-05-07  

  { 

    description "Virtualizer's data model"; 

  } 

 

  //======================== REUSABLE GROUPS ================================ 

 

  grouping id-name { 

    leaf id { type string; } 

    leaf name { type string;} 

  } 

 

  grouping id-name-type { 

    uses id-name; 

    leaf type { 

      type string; 

      mandatory true; 

    } 

  } 

 

  // ------------ PORTS ------- 

   

  typedef port-ref { 

    type string; 

  } 

   

  grouping port-sap-vxlan { 

    leaf vxlan {type string;} // for example 

    // container vx_lan { 

    //   leaf remote_ip { type string; } 

    //   leaf local_ip { type string; } 

    //   leaf tunnel_key { type uint32; } 

    // } 

  } 

   

  grouping port-type { 

    leaf port_type {type string;} // TODO: enumerated 

    choice port-type { 

      description "Different port types: abstract and SAPs"; 

      case port-abstract { 

        leaf capability { type string; } 



 

81 Deliverable D3.2a 17.11.2015 
 

      } 

      case port-sap { 

        choice sap-type { 

          case vx-lan { // for example 

            uses port-sap-vxlan; 

          } 

        } 

      } 

    } 

  } 

 

  grouping port { 

    uses id-name; 

    uses port-type; 

  } 

 

  // ------------ FLOW CONTROLS ------- 

 

  grouping flowentry { 

    leaf port { 

      type port-ref; 

      mandatory true; 

    } 

    leaf match { 

      type string; 

      mandatory true; 

    } 

    leaf action { 

      type string; 

      mandatory true; 

    } 

    container resources{ 

      uses link-resource; 

    } 

 

  } 

 

  grouping flowtable { 

    container flowtable { 

      list flowentry { 

        key "port match action"; 

        uses flowentry; 

      } 

    } 

  } 

     

  // ------------ LINKS  ------- 

 

  grouping link-resource { 

    leaf delay { 

      type string; 

      mandatory false; 

    } 

    leaf bandwidth { 

      type string; 

      mandatory false; 

    } 

  } 

 

  grouping link { 



 

82 Deliverable D3.2a 17.11.2015 
 

    uses id-name; 

    leaf src { 

      type port-ref; 

    } 

    leaf dst { 

      type port-ref; 

    } 

    container resources{ 

      uses link-resource; 

    } 

  } 

 

  grouping links { 

    container links { 

      list link { 

        key "src dst"; 

        uses link; 

      } 

    } 

  } 

 

  // ---------- CAPABILITIES  ------------------- 

 

  grouping capabilities { 

    container supported_NFs { // if supported NFs are enumerated 

      list node{ 

        key "id"; 

        uses node; 

      } 

    } 

    // TODO: add other capabilities 

  } 

 

  // ---------- NODE ------------------- 

 

  grouping software-resource { 

    leaf cpu { 

      type string; 

      mandatory true; 

    } 

    leaf mem { 

      type string; 

      mandatory true; 

    } 

    leaf storage { 

      type string; 

      mandatory true; 

    } 

  } 

 

  grouping node { 

    description "Any node: infrastructure or NFs"; 

    uses id-name-type; 

    container ports { 

      list port{ 

        key "id"; 

        uses port; 

      } 

    } 

    uses links; 



 

83 Deliverable D3.2a 17.11.2015 
 

    container resources{ 

      uses software-resource; 

    } 

  } 

 

  grouping infra-node { // they can contain other nodes (as NFs) 

    uses node; 

    container NF_instances { 

      list node{ 

        key "id"; 

        uses node; 

      } 

    } 

    container capabilities { 

      uses capabilities; 

    } 

    uses flowtable; 

  } 

   

 

 

  //=============== NF-FG: Virtualizer and the Mapped request ===================== 

 

  container virtualizer { 

    description "Container for a single virtualizer"; 

    uses id-name; 

 

    container nodes{ 

      list node{ // infra nodes 

        key "id"; 

        uses infra-node; 

      } 

    } 

    uses links; // infra links 

  } 

}     
 

The above described model can be visualized as shown in Figure A2-‎6.1. 



 

84 Deliverable D3.2a 17.11.2015 
 

 

Figure A2-‎6.1: UML diagram of the YANG model 

 



 

85 Deliverable D3.2a 17.11.2015 
 

A.2.2 Single node infrastructure report example 

 

Figure A2-‎6.2: Single node 

The infrastructure of Figure A2-‎6.2 can have the following XML description according to our YANG model, see Table 
A.3. 

Table A.3: Single node infrastructure report example 

<virtualizer xmlns="urn:unify:virtualizer"> 

    <id>UUID001</id> 

    <name>Single node simple infrastructure report</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <name>single BiS-BiS node</name> 

            <type>BisBis</type> 

            <ports> 

                <port> 

                    <id>0</id> 

                    <name>SAP0 port</name> 

                    <port_type>port-sap</port_type> 

                    <vxlan>...</vxlan> 

                </port> 

                <port> 

                    <id>1</id> 

                    <name>North port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

                <port> 

                    <id>2</id> 

                    <name>East port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

            </ports> 

            <resources> 

                <cpu>20</cpu> 

                <mem>64 GB</mem> 

                <storage>100 TB</storage> 

            </resources> 

        </node> 

    </nodes> 

</virtualizer> 



 

86 Deliverable D3.2a 17.11.2015 
 

A.2.3 3-node infrastructure report example 

 

Figure A2-‎6.3: 3 nodes 

The infrastructure of Figure A2-‎6.3 can have the following XML description according to our YANG model, see Table 
A.4. 

Table A.4: 3-node infrastructure report example 

<virtualizer xmlns="urn:unify:virtualizer"> 

    <id>UUID002</id> 

    <name>3-node simple infrastructure report</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <name>West BiS-BiS node</name> 

            <type>BiSBiS</type> 

            <ports> 

                <port> 

                    <id>0</id> 

                    <name>SAP0 port</name> 

                    <port_type>port-sap</port_type> 

                    <vxlan>...</vxlan> 

                </port> 

                <port> 

                    <id>1</id> 

                    <name>North port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

                <port> 

                    <id>2</id> 

                    <name>East port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

            </ports> 

            <resources> 

                <cpu>20</cpu> 

                <mem>64 GB</mem> 

                <storage>100 TB</storage> 

            </resources> 

        </node> 

        <node> 

            <id>UUID12</id> 

            <name>East BiS-BiS node</name> 

            <type>BiSBiS</type> 

            <ports> 



 

87 Deliverable D3.2a 17.11.2015 
 

                <port> 

                    <id>1</id> 

                    <name>SAP1 port</name> 

                    <port_type>port-sap</port_type> 

                    <vxlan>...</vxlan> 

                </port> 

                <port> 

                    <id>0</id> 

                    <name>North port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

                <port> 

                    <id>2</id> 

                    <name>West port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

            </ports> 

            <resources> 

                <cpu>10</cpu> 

                <mem>32 GB</mem> 

                <storage>100 TB</storage> 

            </resources> 

        </node> 

        <node> 

            <id>UUID13</id> 

            <name>North BiS-BiS node</name> 

            <type>BiSBiS</type> 

            <ports> 

                <port> 

                    <id>0</id> 

                    <name>SAP2 port</name> 

                    <port_type>port-sap</port_type> 

                    <vxlan>...</vxlan> 

                </port> 

                <port> 

                    <id>1</id> 

                    <name>East port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

                <port> 

                    <id>2</id> 

                    <name>West port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

            </ports> 

            <resources> 

                <cpu>20</cpu> 

                <mem>64 GB</mem> 

                <storage>1 TB</storage> 

            </resources> 

        </node> 

    </nodes> 

    <links> 

        <link> 

            <id>0</id> 

            <name>Horizontal link</name> 



 

88 Deliverable D3.2a 17.11.2015 
 

            <src>../../nodes/node[id=UUID11]/ports/port[id=2]</src> 

            <dst>../../nodes/node[id=UUID12]/ports/port[id=2]</dst> 

            <resources> 

                <delay>2 ms</delay> 

                <bandwidth>10 Gb</bandwidth> 

            </resources> 

        </link> 

        <link> 

            <id>1</id> 

            <name>West link</name> 

            <src>../../nodes/node[id=UUID11]/ports/port[id=1]</src> 

            <dst>../../nodes/node[id=UUID13]/ports/port[id=2]</dst> 

            <resources> 

                <delay>5 ms</delay> 

                <bandwidth>10 Gb</bandwidth> 

            </resources> 

        </link> 

        <link> 

            <id>2</id> 

            <name>East link</name> 

            <src>../../nodes/node[id=UUID12]/ports/port[id=0]</src> 

            <dst>../../nodes/node[id=UUID13]/ports/port[id=1]</dst> 

            <resources> 

                <delay>2 ms</delay> 

                <bandwidth>5 Gb</bandwidth> 

            </resources> 

        </link> 

    </links> 

</virtualizer> 

A.2.4 Single node with delay matrix example 

 

Figure A2-‎6.4: Delay matrix 

The infrastructure of the lower part of Figure A2-‎6.4, represented by the Virtualizer as the upper part of Figure 
A2-‎6.4, can have the following XML description according to our YANG model, see Table A.5. 



 

89 Deliverable D3.2a 17.11.2015 
 

Table A.5: Delay matrix infrastructure report example 

<virtualizer xmlns="urn:unify:virtualizer"> 

    <id>UUID001</id> 

    <name>Single node with link internal delays infrastructure report</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <name>single BiS-BiS node</name> 

            <type>BiSBiS</type> 

            <ports> 

                <port> 

                    <id>0</id> 

                    <name>SAP0 port</name> 

                    <port_type>port-sap</port_type> 

                    <vxlan>...</vxlan> 

                </port> 

                <port> 

                    <id>1</id> 

                    <name>North port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

                <port> 

                    <id>2</id> 

                    <name>East port</name> 

                    <port_type>port-abstract</port_type> 

                    <capability>...</capability> 

                </port> 

            </ports> 

            <links> 

                <link> 

                    <id>int0</id> 

                    <name>internal horizontal</name> 

                    <src>../../ports/port[id=0]</src> 

                    <dst>../../ports/port[id=2]</dst> 

                    <resources> 

                        <delay>1 ms</delay> 

                        <bandwidth>40 Gb</bandwidth> 

                    </resources> 

                </link> 

                <link> 

                    <id>int1</id> 

                    <name>internal left</name> 

                    <src>../../ports/port[id=0]</src> 

                    <dst>../../ports/port[id=1]</dst> 

                    <resources> 

                        <delay>5 ms</delay> 

                        <bandwidth>10 Gb</bandwidth> 

                    </resources> 

                </link> 

                <link> 

                    <id>int2</id> 

                    <name>internal right</name> 

                    <src>../../ports/port[id=1]</src> 

                    <dst>../../ports/port[id=2]</dst> 

                    <resources> 

                        <delay>2 ms</delay> 

                        <bandwidth>81 Gb</bandwidth> 



 

90 Deliverable D3.2a 17.11.2015 
 

                    </resources> 

                </link> 

            </links> 

            <resources> 

                <cpu>20</cpu> 

                <mem>64 GB</mem> 

                <storage>100 TB</storage> 

            </resources> 

        </node> 

    </nodes> 

</virtualizer> 

A.2.5 Single request example 

 

Figure A2-‎6.5: Simple request of 3NFs on a single BiS-BiS 

The infrastructure of Figure A2-‎6.5 can have the following XML description according to our YANG model, see Table 
A.6. 

Table A.6: Single request example 

<virtualizer xmlns="urn:unify:virtualizer"> 

    <id>UUID001</id> 

    <name>Single node simple request</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <NF_instances> 

                <node> 

                    <id>NF1</id> 

                    <name>first NF</name> 

                    <type>Parental control B.4</type> 

                    <ports> 

                        <port> 

                            <id>2</id> 

                            <name>in</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 



 

91 Deliverable D3.2a 17.11.2015 
 

                        </port> 

                        <port> 

                            <id>3</id> 

                            <name>out</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                    </ports> 

                    <!-- example <resources> could come here --> 

                </node> 

                <node> 

                    <id>NF2</id> 

                    <name>cache</name> 

                    <type>Http Cache 1.2</type> 

                    <ports> 

                        <port> 

                            <id>4</id> 

                            <name>in</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                        <port> 

                            <id>5</id> 

                            <name>out</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                    </ports> 

                    <!-- example <resources> could come here --> 

                </node> 

                <node> 

                    <id>NF3</id> 

                    <name>firewall</name> 

                    <type>Stateful firewall C</type> 

                    <ports> 

                        <port> 

                            <id>6</id> 

                            <name>in</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                        <port> 

                            <id>7</id> 

                            <name>out</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                    </ports> 

                    <!-- example <resources> could come here --> 

                </node> 

            </NF_instances> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>*</match> 

                    

<action>output:../../NF_instances/node[id=NF1]/ports/port[id=2]</action> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF1]/ports/port[id=3]</port> 



 

92 Deliverable D3.2a 17.11.2015 
 

                    <match>fr-a</match> 

                    

<action>output:../../NF_instances/node[id=NF2]/ports/port[id=4]</action> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF1]/ports/port[id=3]</port> 

                    <match>fr-b</match> 

                    

<action>output:../../NF_instances/node[id=NF3]/ports/port[id=6]</action> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF2]/ports/port[id=5]</port> 

                    <match>*</match> 

                    <action>output:../../ports/port[id=1]</action> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF3]/ports/port[id=7]</port> 

                    <match>*</match> 

                    <action>output:../../ports/port[id=1]</action> 

                </flowentry> 

            </flowtable> 

        </node> 

    </nodes> 

</virtualizer> 

A.2.6 Request with BiS-BiS internal links example 

 

Figure A2-‎6.6: Request with BiS-BiS internal requirements 

The infrastructure of Figure A2-‎6.6 can have the following XML description according to our YANG model, see Table 
A.7. 

  



 

93 Deliverable D3.2a 17.11.2015 
 

 

Table A.7: Request with Bis-Bis internal requirements example 

<virtualizer xmlns="urn:unify:virtualizer"> 

    <id>UUID001</id> 

    <name>Single node simple request with inter-virtual port delays</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <NF_instances> 

                <node> 

                    <id>NF1</id> 

                    <name>first NF</name> 

                    <type>Parental control B.4</type> 

                    <ports> 

                        <port> 

                            <id>2</id> 

                            <name>in</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                        <port> 

                            <id>3</id> 

                            <name>out</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                    </ports> 

                    <!-- example may contain <resources> here --> 

                </node> 

                <node> 

                    <id>NF2</id> 

                    <name>cache</name> 

                    <type>Http Cache 1.2</type> 

                    <ports> 

                        <port> 

                            <id>4</id> 

                            <name>in</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                        <port> 

                            <id>5</id> 

                            <name>out</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                    </ports> 

                    <!-- example may contain <resources> here --> 

                </node> 

            </NF_instances> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>*</match> 

                    

<action>output:../../NF_instances/node[id=NF1]/ports/port[id=2]</action> 

                    <resources> 



 

94 Deliverable D3.2a 17.11.2015 
 

                        <delay>50 ms</delay> 

                        <bandwidth>1 Mb</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF1]/ports/port[id=3]</port> 

                    <match>fr-a</match> 

                    

<action>output:../../NF_instances/node[id=NF2]/ports/port[id=4]</action> 

                    <resources> 

                        <delay>25 ms</delay> 

                        <bandwidth>2 Mb</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF1]/ports/port[id=3]</port> 

                    <match>fr-b</match> 

                    

<action>output:../../NF_instances/node[id=NF3]/ports/port[id=6]</action> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF2]/ports/port[id=5]</port> 

                    <match>*</match> 

                    <action>output:../../ports/port[id=1]</action> 

                </flowentry> 

                <flowentry> 

                    <port>../../NF_instances/node[id=NF3]/ports/port[id=7]</port> 

                    <match>*</match> 

                    <action>output:../../ports/port[id=1]</action> 

                </flowentry> 

            </flowtable> 

        </node> 

    </nodes> 

</virtualizer> 

A.2.7 Request with NF internal links example 

 

Figure A2-‎6.7: Request with NF internal requirements 



 

95 Deliverable D3.2a 17.11.2015 
 

The infrastructure of Figure A2-‎6.7 can have the following XML description according to our YANG model, see Table 
A.8. 

Table A.8: Request with NF internal requirements example 

<virtualizer xmlns="urn:unify:virtualizer"> 

    <id>UUID001</id> 

    <name>Single node simple request with intra-NF virtual link requirements</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <NF_instances> 

                <node> 

                    <id>NF1</id> 

                    <name>first NF</name> 

                    <type>Parental control B.4</type> 

                    <ports> 

                        <port> 

                            <id>2</id> 

                            <name>in</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                        <port> 

                            <id>3</id> 

                            <name>out</name> 

                            <port_type>port-abstract</port_type> 

                            <capability>...</capability> 

                        </port> 

                    </ports> 

                    <links> 

                        <link> 

                            <id>012345</id> 

                            <name>requirement on NF delay</name> 

                            <src>../../ports/port[id=2]</src> 

                            <dst>../../ports/port[id=3]</dst> 

                            <resources> 

                                <delay>20 ms</delay> 

                                <bandwidth>1 Mb</bandwidth> 

                            </resources> 

                        </link> 

                    </links> 

                    <!-- example <resources> could come here --> 

                </node> 

            </NF_instances> 

            <!-- <flowtable> omitted here --> 

        </node> 

    </nodes> 

</virtualizer> 

 

  



 

96 Deliverable D3.2a 17.11.2015 
 

 

A.2.8 Link sharing example 

Requests from Section ‎4.7 can have the following XML description according to our YANG model, see Table A.9, 
Table A.10, and Table A.11. 

Table A.9: Request with link sharing example, step 1. 

<virtualizer> 

    <id>UUID002-step1</id> 

    <name>update request from SG-1</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>{MAC1}</match> 

                    <action>Tag A; output:../../ports/port[id=1]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>10 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

        <node> 

            <id>UUID13</id> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=2]</port> 

                    <match>Tag=A</match> 

                    <action>Untag A; output:../../ports/port[id=0]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>10 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

    </nodes> 

</virtualizer> 

 

Table A.10: Request with link sharing example, step 2. 

<virtualizer> 

    <id>UUID002-step2</id> 

    <name>update request after SG-2</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>{MAC1}</match> 

                    <action>Tag A; output: #</action> 



 

97 Deliverable D3.2a 17.11.2015 
 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>10 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>{MAC2}</match> 

                    <action>Tag B; output: #</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>5 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag A|B</match> 

                    <action>Tag W; output:../../ports/port[id=1]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>(10+5)*.8 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

        <node> 

            <id>UUID13</id> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=2]</port> 

                    <match>Tag W</match> 

                    <action>Untag W; output:../../ports/port[id=#]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>(10+5)*.8 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag=A</match> 

                    <action>Untag A; output:../../ports/port[id=0]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>10 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag=B</match> 

                    <action>output:../../ports/port[id=1]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>5 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

        <node> 

            <id>UUID12</id> 

            <flowtable> 



 

98 Deliverable D3.2a 17.11.2015 
 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>Tag B</match> 

                    <action>Untag B; output:../../ports/port[id=1]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>5 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

    </nodes> 

</virtualizer> 

 
Table A.11: Request with link sharing example, step 3. 

<virtualizer> 

    <id>UUID002-step3</id> 

    <name>update request after SG-3</name> 

    <nodes> 

        <node> 

            <id>UUID11</id> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=0]</port> 

                    <match>{MAC3}</match> 

                    <action>Tag C; output: #</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>20 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag A|B</match> 

                    <action>Tag W; output:../../ports/port[id=1]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>(10+5+20)*.8 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

        <node> 

            <id>UUID13</id> 

            <flowtable> 

                <flowentry> 

                    <port>../../ports/port[id=2]</port> 

                    <match>Tag W</match> 

                    <action>Untag W; output:../../ports/port[id=#]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>(10+20)*.8 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag=A|C</match> 

                    <action>Tag U; output:../../ports/port[id=#]</action> 



 

99 Deliverable D3.2a 17.11.2015 
 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>10 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag=U</match> 

                    <action>Untag U output:../../ports/port[id=0]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>...</bandwidth> 

                    </resources> 

                </flowentry> 

                <flowentry> 

                    <port>../../ports/port[id=#]</port> 

                    <match>Tag=B</match> 

                    <action>output:../../ports/port[id=1]</action> 

                    <resources> 

                        <delay>...</delay> 

                        <bandwidth>5 Mbps</bandwidth> 

                    </resources> 

                </flowentry> 

            </flowtable> 

        </node> 

    </nodes> 

</virtualizer> 

 


