
Deliverable D3.2
Detailed functional specification and algorithm description

Dissemination level PU

Version 1.0

Due date 30.04.2015

Version date 18.06.2015

This project is co-funded
by the European Union

Deliverable D3.2
Detailed functional specification and algorithm description

Dissemination level PU

Version 1.0

Due date 30.04.2015

Version date 18.06.2015

This project is co-funded
by the European Union

Deliverable D3.2
Detailed functional specification and algorithm description

Dissemination level PU

Version 1.0

Due date 30.04.2015

Version date 18.06.2015

This project is co-funded
by the European Union

1 Deliverable D3.2 18.06.2015

Document information

Editors and Authors:

Editors: Pontus Sköldström (ACREO)

Contributing Partners and Authors:

ACREO Pontus Sköldström, Manxing Du

BME Balász Sonkoly, János Czentye, András Gulyás, Gábor Rétvári

DTAG Mario Kind

EAB Ahmad Rostami, Xuejun Cai, Wolfgang John

EHU Jokin Garay, Jon Matias

ETH David Jocha, Róbert Szabó

iMinds Wouter Tavernier, Sahel Sahhaf, Steven van Rossem

OTE George Agapiou

TI Vinicio Vercellone

TUB Matthias Rost

Project Coordinator

Dr. András Császár

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB

KONYVES KALMAN KORUT 11 B EP

1097 BUDAPEST, HUNGARY

Fax: +36 (1) 437-7467

Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme

FP7-ICT-2013-11

Collaborative project

Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the information is fit
for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may result from the use of these
materials subject to any liability which is mandatory due to applicable law.

1 Deliverable D3.2 18.06.2015

Document information

Editors and Authors:

Editors: Pontus Sköldström (ACREO)

Contributing Partners and Authors:

ACREO Pontus Sköldström, Manxing Du

BME Balász Sonkoly, János Czentye, András Gulyás, Gábor Rétvári

DTAG Mario Kind

EAB Ahmad Rostami, Xuejun Cai, Wolfgang John

EHU Jokin Garay, Jon Matias

ETH David Jocha, Róbert Szabó

iMinds Wouter Tavernier, Sahel Sahhaf, Steven van Rossem

OTE George Agapiou

TI Vinicio Vercellone

TUB Matthias Rost

Project Coordinator

Dr. András Császár

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB

KONYVES KALMAN KORUT 11 B EP

1097 BUDAPEST, HUNGARY

Fax: +36 (1) 437-7467

Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme

FP7-ICT-2013-11

Collaborative project

Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the information is fit
for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may result from the use of these
materials subject to any liability which is mandatory due to applicable law.

1 Deliverable D3.2 18.06.2015

Document information

Editors and Authors:

Editors: Pontus Sköldström (ACREO)

Contributing Partners and Authors:

ACREO Pontus Sköldström, Manxing Du

BME Balász Sonkoly, János Czentye, András Gulyás, Gábor Rétvári

DTAG Mario Kind

EAB Ahmad Rostami, Xuejun Cai, Wolfgang John

EHU Jokin Garay, Jon Matias

ETH David Jocha, Róbert Szabó

iMinds Wouter Tavernier, Sahel Sahhaf, Steven van Rossem

OTE George Agapiou

TI Vinicio Vercellone

TUB Matthias Rost

Project Coordinator

Dr. András Császár

Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH) AB

KONYVES KALMAN KORUT 11 B EP

1097 BUDAPEST, HUNGARY

Fax: +36 (1) 437-7467

Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme

FP7-ICT-2013-11

Collaborative project

Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the information is fit
for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may result from the use of these
materials subject to any liability which is mandatory due to applicable law.

2 Deliverable D3.2 18.06.2015

Important dates:

April 9: Draft versions of separate sections

April 16: Review of separate sections

April 27: All sections revised based on section reviews, all major updates completed

April 30: First complete draft of D3.2

May 15: External review completed

May 30: Revisions based on external review completed

June 14: Updates based on discussions during plenary meeting

June 22: Submission of document

© 2013 - 2015 by UNIFY Consortium

2 Deliverable D3.2 18.06.2015

Important dates:

April 9: Draft versions of separate sections

April 16: Review of separate sections

April 27: All sections revised based on section reviews, all major updates completed

April 30: First complete draft of D3.2

May 15: External review completed

May 30: Revisions based on external review completed

June 14: Updates based on discussions during plenary meeting

June 22: Submission of document

© 2013 - 2015 by UNIFY Consortium

2 Deliverable D3.2 18.06.2015

Important dates:

April 9: Draft versions of separate sections

April 16: Review of separate sections

April 27: All sections revised based on section reviews, all major updates completed

April 30: First complete draft of D3.2

May 15: External review completed

May 30: Revisions based on external review completed

June 14: Updates based on discussions during plenary meeting

June 22: Submission of document

© 2013 - 2015 by UNIFY Consortium

3 Deliverable D3.2 18.06.2015

Table of contents

1 Introduction 12

2 Programmability interfaces and data models 15

2.1 Efficient recursive NF-FG data queries 15

3 Service decomposition 17

3.1 Introduction to service decomposition 17
3.1.1 Advantages of service decomposition 18
3.1.2 Limits and drawbacks of decomposition 19
3.1.3 Why and when to decompose 20
3.1.4 Which actors perform the decomposition? 20

3.2 Atomic blocks 21
3.2.1 Hardware-defined atomic blocks 21
3.2.2 Software-defined atomic blocks 22
3.2.3 Virtualization/isolation technologies 26
3.2.4 Atomic Block overview 32

3.3 Monolithic VNF’s and Services constructed from atomic blocks 33
3.3.1 Elastic Router use case 33
3.3.2 Flow-based Network Access Control 35
3.3.3 Gateway decomposition 37
3.3.4 Service Decomposition trade-offs 39

4 Scalable orchestration algorithms 41

4.1 Context of the resource orchestration problem 41
4.2 Background on the Service Chain Embedding Problem 44
4.3 Online Algorithms 45

4.3.1 End-to-end Embedding on Dense (Multi-)Graphs 46
4.3.2 Virtual Cluster Embedding Problem 48
4.3.3 Flow Algorithm for Optimally Embedding Virtual Cluster Embeddings 49

4.4 Hybrid Online-Offline Cooperation 51
4.5 Pure Offline Algorithm: DiVINE 52

4.5.1 Outline of the Initial Computational Evaluation 53

3 Deliverable D3.2 18.06.2015

Table of contents

1 Introduction 12

2 Programmability interfaces and data models 15

2.1 Efficient recursive NF-FG data queries 15

3 Service decomposition 17

3.1 Introduction to service decomposition 17
3.1.1 Advantages of service decomposition 18
3.1.2 Limits and drawbacks of decomposition 19
3.1.3 Why and when to decompose 20
3.1.4 Which actors perform the decomposition? 20

3.2 Atomic blocks 21
3.2.1 Hardware-defined atomic blocks 21
3.2.2 Software-defined atomic blocks 22
3.2.3 Virtualization/isolation technologies 26
3.2.4 Atomic Block overview 32

3.3 Monolithic VNF’s and Services constructed from atomic blocks 33
3.3.1 Elastic Router use case 33
3.3.2 Flow-based Network Access Control 35
3.3.3 Gateway decomposition 37
3.3.4 Service Decomposition trade-offs 39

4 Scalable orchestration algorithms 41

4.1 Context of the resource orchestration problem 41
4.2 Background on the Service Chain Embedding Problem 44
4.3 Online Algorithms 45

4.3.1 End-to-end Embedding on Dense (Multi-)Graphs 46
4.3.2 Virtual Cluster Embedding Problem 48
4.3.3 Flow Algorithm for Optimally Embedding Virtual Cluster Embeddings 49

4.4 Hybrid Online-Offline Cooperation 51
4.5 Pure Offline Algorithm: DiVINE 52

4.5.1 Outline of the Initial Computational Evaluation 53

3 Deliverable D3.2 18.06.2015

Table of contents

1 Introduction 12

2 Programmability interfaces and data models 15

2.1 Efficient recursive NF-FG data queries 15

3 Service decomposition 17

3.1 Introduction to service decomposition 17
3.1.1 Advantages of service decomposition 18
3.1.2 Limits and drawbacks of decomposition 19
3.1.3 Why and when to decompose 20
3.1.4 Which actors perform the decomposition? 20

3.2 Atomic blocks 21
3.2.1 Hardware-defined atomic blocks 21
3.2.2 Software-defined atomic blocks 22
3.2.3 Virtualization/isolation technologies 26
3.2.4 Atomic Block overview 32

3.3 Monolithic VNF’s and Services constructed from atomic blocks 33
3.3.1 Elastic Router use case 33
3.3.2 Flow-based Network Access Control 35
3.3.3 Gateway decomposition 37
3.3.4 Service Decomposition trade-offs 39

4 Scalable orchestration algorithms 41

4.1 Context of the resource orchestration problem 41
4.2 Background on the Service Chain Embedding Problem 44
4.3 Online Algorithms 45

4.3.1 End-to-end Embedding on Dense (Multi-)Graphs 46
4.3.2 Virtual Cluster Embedding Problem 48
4.3.3 Flow Algorithm for Optimally Embedding Virtual Cluster Embeddings 49

4.4 Hybrid Online-Offline Cooperation 51
4.5 Pure Offline Algorithm: DiVINE 52

4.5.1 Outline of the Initial Computational Evaluation 53

4 Deliverable D3.2 18.06.2015

4.5.2 Understanding the Out-of-the-Box Performance of the Optimal Offline Mixed-Integer Program 53
4.5.3 Initial DiVINE Evaluation 56

4.6 Service chain embedding supporting service decomposition 57
4.6.1 Problem description 57
4.6.2 Optimal solution for service decomposition w.r.t. resources footprint 58
4.6.3 Heuristic solution for service decomposition w.r.t. resource footprint 59
4.6.4 Evaluation of heuristic solution versus optimal solution 60
4.6.5 Evaluation of embedding time in heuristic solution 65
4.6.6 Potential improvements 67

4.7 Distributed orchestration 68
4.7.1 Implemented algorithms 68

5 Scalable and resilient services 71

5.1 Requirements on scalability mechanisms on BNG use-case 72
5.1.1 Reasons for BNG scaling 73
5.1.2 State classification and performance requirements 74

5.2 VNF Scaling and management of internal state 77
5.2.1 OpenNF architecture 79
5.2.2 Distributed state transfer (DiST) 82
5.2.3 Evaluation of DiST vs. original OpenNF 84
5.2.4 Conclusions on of evaluation and potential extensions 88

5.3 Service resiliency 89
5.3.1 Protection vs. restoration 90
5.3.2 Recovery scope 90
5.3.3 Failure detection 91
5.3.4 Recovery controlling component 91
5.3.5 State synchronization or migration component 92
5.3.6 NF protection example 92
5.3.7 Conclusions 94

6 Traffic steering and forwarding state 96

6.1 Theoretical approach to traffic steering 97
6.1.1 A framework for Software Defined Routing (SDR) 97
6.1.2 Classification of routing & forwarding paradigms 100
6.1.3 Trading off space across tiers 102

4 Deliverable D3.2 18.06.2015

4.5.2 Understanding the Out-of-the-Box Performance of the Optimal Offline Mixed-Integer Program 53
4.5.3 Initial DiVINE Evaluation 56

4.6 Service chain embedding supporting service decomposition 57
4.6.1 Problem description 57
4.6.2 Optimal solution for service decomposition w.r.t. resources footprint 58
4.6.3 Heuristic solution for service decomposition w.r.t. resource footprint 59
4.6.4 Evaluation of heuristic solution versus optimal solution 60
4.6.5 Evaluation of embedding time in heuristic solution 65
4.6.6 Potential improvements 67

4.7 Distributed orchestration 68
4.7.1 Implemented algorithms 68

5 Scalable and resilient services 71

5.1 Requirements on scalability mechanisms on BNG use-case 72
5.1.1 Reasons for BNG scaling 73
5.1.2 State classification and performance requirements 74

5.2 VNF Scaling and management of internal state 77
5.2.1 OpenNF architecture 79
5.2.2 Distributed state transfer (DiST) 82
5.2.3 Evaluation of DiST vs. original OpenNF 84
5.2.4 Conclusions on of evaluation and potential extensions 88

5.3 Service resiliency 89
5.3.1 Protection vs. restoration 90
5.3.2 Recovery scope 90
5.3.3 Failure detection 91
5.3.4 Recovery controlling component 91
5.3.5 State synchronization or migration component 92
5.3.6 NF protection example 92
5.3.7 Conclusions 94

6 Traffic steering and forwarding state 96

6.1 Theoretical approach to traffic steering 97
6.1.1 A framework for Software Defined Routing (SDR) 97
6.1.2 Classification of routing & forwarding paradigms 100
6.1.3 Trading off space across tiers 102

4 Deliverable D3.2 18.06.2015

4.5.2 Understanding the Out-of-the-Box Performance of the Optimal Offline Mixed-Integer Program 53
4.5.3 Initial DiVINE Evaluation 56

4.6 Service chain embedding supporting service decomposition 57
4.6.1 Problem description 57
4.6.2 Optimal solution for service decomposition w.r.t. resources footprint 58
4.6.3 Heuristic solution for service decomposition w.r.t. resource footprint 59
4.6.4 Evaluation of heuristic solution versus optimal solution 60
4.6.5 Evaluation of embedding time in heuristic solution 65
4.6.6 Potential improvements 67

4.7 Distributed orchestration 68
4.7.1 Implemented algorithms 68

5 Scalable and resilient services 71

5.1 Requirements on scalability mechanisms on BNG use-case 72
5.1.1 Reasons for BNG scaling 73
5.1.2 State classification and performance requirements 74

5.2 VNF Scaling and management of internal state 77
5.2.1 OpenNF architecture 79
5.2.2 Distributed state transfer (DiST) 82
5.2.3 Evaluation of DiST vs. original OpenNF 84
5.2.4 Conclusions on of evaluation and potential extensions 88

5.3 Service resiliency 89
5.3.1 Protection vs. restoration 90
5.3.2 Recovery scope 90
5.3.3 Failure detection 91
5.3.4 Recovery controlling component 91
5.3.5 State synchronization or migration component 92
5.3.6 NF protection example 92
5.3.7 Conclusions 94

6 Traffic steering and forwarding state 96

6.1 Theoretical approach to traffic steering 97
6.1.1 A framework for Software Defined Routing (SDR) 97
6.1.2 Classification of routing & forwarding paradigms 100
6.1.3 Trading off space across tiers 102

5 Deliverable D3.2 18.06.2015

6.1.4 Results 105

7 Scalable orchestration architectures 107

7.1 Design and implementation of ESCAPEv2 107
7.2 Orchestration of Radio and Transport Resources 111

7.2.1 Integrating Radio Resource Control into the Orchestration Architecture 111
7.2.2 Proof of Concept Elements 112
7.2.3 Elastic Mobile Broadband Services: The Orchestration Process 113

8 Conclusions 116

9 References 119

Annex 1 Main components of ESCAPEv2 128

A.1.1 Static model of Service module 128
A.1.2Dynamic model of Service module 131
A.1.3Static model of Orchestration module 134
A.1.4Dynamic model of Orchestration module 137
A.1.5Static model of Adaptation module 139
A.1.6 Dynamic model of Adaption module 141
A.1.7Integration issues 145

5 Deliverable D3.2 18.06.2015

6.1.4 Results 105

7 Scalable orchestration architectures 107

7.1 Design and implementation of ESCAPEv2 107
7.2 Orchestration of Radio and Transport Resources 111

7.2.1 Integrating Radio Resource Control into the Orchestration Architecture 111
7.2.2 Proof of Concept Elements 112
7.2.3 Elastic Mobile Broadband Services: The Orchestration Process 113

8 Conclusions 116

9 References 119

Annex 1 Main components of ESCAPEv2 128

A.1.1 Static model of Service module 128
A.1.2Dynamic model of Service module 131
A.1.3Static model of Orchestration module 134
A.1.4Dynamic model of Orchestration module 137
A.1.5Static model of Adaptation module 139
A.1.6 Dynamic model of Adaption module 141
A.1.7Integration issues 145

5 Deliverable D3.2 18.06.2015

6.1.4 Results 105

7 Scalable orchestration architectures 107

7.1 Design and implementation of ESCAPEv2 107
7.2 Orchestration of Radio and Transport Resources 111

7.2.1 Integrating Radio Resource Control into the Orchestration Architecture 111
7.2.2 Proof of Concept Elements 112
7.2.3 Elastic Mobile Broadband Services: The Orchestration Process 113

8 Conclusions 116

9 References 119

Annex 1 Main components of ESCAPEv2 128

A.1.1 Static model of Service module 128
A.1.2Dynamic model of Service module 131
A.1.3Static model of Orchestration module 134
A.1.4Dynamic model of Orchestration module 137
A.1.5Static model of Adaptation module 139
A.1.6 Dynamic model of Adaption module 141
A.1.7Integration issues 145

6 Deliverable D3.2 18.06.2015

List of figures

Figure 2-1: Recursive Monitoring Query.. 16
Figure 3-1: IDS service decomposition ... 17
Figure 3-2: Decomposition of a GStreamer pipeline transcoding AVI to FLV and MKV formats. ..18
Figure 3-3: Routing atomic blocks as used in eg. Quagga.. 23
Figure 3-4: Example VNF implemented as a Click script. ...24
Figure 3-5: VM a) versus Container b) architecture.. 26
Figure 3-6: Two Docker containers A and B. B is related to A with both links and volumes..30
Figure 3-7: WebCache decomposed into 4 processes...31
Figure 3-8: Elastic Router Decomposition. .. 35
Figure 3-9: FlowNAC architecture ... 37
Figure 3-10: Gateway decomposition example.. 39
Figure 3-11: Decomposition trade-offs ... 40
Figure 4-1: BT network structure ...42
Figure 4-2: Network embedding concept ...44
Figure 4-3: A simple NF-FG to be orchestrated...45
Figure 4-4: Inter-IXP network with multiple potential transit ISPs... 46
Figure 4-5: Acceptance ratio and resource utilization of a 28 node IXP multi-graph in the online scenario. 48
Figure 4-6: Virtual Cluster abstraction: a set of servers is connected via a central switch... 49
Figure 4-7: Flow algorithm to optimally embed virtual clusters on any topologies..50
Figure 4-8: Heuristic offline Integer Program to maximize the number of request embedded. ..51
Figure 4-9: Comparison of optimal solution value with the heuristic approaches ... 52
Figure 4-10: Overview of the topologies contained in the Topology Zoo.. 53
Figure 4-11: Impact of the different parameters.. 55
Figure 4-12: ECDF of reached objective gap over time. ... 56
Figure 4-13: 3D representation of the difference of ECDFs of DiVINE vs. the pure MIP on the Geant topology. 57
Figure 4-14: Execution time of ILP and DSBM for SGs with 5 and 10 NFs... 62
Figure 4-15: Service request acceptance ratio over time.. 62
Figure 4-16: Average cost of accepting requests over time .. 63
Figure 4-17: Average cost normalized by acceptance ratio ... 64
Figure 4-18: Service request acceptance ratio over time in DSBM .. 64
Figure 4-19: Average cost of accepting requests over time in DSBM... 65
Figure 4-20: Average cost normalized by acceptance ratio in DSBM .. 65
Figure 4-21: Embedding execution time for SGs with one decomposition..66
Figure 4-22: Embedding execution time for SGs with 5 NFs..66

6 Deliverable D3.2 18.06.2015

List of figures

Figure 2-1: Recursive Monitoring Query.. 16
Figure 3-1: IDS service decomposition ... 17
Figure 3-2: Decomposition of a GStreamer pipeline transcoding AVI to FLV and MKV formats. ..18
Figure 3-3: Routing atomic blocks as used in eg. Quagga.. 23
Figure 3-4: Example VNF implemented as a Click script. ...24
Figure 3-5: VM a) versus Container b) architecture.. 26
Figure 3-6: Two Docker containers A and B. B is related to A with both links and volumes..30
Figure 3-7: WebCache decomposed into 4 processes...31
Figure 3-8: Elastic Router Decomposition. .. 35
Figure 3-9: FlowNAC architecture ... 37
Figure 3-10: Gateway decomposition example.. 39
Figure 3-11: Decomposition trade-offs ... 40
Figure 4-1: BT network structure ...42
Figure 4-2: Network embedding concept ...44
Figure 4-3: A simple NF-FG to be orchestrated...45
Figure 4-4: Inter-IXP network with multiple potential transit ISPs... 46
Figure 4-5: Acceptance ratio and resource utilization of a 28 node IXP multi-graph in the online scenario. 48
Figure 4-6: Virtual Cluster abstraction: a set of servers is connected via a central switch... 49
Figure 4-7: Flow algorithm to optimally embed virtual clusters on any topologies..50
Figure 4-8: Heuristic offline Integer Program to maximize the number of request embedded. ..51
Figure 4-9: Comparison of optimal solution value with the heuristic approaches ... 52
Figure 4-10: Overview of the topologies contained in the Topology Zoo.. 53
Figure 4-11: Impact of the different parameters.. 55
Figure 4-12: ECDF of reached objective gap over time. ... 56
Figure 4-13: 3D representation of the difference of ECDFs of DiVINE vs. the pure MIP on the Geant topology. 57
Figure 4-14: Execution time of ILP and DSBM for SGs with 5 and 10 NFs... 62
Figure 4-15: Service request acceptance ratio over time.. 62
Figure 4-16: Average cost of accepting requests over time .. 63
Figure 4-17: Average cost normalized by acceptance ratio ... 64
Figure 4-18: Service request acceptance ratio over time in DSBM .. 64
Figure 4-19: Average cost of accepting requests over time in DSBM... 65
Figure 4-20: Average cost normalized by acceptance ratio in DSBM .. 65
Figure 4-21: Embedding execution time for SGs with one decomposition..66
Figure 4-22: Embedding execution time for SGs with 5 NFs..66

6 Deliverable D3.2 18.06.2015

List of figures

Figure 2-1: Recursive Monitoring Query.. 16
Figure 3-1: IDS service decomposition ... 17
Figure 3-2: Decomposition of a GStreamer pipeline transcoding AVI to FLV and MKV formats. ..18
Figure 3-3: Routing atomic blocks as used in eg. Quagga.. 23
Figure 3-4: Example VNF implemented as a Click script. ...24
Figure 3-5: VM a) versus Container b) architecture.. 26
Figure 3-6: Two Docker containers A and B. B is related to A with both links and volumes..30
Figure 3-7: WebCache decomposed into 4 processes...31
Figure 3-8: Elastic Router Decomposition. .. 35
Figure 3-9: FlowNAC architecture ... 37
Figure 3-10: Gateway decomposition example.. 39
Figure 3-11: Decomposition trade-offs ... 40
Figure 4-1: BT network structure ...42
Figure 4-2: Network embedding concept ...44
Figure 4-3: A simple NF-FG to be orchestrated...45
Figure 4-4: Inter-IXP network with multiple potential transit ISPs... 46
Figure 4-5: Acceptance ratio and resource utilization of a 28 node IXP multi-graph in the online scenario. 48
Figure 4-6: Virtual Cluster abstraction: a set of servers is connected via a central switch... 49
Figure 4-7: Flow algorithm to optimally embed virtual clusters on any topologies..50
Figure 4-8: Heuristic offline Integer Program to maximize the number of request embedded. ..51
Figure 4-9: Comparison of optimal solution value with the heuristic approaches ... 52
Figure 4-10: Overview of the topologies contained in the Topology Zoo.. 53
Figure 4-11: Impact of the different parameters.. 55
Figure 4-12: ECDF of reached objective gap over time. ... 56
Figure 4-13: 3D representation of the difference of ECDFs of DiVINE vs. the pure MIP on the Geant topology. 57
Figure 4-14: Execution time of ILP and DSBM for SGs with 5 and 10 NFs... 62
Figure 4-15: Service request acceptance ratio over time.. 62
Figure 4-16: Average cost of accepting requests over time .. 63
Figure 4-17: Average cost normalized by acceptance ratio ... 64
Figure 4-18: Service request acceptance ratio over time in DSBM .. 64
Figure 4-19: Average cost of accepting requests over time in DSBM... 65
Figure 4-20: Average cost normalized by acceptance ratio in DSBM .. 65
Figure 4-21: Embedding execution time for SGs with one decomposition..66
Figure 4-22: Embedding execution time for SGs with 5 NFs..66

7 Deliverable D3.2 18.06.2015

Figure 4-23: Example Service Graph, topology and potential paths, with shortest combined path in bold.......................69
Figure 4-24: Boxplot of initial results for distributed and local SFC calculations. .. 70
Figure 5-1: The BNG function at the edge of a Service Provider network.. 72
Figure 5-2: Possible scenarios for BNG stateful scaling/resiliency mechanisms.. 73
Figure 5-3: OpenNF architecture, taken from [Gember-Jacobson2014] .. 79
Figure 5-4: OpenNF NG Move operation ...80
Figure 5-5: OpenNF LF with PZLLER..81
Figure 5-6: DiST LF Move with PZLLER... 83
Figure 5-7: DiST OP Move with PZLLER .. 84
Figure 5-8: Testbed setup.. 84
Figure 5-9: MoveTime for different amount of state (left), ratio between DiST and OpenNF (right). 87
Figure 5-10: Traffic pattern at Sink during the move (indicated by the boxes) at 1000 pps... 87
Figure 5-11: DiST OP Move, alternate order with stream synchronization and buffering before state transfer89
Figure 5-12: NF protection example ..93
Figure 5-13: Sequence diagram for NF protection process... 94
Figure 6-1: Routing & forwarding paradigms categorized by forwarding state representation... 101
Figure 6-2: Possible forwarding decision paths in a physical node..103
Figure 6-3: The “underlay forwarding vs. escalation to higher tiers” trade-off...105
Figure 6-4: Number of forwarding abstractions in the optimal SDR configuration...105
Figure 6-5: Number of forwarding abstractions in the approximate SDR configuration .. 106
Figure 7-1: System architecture of ESCAPEv2... 109
Figure 7-2: Radio-Transport Orchestration PoC... 113
Figure 7-3: State diagram of the EMBS operation..114
Figure 7-4: Changes to the NF-FG during the lifetime of a EMBS... 115
Figure 9-1: Class diagram of the Service module ..129
Figure 9-2: Interaction steps during a Service Request in the Service module... 133
Figure 9-3: Class diagram of the Orchestration module ... 136
Figure 9-4: Interaction steps during a Service Request in the Orchestration module...138
Figure 9-5: Class diagram of the Adaptation module ...140
Figure 9-6: Interaction steps during a Service Request in the Adaptation module... 142
Figure 9-7: Interaction steps during a request of missing Virtualizers .. 144

7 Deliverable D3.2 18.06.2015

Figure 4-23: Example Service Graph, topology and potential paths, with shortest combined path in bold.......................69
Figure 4-24: Boxplot of initial results for distributed and local SFC calculations. .. 70
Figure 5-1: The BNG function at the edge of a Service Provider network.. 72
Figure 5-2: Possible scenarios for BNG stateful scaling/resiliency mechanisms.. 73
Figure 5-3: OpenNF architecture, taken from [Gember-Jacobson2014] .. 79
Figure 5-4: OpenNF NG Move operation ...80
Figure 5-5: OpenNF LF with PZLLER..81
Figure 5-6: DiST LF Move with PZLLER... 83
Figure 5-7: DiST OP Move with PZLLER .. 84
Figure 5-8: Testbed setup.. 84
Figure 5-9: MoveTime for different amount of state (left), ratio between DiST and OpenNF (right). 87
Figure 5-10: Traffic pattern at Sink during the move (indicated by the boxes) at 1000 pps... 87
Figure 5-11: DiST OP Move, alternate order with stream synchronization and buffering before state transfer89
Figure 5-12: NF protection example ..93
Figure 5-13: Sequence diagram for NF protection process... 94
Figure 6-1: Routing & forwarding paradigms categorized by forwarding state representation... 101
Figure 6-2: Possible forwarding decision paths in a physical node..103
Figure 6-3: The “underlay forwarding vs. escalation to higher tiers” trade-off...105
Figure 6-4: Number of forwarding abstractions in the optimal SDR configuration...105
Figure 6-5: Number of forwarding abstractions in the approximate SDR configuration .. 106
Figure 7-1: System architecture of ESCAPEv2... 109
Figure 7-2: Radio-Transport Orchestration PoC... 113
Figure 7-3: State diagram of the EMBS operation..114
Figure 7-4: Changes to the NF-FG during the lifetime of a EMBS... 115
Figure 9-1: Class diagram of the Service module ..129
Figure 9-2: Interaction steps during a Service Request in the Service module... 133
Figure 9-3: Class diagram of the Orchestration module ... 136
Figure 9-4: Interaction steps during a Service Request in the Orchestration module...138
Figure 9-5: Class diagram of the Adaptation module ...140
Figure 9-6: Interaction steps during a Service Request in the Adaptation module... 142
Figure 9-7: Interaction steps during a request of missing Virtualizers .. 144

7 Deliverable D3.2 18.06.2015

Figure 4-23: Example Service Graph, topology and potential paths, with shortest combined path in bold.......................69
Figure 4-24: Boxplot of initial results for distributed and local SFC calculations. .. 70
Figure 5-1: The BNG function at the edge of a Service Provider network.. 72
Figure 5-2: Possible scenarios for BNG stateful scaling/resiliency mechanisms.. 73
Figure 5-3: OpenNF architecture, taken from [Gember-Jacobson2014] .. 79
Figure 5-4: OpenNF NG Move operation ...80
Figure 5-5: OpenNF LF with PZLLER..81
Figure 5-6: DiST LF Move with PZLLER... 83
Figure 5-7: DiST OP Move with PZLLER .. 84
Figure 5-8: Testbed setup.. 84
Figure 5-9: MoveTime for different amount of state (left), ratio between DiST and OpenNF (right). 87
Figure 5-10: Traffic pattern at Sink during the move (indicated by the boxes) at 1000 pps... 87
Figure 5-11: DiST OP Move, alternate order with stream synchronization and buffering before state transfer89
Figure 5-12: NF protection example ..93
Figure 5-13: Sequence diagram for NF protection process... 94
Figure 6-1: Routing & forwarding paradigms categorized by forwarding state representation... 101
Figure 6-2: Possible forwarding decision paths in a physical node..103
Figure 6-3: The “underlay forwarding vs. escalation to higher tiers” trade-off...105
Figure 6-4: Number of forwarding abstractions in the optimal SDR configuration...105
Figure 6-5: Number of forwarding abstractions in the approximate SDR configuration .. 106
Figure 7-1: System architecture of ESCAPEv2... 109
Figure 7-2: Radio-Transport Orchestration PoC... 113
Figure 7-3: State diagram of the EMBS operation..114
Figure 7-4: Changes to the NF-FG during the lifetime of a EMBS... 115
Figure 9-1: Class diagram of the Service module ..129
Figure 9-2: Interaction steps during a Service Request in the Service module... 133
Figure 9-3: Class diagram of the Orchestration module ... 136
Figure 9-4: Interaction steps during a Service Request in the Orchestration module...138
Figure 9-5: Class diagram of the Adaptation module ...140
Figure 9-6: Interaction steps during a Service Request in the Adaptation module... 142
Figure 9-7: Interaction steps during a request of missing Virtualizers .. 144

8 Deliverable D3.2 18.06.2015

List of Tables

Table 3-1: Click Network Function examples 25
Table 3-2: Atomic Block overview 32
Table 4-1: Service provider network size 43
Table 4-2: List of compared algorithms 60
Table 5-1: DiST vs OpenNF performance data gathered at 1000 pps, with 95% CI 86

8 Deliverable D3.2 18.06.2015

List of Tables

Table 3-1: Click Network Function examples 25
Table 3-2: Atomic Block overview 32
Table 4-1: Service provider network size 43
Table 4-2: List of compared algorithms 60
Table 5-1: DiST vs OpenNF performance data gathered at 1000 pps, with 95% CI 86

8 Deliverable D3.2 18.06.2015

List of Tables

Table 3-1: Click Network Function examples 25
Table 3-2: Atomic Block overview 32
Table 4-1: Service provider network size 43
Table 4-2: List of compared algorithms 60
Table 5-1: DiST vs OpenNF performance data gathered at 1000 pps, with 95% CI 86

9 Deliverable D3.2 18.06.2015

Summary

This deliverable details the functional description and algorithms for the UNIFY orchestration framework, we
systematically go through the UNIFY architecture presented in [D2.2] in a top-down manner. We start at the Service
Layer where the focus is on service programming, here our main technical challenge is the data models to define a
service and the programmability interfaces needed to transfer and maintain the service. From the Service layer we
continue down to the Orchestration layer where we have two main technical challenges, orchestration algorithms
and service decomposition. In orchestration algorithms we then investigate how we can allocate, in a scalable and
optimized way, the resources required by a service. In service decomposition we narrow the scope from the service
to the individual network functions that makes it up and investigate how abstract service components can be
broken down into a set of hardware and implementation specific atomic blocks capable of delivering the requested
functionality. From the Orchestration layer we finally arrive at the Infrastructure layer where there again are two
main technical challenges, management of state in the network functions and management of forwarding state in
the network. We first investigate how internal state in the network functions can be managed in order to provide
elastic and resilient services, which can handle increases in demand and failures without disruption. We then follow
with an investigation on how forwarding state from different forwarding paradigms can be combined in an efficient
and scalable manner to steer traffic between the network functions that compose a service. Finally, we arrive at our
evolution of a scalable orchestration framework, ESCAPEv2, intended to provide a framework where our ideas can
be prototyped and tested.

UNIFY programmability is focused on the interface between the Service Layer and the Orchestration Layer, as well
as recursively through Orchestration Layers. The heart of this programmability model is the NF-FG, for which an
initial definition was made in [D3.1]. Here we document two approaches to modelling the NF-FG. One is a service-
centric approach which is an updated version of the earlier NF-FG, based on feedback from prototyping and ongoing
work in SDOs and other projects. The second approach focuses on modelling the Virtualizer component introduced
in [D2.2], responsible for presenting virtual views to higher layers. In this approach the configuration of the
virtualized resources is the NF-FG. We also show the relationship of the NF-FG models to ongoing external work.

In deliverable D3.1 we introduced service decomposition, a process of breaking down a high-level service into its
atomic blocks in order to e.g. better utilize available resources and more quickly construct new services. Here we
document the pros and cons and trade-offs of this approach in the context atomic blocks as hardware blocks,
executable-based software blocks, or as Click Modular Router components. In addition, an analysis is provided of the
relationship of decomposition to using virtualization technology relying either on containers (e.g., Docker) or virtual
machines (e.g., Xen). A more in-depth application of decomposition is performed for of a flexible router, flow-based
network access control, gateway, and IDS service.

Initially a Service Graph describes the service requested by a customer, and its requirements. The Service Graph is
transformed into a NF-FG through multiple steps of decompositions and mappings until it is finally instantiated on

9 Deliverable D3.2 18.06.2015

Summary

This deliverable details the functional description and algorithms for the UNIFY orchestration framework, we
systematically go through the UNIFY architecture presented in [D2.2] in a top-down manner. We start at the Service
Layer where the focus is on service programming, here our main technical challenge is the data models to define a
service and the programmability interfaces needed to transfer and maintain the service. From the Service layer we
continue down to the Orchestration layer where we have two main technical challenges, orchestration algorithms
and service decomposition. In orchestration algorithms we then investigate how we can allocate, in a scalable and
optimized way, the resources required by a service. In service decomposition we narrow the scope from the service
to the individual network functions that makes it up and investigate how abstract service components can be
broken down into a set of hardware and implementation specific atomic blocks capable of delivering the requested
functionality. From the Orchestration layer we finally arrive at the Infrastructure layer where there again are two
main technical challenges, management of state in the network functions and management of forwarding state in
the network. We first investigate how internal state in the network functions can be managed in order to provide
elastic and resilient services, which can handle increases in demand and failures without disruption. We then follow
with an investigation on how forwarding state from different forwarding paradigms can be combined in an efficient
and scalable manner to steer traffic between the network functions that compose a service. Finally, we arrive at our
evolution of a scalable orchestration framework, ESCAPEv2, intended to provide a framework where our ideas can
be prototyped and tested.

UNIFY programmability is focused on the interface between the Service Layer and the Orchestration Layer, as well
as recursively through Orchestration Layers. The heart of this programmability model is the NF-FG, for which an
initial definition was made in [D3.1]. Here we document two approaches to modelling the NF-FG. One is a service-
centric approach which is an updated version of the earlier NF-FG, based on feedback from prototyping and ongoing
work in SDOs and other projects. The second approach focuses on modelling the Virtualizer component introduced
in [D2.2], responsible for presenting virtual views to higher layers. In this approach the configuration of the
virtualized resources is the NF-FG. We also show the relationship of the NF-FG models to ongoing external work.

In deliverable D3.1 we introduced service decomposition, a process of breaking down a high-level service into its
atomic blocks in order to e.g. better utilize available resources and more quickly construct new services. Here we
document the pros and cons and trade-offs of this approach in the context atomic blocks as hardware blocks,
executable-based software blocks, or as Click Modular Router components. In addition, an analysis is provided of the
relationship of decomposition to using virtualization technology relying either on containers (e.g., Docker) or virtual
machines (e.g., Xen). A more in-depth application of decomposition is performed for of a flexible router, flow-based
network access control, gateway, and IDS service.

Initially a Service Graph describes the service requested by a customer, and its requirements. The Service Graph is
transformed into a NF-FG through multiple steps of decompositions and mappings until it is finally instantiated on

9 Deliverable D3.2 18.06.2015

Summary

This deliverable details the functional description and algorithms for the UNIFY orchestration framework, we
systematically go through the UNIFY architecture presented in [D2.2] in a top-down manner. We start at the Service
Layer where the focus is on service programming, here our main technical challenge is the data models to define a
service and the programmability interfaces needed to transfer and maintain the service. From the Service layer we
continue down to the Orchestration layer where we have two main technical challenges, orchestration algorithms
and service decomposition. In orchestration algorithms we then investigate how we can allocate, in a scalable and
optimized way, the resources required by a service. In service decomposition we narrow the scope from the service
to the individual network functions that makes it up and investigate how abstract service components can be
broken down into a set of hardware and implementation specific atomic blocks capable of delivering the requested
functionality. From the Orchestration layer we finally arrive at the Infrastructure layer where there again are two
main technical challenges, management of state in the network functions and management of forwarding state in
the network. We first investigate how internal state in the network functions can be managed in order to provide
elastic and resilient services, which can handle increases in demand and failures without disruption. We then follow
with an investigation on how forwarding state from different forwarding paradigms can be combined in an efficient
and scalable manner to steer traffic between the network functions that compose a service. Finally, we arrive at our
evolution of a scalable orchestration framework, ESCAPEv2, intended to provide a framework where our ideas can
be prototyped and tested.

UNIFY programmability is focused on the interface between the Service Layer and the Orchestration Layer, as well
as recursively through Orchestration Layers. The heart of this programmability model is the NF-FG, for which an
initial definition was made in [D3.1]. Here we document two approaches to modelling the NF-FG. One is a service-
centric approach which is an updated version of the earlier NF-FG, based on feedback from prototyping and ongoing
work in SDOs and other projects. The second approach focuses on modelling the Virtualizer component introduced
in [D2.2], responsible for presenting virtual views to higher layers. In this approach the configuration of the
virtualized resources is the NF-FG. We also show the relationship of the NF-FG models to ongoing external work.

In deliverable D3.1 we introduced service decomposition, a process of breaking down a high-level service into its
atomic blocks in order to e.g. better utilize available resources and more quickly construct new services. Here we
document the pros and cons and trade-offs of this approach in the context atomic blocks as hardware blocks,
executable-based software blocks, or as Click Modular Router components. In addition, an analysis is provided of the
relationship of decomposition to using virtualization technology relying either on containers (e.g., Docker) or virtual
machines (e.g., Xen). A more in-depth application of decomposition is performed for of a flexible router, flow-based
network access control, gateway, and IDS service.

Initially a Service Graph describes the service requested by a customer, and its requirements. The Service Graph is
transformed into a NF-FG through multiple steps of decompositions and mappings until it is finally instantiated on

10 Deliverable D3.2 18.06.2015

the available infrastructure resources. Embedding an NF-FG on the available resources is not a trivial problem,
especially when taking the number of requests, the size of the underlying topology and heterogeneous
environments into account. In this document we present a range of ILP-based algorithms such as DiVINE for off-
and on-line scenarios, with or without combining the mapping with the decomposition, as well as heuristics,
enabling to scale on larger problem sets. The main idea behind decomposition-aware embedding heuristics is to
rank potential service decompositions on estimated cost in order to minimize resource consumption of the resulting
embedding. To further improve the scalability of embedding components, a framework is proposed for distributing
these types of calculations to multiple nodes.

Elastic, scalable, and resilient network services are one of the main selling points of NFV. Supporting elastic VNFs
require careful handling of the internal state of the VNF in order not to disrupt services when expanding on
contracting the resource allocations. Existing NFV experimentation platforms such as OpenNF support various state
migration schemes only but relies on centralized control components. We introduce a distributed state transfer
mechanism which have been implemented and evaluated, indicating substantial gains in migration time and
required bandwidth. Compared to traditional hardware-based network functions that have been engineered for
resiliency, the software-based network functions that NFV relies on is intended to run on hardware platforms with
typically higher failure rates, requiring new resiliency mechanisms on the software layer. In the context of service
resilience, the same set of state migration mechanisms might be re-used in support of protection or restoration
mechanisms at the scope of a single NF, or subgraphs of the NF-FG relying either on service-specific control
functionality (Control NFs) or on the existing orchestration and control functionality of the underlying UNIFY
platform. We also provide an analysis of the state management requirements of the Broadband Network Gateway
(BNG) which plays a crucial role in a Service Provider environment as an IP edge router that provides aggregation
capabilities (e.g. IP, PPP) between the access network and the transport network which also includes functionality
for subscriber management, advanced IP processing, including QoS, and enhanced traffic management capabilities.

In the UNIFY architecture, abstract forwarding information on how traffic should traverse the network functions in a
service is stored in NF-FGs in our programmability framework. At the lower layers, this abstract information must be
translated into different types of forwarding states that can inserted in the network elements as different types of
flow rules, tunnel information or packet header fields. Managing that state and steering traffic efficiently in a flexible
and controllable way is an indispensable part of an orchestration framework. The advent of software defined
networking and virtualization pushes the challenge of routing to extremity as the flexibility of SDN architectures
allows deploying many existing routing approaches at the same time on the same network. We take a first step
towards the characterization of fast and scalable SDN routing strategies which can be foundations of service
chaining architectures in the future. We argue that our approach, Software Defined Routing, is an approach that can
effectively distribute forwarding state between nodes using different routing paradigms according to the resources
and desired functions of the network.

While theoretical work is valuable, many good theoretical concepts fail or perform less than expected when actually
implemented. To test and refine our processes and algorithms a proof-of-concept system has been designed, with

10 Deliverable D3.2 18.06.2015

the available infrastructure resources. Embedding an NF-FG on the available resources is not a trivial problem,
especially when taking the number of requests, the size of the underlying topology and heterogeneous
environments into account. In this document we present a range of ILP-based algorithms such as DiVINE for off-
and on-line scenarios, with or without combining the mapping with the decomposition, as well as heuristics,
enabling to scale on larger problem sets. The main idea behind decomposition-aware embedding heuristics is to
rank potential service decompositions on estimated cost in order to minimize resource consumption of the resulting
embedding. To further improve the scalability of embedding components, a framework is proposed for distributing
these types of calculations to multiple nodes.

Elastic, scalable, and resilient network services are one of the main selling points of NFV. Supporting elastic VNFs
require careful handling of the internal state of the VNF in order not to disrupt services when expanding on
contracting the resource allocations. Existing NFV experimentation platforms such as OpenNF support various state
migration schemes only but relies on centralized control components. We introduce a distributed state transfer
mechanism which have been implemented and evaluated, indicating substantial gains in migration time and
required bandwidth. Compared to traditional hardware-based network functions that have been engineered for
resiliency, the software-based network functions that NFV relies on is intended to run on hardware platforms with
typically higher failure rates, requiring new resiliency mechanisms on the software layer. In the context of service
resilience, the same set of state migration mechanisms might be re-used in support of protection or restoration
mechanisms at the scope of a single NF, or subgraphs of the NF-FG relying either on service-specific control
functionality (Control NFs) or on the existing orchestration and control functionality of the underlying UNIFY
platform. We also provide an analysis of the state management requirements of the Broadband Network Gateway
(BNG) which plays a crucial role in a Service Provider environment as an IP edge router that provides aggregation
capabilities (e.g. IP, PPP) between the access network and the transport network which also includes functionality
for subscriber management, advanced IP processing, including QoS, and enhanced traffic management capabilities.

In the UNIFY architecture, abstract forwarding information on how traffic should traverse the network functions in a
service is stored in NF-FGs in our programmability framework. At the lower layers, this abstract information must be
translated into different types of forwarding states that can inserted in the network elements as different types of
flow rules, tunnel information or packet header fields. Managing that state and steering traffic efficiently in a flexible
and controllable way is an indispensable part of an orchestration framework. The advent of software defined
networking and virtualization pushes the challenge of routing to extremity as the flexibility of SDN architectures
allows deploying many existing routing approaches at the same time on the same network. We take a first step
towards the characterization of fast and scalable SDN routing strategies which can be foundations of service
chaining architectures in the future. We argue that our approach, Software Defined Routing, is an approach that can
effectively distribute forwarding state between nodes using different routing paradigms according to the resources
and desired functions of the network.

While theoretical work is valuable, many good theoretical concepts fail or perform less than expected when actually
implemented. To test and refine our processes and algorithms a proof-of-concept system has been designed, with

10 Deliverable D3.2 18.06.2015

the available infrastructure resources. Embedding an NF-FG on the available resources is not a trivial problem,
especially when taking the number of requests, the size of the underlying topology and heterogeneous
environments into account. In this document we present a range of ILP-based algorithms such as DiVINE for off-
and on-line scenarios, with or without combining the mapping with the decomposition, as well as heuristics,
enabling to scale on larger problem sets. The main idea behind decomposition-aware embedding heuristics is to
rank potential service decompositions on estimated cost in order to minimize resource consumption of the resulting
embedding. To further improve the scalability of embedding components, a framework is proposed for distributing
these types of calculations to multiple nodes.

Elastic, scalable, and resilient network services are one of the main selling points of NFV. Supporting elastic VNFs
require careful handling of the internal state of the VNF in order not to disrupt services when expanding on
contracting the resource allocations. Existing NFV experimentation platforms such as OpenNF support various state
migration schemes only but relies on centralized control components. We introduce a distributed state transfer
mechanism which have been implemented and evaluated, indicating substantial gains in migration time and
required bandwidth. Compared to traditional hardware-based network functions that have been engineered for
resiliency, the software-based network functions that NFV relies on is intended to run on hardware platforms with
typically higher failure rates, requiring new resiliency mechanisms on the software layer. In the context of service
resilience, the same set of state migration mechanisms might be re-used in support of protection or restoration
mechanisms at the scope of a single NF, or subgraphs of the NF-FG relying either on service-specific control
functionality (Control NFs) or on the existing orchestration and control functionality of the underlying UNIFY
platform. We also provide an analysis of the state management requirements of the Broadband Network Gateway
(BNG) which plays a crucial role in a Service Provider environment as an IP edge router that provides aggregation
capabilities (e.g. IP, PPP) between the access network and the transport network which also includes functionality
for subscriber management, advanced IP processing, including QoS, and enhanced traffic management capabilities.

In the UNIFY architecture, abstract forwarding information on how traffic should traverse the network functions in a
service is stored in NF-FGs in our programmability framework. At the lower layers, this abstract information must be
translated into different types of forwarding states that can inserted in the network elements as different types of
flow rules, tunnel information or packet header fields. Managing that state and steering traffic efficiently in a flexible
and controllable way is an indispensable part of an orchestration framework. The advent of software defined
networking and virtualization pushes the challenge of routing to extremity as the flexibility of SDN architectures
allows deploying many existing routing approaches at the same time on the same network. We take a first step
towards the characterization of fast and scalable SDN routing strategies which can be foundations of service
chaining architectures in the future. We argue that our approach, Software Defined Routing, is an approach that can
effectively distribute forwarding state between nodes using different routing paradigms according to the resources
and desired functions of the network.

While theoretical work is valuable, many good theoretical concepts fail or perform less than expected when actually
implemented. To test and refine our processes and algorithms a proof-of-concept system has been designed, with

11 Deliverable D3.2 18.06.2015

the focus of providing a scalable and flexible way of integrating components developed by partners in the project.
This proof-of-concept system has evolved from the earlier implementation (“ESCAPE”) based on experience gained
and the updated architecture presented in [D2.2]. ESCAPE relies on Mininet, Click, NETCONF and POX and
implements the 3 layers of UNIFY architecture, namely, Infrastructure Layer (IL), Orchestration Layer (OL), Service
Layer (SL). Increased scalability and improved integration functionality with additional components or other
prototypes is enabled through the implementation of virtualizer functionality supporting BiS-BiS abstractions, and
control adaptation functionality supporting OpenStack and Docker-based domains. Controlling Radio Access
Networks in the UNIFY architecture is possible through considering the RAN and associated controller as a lower-
layer orchestration domain. As the RAN controller only operates on physical resources, the BiS-BiS model will need
to be support physical resources such as BBU unites, as indicated in an initial Proof-of-Concept.

11 Deliverable D3.2 18.06.2015

the focus of providing a scalable and flexible way of integrating components developed by partners in the project.
This proof-of-concept system has evolved from the earlier implementation (“ESCAPE”) based on experience gained
and the updated architecture presented in [D2.2]. ESCAPE relies on Mininet, Click, NETCONF and POX and
implements the 3 layers of UNIFY architecture, namely, Infrastructure Layer (IL), Orchestration Layer (OL), Service
Layer (SL). Increased scalability and improved integration functionality with additional components or other
prototypes is enabled through the implementation of virtualizer functionality supporting BiS-BiS abstractions, and
control adaptation functionality supporting OpenStack and Docker-based domains. Controlling Radio Access
Networks in the UNIFY architecture is possible through considering the RAN and associated controller as a lower-
layer orchestration domain. As the RAN controller only operates on physical resources, the BiS-BiS model will need
to be support physical resources such as BBU unites, as indicated in an initial Proof-of-Concept.

11 Deliverable D3.2 18.06.2015

the focus of providing a scalable and flexible way of integrating components developed by partners in the project.
This proof-of-concept system has evolved from the earlier implementation (“ESCAPE”) based on experience gained
and the updated architecture presented in [D2.2]. ESCAPE relies on Mininet, Click, NETCONF and POX and
implements the 3 layers of UNIFY architecture, namely, Infrastructure Layer (IL), Orchestration Layer (OL), Service
Layer (SL). Increased scalability and improved integration functionality with additional components or other
prototypes is enabled through the implementation of virtualizer functionality supporting BiS-BiS abstractions, and
control adaptation functionality supporting OpenStack and Docker-based domains. Controlling Radio Access
Networks in the UNIFY architecture is possible through considering the RAN and associated controller as a lower-
layer orchestration domain. As the RAN controller only operates on physical resources, the BiS-BiS model will need
to be support physical resources such as BBU unites, as indicated in an initial Proof-of-Concept.

12 Deliverable D3.2 18.06.2015

1 Introduction

Starting from a multi-layer UNIFY architecture as detailed in [D2.1] and [D2.2], an initial programmability framework
involving a range of processes, data models, interfaces and orchestration concepts was defined in [D3.1]. This
deliverable will refine these concepts, interfaces, functions, as well as algorithms providing the core components of
the UNIFY service programming and orchestration platform. The goal of this section is two-fold: i) providing a more
quantitative context of the targeted orchestration environment and related requirements, and ii) introducing the
core technical challenges of the service programming and orchestration platform which will be addressed later on in
this document.

Orchestration is fundamentally enabled by the top-down and bottom-up service programming processes in which
multiple layers and components interact with each other. As identified in earlier deliverables, the focus of UNIFY
programmability is on the interface between the Service Layer and the Orchestration Layer, as well as on between
(hierarchically connected) Orchestration Layers. The core information model impacting this interface is the Network
Function-Forwarding Graph (NF-FG). The latter plays a dual role within the framework:

- The role of exposing (virtualized) network and cloud resources
- The role of mapping a Service request (Service Graph) to exposed (virtualized) resources.

An initial NF-FG data model has been specified in [D3.1] and was the starting point for a range of prototypes in this
and other work packages. However, depending on the particular purpose and context of the prototype, the resulting
implementations and structure of these models has changed and diverged. In addition, other research projects,
standardization bodies and other initiatives have developed their own data models and interfaces fulfilling a purpose
which might be related to the NF-FG. Section 2 documents the two NF-FG models we are currently evaluating. The
first model has evolved from the initial NF-FG model with the focus on describing the requested service as it passes
down through the layers of the architecture before being instantiated on the infrastructure. The second NF-FG
model takes a different approach and focuses on the Virtualizer component responsible for presenting a virtual
network view to higher layers and the configuration of resources in that view, which combines to an NF-FG. We
relate, and consolidate these models with models developed in parallel outside of the project, such as those defined
by OASIS TOSCA or OpenStack Heat. The focus of this analysis is on the differences and added value of data models
themselves; however technology-specific aspects will be addressed briefly as well. Future consolidation will be
encouraged through the use of a UNIFY NF-FG library module providing a common set of functionality for NF-FG
parsing, interpretation and manipulation.

The ambitious concept of service decomposition was introduced in D3.1 as a step-wise translation of high-level
(compound) NFs into more elementary or atomic NFs, which can eventually be mapped onto the infrastructure.
Within the context of service programming processes, service decomposition might occur at the Service Adaptation
Layer, or on any of the (potentially stacked) Orchestration Layers. The merit of service decomposition is that it
enables lower layers to refine high-level components in order to optimize its internal resource consumption or

12 Deliverable D3.2 18.06.2015

1 Introduction

Starting from a multi-layer UNIFY architecture as detailed in [D2.1] and [D2.2], an initial programmability framework
involving a range of processes, data models, interfaces and orchestration concepts was defined in [D3.1]. This
deliverable will refine these concepts, interfaces, functions, as well as algorithms providing the core components of
the UNIFY service programming and orchestration platform. The goal of this section is two-fold: i) providing a more
quantitative context of the targeted orchestration environment and related requirements, and ii) introducing the
core technical challenges of the service programming and orchestration platform which will be addressed later on in
this document.

Orchestration is fundamentally enabled by the top-down and bottom-up service programming processes in which
multiple layers and components interact with each other. As identified in earlier deliverables, the focus of UNIFY
programmability is on the interface between the Service Layer and the Orchestration Layer, as well as on between
(hierarchically connected) Orchestration Layers. The core information model impacting this interface is the Network
Function-Forwarding Graph (NF-FG). The latter plays a dual role within the framework:

- The role of exposing (virtualized) network and cloud resources
- The role of mapping a Service request (Service Graph) to exposed (virtualized) resources.

An initial NF-FG data model has been specified in [D3.1] and was the starting point for a range of prototypes in this
and other work packages. However, depending on the particular purpose and context of the prototype, the resulting
implementations and structure of these models has changed and diverged. In addition, other research projects,
standardization bodies and other initiatives have developed their own data models and interfaces fulfilling a purpose
which might be related to the NF-FG. Section 2 documents the two NF-FG models we are currently evaluating. The
first model has evolved from the initial NF-FG model with the focus on describing the requested service as it passes
down through the layers of the architecture before being instantiated on the infrastructure. The second NF-FG
model takes a different approach and focuses on the Virtualizer component responsible for presenting a virtual
network view to higher layers and the configuration of resources in that view, which combines to an NF-FG. We
relate, and consolidate these models with models developed in parallel outside of the project, such as those defined
by OASIS TOSCA or OpenStack Heat. The focus of this analysis is on the differences and added value of data models
themselves; however technology-specific aspects will be addressed briefly as well. Future consolidation will be
encouraged through the use of a UNIFY NF-FG library module providing a common set of functionality for NF-FG
parsing, interpretation and manipulation.

The ambitious concept of service decomposition was introduced in D3.1 as a step-wise translation of high-level
(compound) NFs into more elementary or atomic NFs, which can eventually be mapped onto the infrastructure.
Within the context of service programming processes, service decomposition might occur at the Service Adaptation
Layer, or on any of the (potentially stacked) Orchestration Layers. The merit of service decomposition is that it
enables lower layers to refine high-level components in order to optimize its internal resource consumption or

12 Deliverable D3.2 18.06.2015

1 Introduction

Starting from a multi-layer UNIFY architecture as detailed in [D2.1] and [D2.2], an initial programmability framework
involving a range of processes, data models, interfaces and orchestration concepts was defined in [D3.1]. This
deliverable will refine these concepts, interfaces, functions, as well as algorithms providing the core components of
the UNIFY service programming and orchestration platform. The goal of this section is two-fold: i) providing a more
quantitative context of the targeted orchestration environment and related requirements, and ii) introducing the
core technical challenges of the service programming and orchestration platform which will be addressed later on in
this document.

Orchestration is fundamentally enabled by the top-down and bottom-up service programming processes in which
multiple layers and components interact with each other. As identified in earlier deliverables, the focus of UNIFY
programmability is on the interface between the Service Layer and the Orchestration Layer, as well as on between
(hierarchically connected) Orchestration Layers. The core information model impacting this interface is the Network
Function-Forwarding Graph (NF-FG). The latter plays a dual role within the framework:

- The role of exposing (virtualized) network and cloud resources
- The role of mapping a Service request (Service Graph) to exposed (virtualized) resources.

An initial NF-FG data model has been specified in [D3.1] and was the starting point for a range of prototypes in this
and other work packages. However, depending on the particular purpose and context of the prototype, the resulting
implementations and structure of these models has changed and diverged. In addition, other research projects,
standardization bodies and other initiatives have developed their own data models and interfaces fulfilling a purpose
which might be related to the NF-FG. Section 2 documents the two NF-FG models we are currently evaluating. The
first model has evolved from the initial NF-FG model with the focus on describing the requested service as it passes
down through the layers of the architecture before being instantiated on the infrastructure. The second NF-FG
model takes a different approach and focuses on the Virtualizer component responsible for presenting a virtual
network view to higher layers and the configuration of resources in that view, which combines to an NF-FG. We
relate, and consolidate these models with models developed in parallel outside of the project, such as those defined
by OASIS TOSCA or OpenStack Heat. The focus of this analysis is on the differences and added value of data models
themselves; however technology-specific aspects will be addressed briefly as well. Future consolidation will be
encouraged through the use of a UNIFY NF-FG library module providing a common set of functionality for NF-FG
parsing, interpretation and manipulation.

The ambitious concept of service decomposition was introduced in D3.1 as a step-wise translation of high-level
(compound) NFs into more elementary or atomic NFs, which can eventually be mapped onto the infrastructure.
Within the context of service programming processes, service decomposition might occur at the Service Adaptation
Layer, or on any of the (potentially stacked) Orchestration Layers. The merit of service decomposition is that it
enables lower layers to refine high-level components in order to optimize its internal resource consumption or

13 Deliverable D3.2 18.06.2015

performance, for example by decomposing functions into functions which can be decomposed on already used
servers with spare capacity, rather than instantiating on network functions on additional servers. Decomposing
network functions and services into smaller blocks also enables network function and service developers to reuse
already available functionality. A more in-depth analysis of these tradeoffs and a path towards a more quantitative
approach in characterizing service decomposition is handled in Section 3.

Resource orchestration refers to the process of handling service requests in the form of NF-FGs, mapping them to
individual (infrastructure) resource elements of a resource model obtained by collecting information received by
network- and server controllers. Subgraphs of the NF-FG might be recursively delegated to lower-layer
orchestrators, which ultimately need to map their components to infrastructure resources. The challenges related to
orchestration relate to two main aspects: i) scalability of the process and involved algorithms with respect to the
number of requests, the size of the underlying network topology and involved components, and ii) the technology
dependence of resource orchestration. The second challenge relates to the particular nature of network functions,
the particular way they can be decomposed in, and their performance given a set of infrastructure-related
characteristics such as hardware-acceleration, caching capabilities and others. Section 4 positions the resource
orchestration challenge within the context of the virtual network embedding problem and investigates the impact of
online vs. offline algorithms, considers the relationship and added value of service decomposition within the
embedding algorithms, investigates a set of techniques to improve scalability of the orchestration infrastructure and
investigates a number of ways to handle technology-related aspects to orchestration.

Support for providing elastic network services in one of the most important merits of NFV. Whereas traditional
telecom services built on dedicated hardware devices usually require additional investments and manual re-
provisioning processes in order to scale the service to support a larger number of customers, flows or just plain
throughput, NFV relies on software-based implementations of Network Functions which can be deployed on
demand on generic-purpose hardware (servers). However, traditional hardware-implemented network functions
are engineered in order to provide high reliability with respect to individual component failures, in order to
guarantee the integrity of involved network and session state up to certain degrees. Section 5 specifies and
evaluates a range of mechanisms in order to enable effective and reliable state migration between VNFs. These
have been evaluated in an actively maintained OpenNF platform. In addition, the section details how these
mechanisms might be re-used in order to provide high availability in NFV-based services.

A scalable forwarding plane to support the Network Functions and their interconnections is another requirement
of the UNIFY architecture. With many years of research onto different routing and forwarding paradigms, there is
still no clear answer to what that forwarding plane should be. In Section 6 we propose a framework for Software
Defined Routing (SDR) that leverages the power and flexibility given by SDN to combine multiple forwarding
paradigms in an attempt to better manage the required forwarding state in the network. In this section we take the
first steps towards defining fast and scalable SDN routing strategies that can be the foundation of future service
chaining architectures. This is done through a 3-tiered architectural model which can incorporate many existing
routing paradigms.

13 Deliverable D3.2 18.06.2015

performance, for example by decomposing functions into functions which can be decomposed on already used
servers with spare capacity, rather than instantiating on network functions on additional servers. Decomposing
network functions and services into smaller blocks also enables network function and service developers to reuse
already available functionality. A more in-depth analysis of these tradeoffs and a path towards a more quantitative
approach in characterizing service decomposition is handled in Section 3.

Resource orchestration refers to the process of handling service requests in the form of NF-FGs, mapping them to
individual (infrastructure) resource elements of a resource model obtained by collecting information received by
network- and server controllers. Subgraphs of the NF-FG might be recursively delegated to lower-layer
orchestrators, which ultimately need to map their components to infrastructure resources. The challenges related to
orchestration relate to two main aspects: i) scalability of the process and involved algorithms with respect to the
number of requests, the size of the underlying network topology and involved components, and ii) the technology
dependence of resource orchestration. The second challenge relates to the particular nature of network functions,
the particular way they can be decomposed in, and their performance given a set of infrastructure-related
characteristics such as hardware-acceleration, caching capabilities and others. Section 4 positions the resource
orchestration challenge within the context of the virtual network embedding problem and investigates the impact of
online vs. offline algorithms, considers the relationship and added value of service decomposition within the
embedding algorithms, investigates a set of techniques to improve scalability of the orchestration infrastructure and
investigates a number of ways to handle technology-related aspects to orchestration.

Support for providing elastic network services in one of the most important merits of NFV. Whereas traditional
telecom services built on dedicated hardware devices usually require additional investments and manual re-
provisioning processes in order to scale the service to support a larger number of customers, flows or just plain
throughput, NFV relies on software-based implementations of Network Functions which can be deployed on
demand on generic-purpose hardware (servers). However, traditional hardware-implemented network functions
are engineered in order to provide high reliability with respect to individual component failures, in order to
guarantee the integrity of involved network and session state up to certain degrees. Section 5 specifies and
evaluates a range of mechanisms in order to enable effective and reliable state migration between VNFs. These
have been evaluated in an actively maintained OpenNF platform. In addition, the section details how these
mechanisms might be re-used in order to provide high availability in NFV-based services.

A scalable forwarding plane to support the Network Functions and their interconnections is another requirement
of the UNIFY architecture. With many years of research onto different routing and forwarding paradigms, there is
still no clear answer to what that forwarding plane should be. In Section 6 we propose a framework for Software
Defined Routing (SDR) that leverages the power and flexibility given by SDN to combine multiple forwarding
paradigms in an attempt to better manage the required forwarding state in the network. In this section we take the
first steps towards defining fast and scalable SDN routing strategies that can be the foundation of future service
chaining architectures. This is done through a 3-tiered architectural model which can incorporate many existing
routing paradigms.

13 Deliverable D3.2 18.06.2015

performance, for example by decomposing functions into functions which can be decomposed on already used
servers with spare capacity, rather than instantiating on network functions on additional servers. Decomposing
network functions and services into smaller blocks also enables network function and service developers to reuse
already available functionality. A more in-depth analysis of these tradeoffs and a path towards a more quantitative
approach in characterizing service decomposition is handled in Section 3.

Resource orchestration refers to the process of handling service requests in the form of NF-FGs, mapping them to
individual (infrastructure) resource elements of a resource model obtained by collecting information received by
network- and server controllers. Subgraphs of the NF-FG might be recursively delegated to lower-layer
orchestrators, which ultimately need to map their components to infrastructure resources. The challenges related to
orchestration relate to two main aspects: i) scalability of the process and involved algorithms with respect to the
number of requests, the size of the underlying network topology and involved components, and ii) the technology
dependence of resource orchestration. The second challenge relates to the particular nature of network functions,
the particular way they can be decomposed in, and their performance given a set of infrastructure-related
characteristics such as hardware-acceleration, caching capabilities and others. Section 4 positions the resource
orchestration challenge within the context of the virtual network embedding problem and investigates the impact of
online vs. offline algorithms, considers the relationship and added value of service decomposition within the
embedding algorithms, investigates a set of techniques to improve scalability of the orchestration infrastructure and
investigates a number of ways to handle technology-related aspects to orchestration.

Support for providing elastic network services in one of the most important merits of NFV. Whereas traditional
telecom services built on dedicated hardware devices usually require additional investments and manual re-
provisioning processes in order to scale the service to support a larger number of customers, flows or just plain
throughput, NFV relies on software-based implementations of Network Functions which can be deployed on
demand on generic-purpose hardware (servers). However, traditional hardware-implemented network functions
are engineered in order to provide high reliability with respect to individual component failures, in order to
guarantee the integrity of involved network and session state up to certain degrees. Section 5 specifies and
evaluates a range of mechanisms in order to enable effective and reliable state migration between VNFs. These
have been evaluated in an actively maintained OpenNF platform. In addition, the section details how these
mechanisms might be re-used in order to provide high availability in NFV-based services.

A scalable forwarding plane to support the Network Functions and their interconnections is another requirement
of the UNIFY architecture. With many years of research onto different routing and forwarding paradigms, there is
still no clear answer to what that forwarding plane should be. In Section 6 we propose a framework for Software
Defined Routing (SDR) that leverages the power and flexibility given by SDN to combine multiple forwarding
paradigms in an attempt to better manage the required forwarding state in the network. In this section we take the
first steps towards defining fast and scalable SDN routing strategies that can be the foundation of future service
chaining architectures. This is done through a 3-tiered architectural model which can incorporate many existing
routing paradigms.

14 Deliverable D3.2 18.06.2015

The true value of a service programming and orchestration framework only becomes apparent if its concepts,
processes and algorithms are actually implemented in a proof-of-concept, which on its turn can provide feedback in
order to refine the framework and its components. This supports an iterative process which avoids the traps of
overly complex theoretic frameworks without addressing lower-level, technological or implementation-related
issues. The above observation was the departing point of a set of component developments focusing on the
implementation of: i) the network dataplane and control functionality building further on a mathematical foundation
for traffic steering and forwarding state management, and ii) a global emulation platform in order to validate the
main layers, components and algorithms of the UNIFY service programming and orchestration framework. Section 7
provides an overview on the implementation side of important architectural components of the service
programming and orchestration framework in the evolved ESCAPE emulation environment, and gives an
overview on the impact of and relationships to the framework with respect to the control of radio and transport
networks.

14 Deliverable D3.2 18.06.2015

The true value of a service programming and orchestration framework only becomes apparent if its concepts,
processes and algorithms are actually implemented in a proof-of-concept, which on its turn can provide feedback in
order to refine the framework and its components. This supports an iterative process which avoids the traps of
overly complex theoretic frameworks without addressing lower-level, technological or implementation-related
issues. The above observation was the departing point of a set of component developments focusing on the
implementation of: i) the network dataplane and control functionality building further on a mathematical foundation
for traffic steering and forwarding state management, and ii) a global emulation platform in order to validate the
main layers, components and algorithms of the UNIFY service programming and orchestration framework. Section 7
provides an overview on the implementation side of important architectural components of the service
programming and orchestration framework in the evolved ESCAPE emulation environment, and gives an
overview on the impact of and relationships to the framework with respect to the control of radio and transport
networks.

14 Deliverable D3.2 18.06.2015

The true value of a service programming and orchestration framework only becomes apparent if its concepts,
processes and algorithms are actually implemented in a proof-of-concept, which on its turn can provide feedback in
order to refine the framework and its components. This supports an iterative process which avoids the traps of
overly complex theoretic frameworks without addressing lower-level, technological or implementation-related
issues. The above observation was the departing point of a set of component developments focusing on the
implementation of: i) the network dataplane and control functionality building further on a mathematical foundation
for traffic steering and forwarding state management, and ii) a global emulation platform in order to validate the
main layers, components and algorithms of the UNIFY service programming and orchestration framework. Section 7
provides an overview on the implementation side of important architectural components of the service
programming and orchestration framework in the evolved ESCAPE emulation environment, and gives an
overview on the impact of and relationships to the framework with respect to the control of radio and transport
networks.

15 Deliverable D3.2 18.06.2015

2 Programmability interfaces and data models

The main information element of the UNIFY architecture is the Network Function Forwarding Graph, introduced in
[D3.1]. Based on the input and lessons learned in the different prototypes, and the evolution of our understanding of
the requirements for the main components and features covered in the final architecture described in [D2.2], we are
evaluating two NF-FG model definitions, one service-centric based on the model introduced in [D3.1] and one
approach based on modelling the Virtualizer component introduced in [D2.2].

As we expect these models to further evolve based on prototyping experience within the project these NF-FG
models and the current state of the art models we relate them to are described in a separate, living, document that
can be more easily updated as more experience is gathered, [D3.2a]. Other sections of this document (D3.2) are not
as tightly bound to the exact specification of the NF-FG and therefore have not been placed in D3.2a.

Finally, section two introduces a recursive query language for gathering parameters on Service Graphs by recursing
through the orchestration hierarchy.

2.1 Efficient recursive NF-FG data queries
In NFV environments, operators or developers sometimes need to query the performance of a Virtualized Network
Function. In existing systems this is usually done by mapping the performance metrics of NFV to primitive physical
network function or elements statically and manually when the virtualized service is deployed. However in UNIFY a
multi-layer hierarchical architecture is adopted, and the VNF and associated resources may be composed
recursively in different layers of the architecture. That will put greater challenge on the performance of query on
VNFs as the mapping of VNF performance metrics from service layer to cloud infrastructure is more complex
compared to cloud infrastructure with a single layer orchestration. It is important to have an automatic and dynamic
way to decompose of the performance query in a recursive manner. We propose to use declarative language such
as Datalog to perform recursive queries on NF-FGs.

As shown in Figure 2-1, the Query Engine is responsible to receive the query scripts written in variant of a declarative
language (i.e., Datalog) from receivers like VNF developers and infrastructure operators, and then automatically
translate these queries. The queries should be translated into corresponding database queries based on the
resource graphs described in the NF-FGs, which may contain multiple nested NF-FG corresponding to different
levels of orchestration. Based on the instruction of the query scripts, the Query Engine will parse the NF-FGs and
decompose the performance metrics in a recursive way until some primitive resources (such as CPU of VM, delay
between two physical network elements) are identified or terminated according to instruction. Then the query
engine will query the distributed database containing monitoring results for these decomposed performance
metrics and aggregate them according to the query scripts. The distributed monitoring database stores the
measurement results collected by monitoring functions implemented in WP4, a monitoring function consists of a
Monitoring Function Control Application, and one or more Observability Points. An Observability Point in turn

15 Deliverable D3.2 18.06.2015

2 Programmability interfaces and data models

The main information element of the UNIFY architecture is the Network Function Forwarding Graph, introduced in
[D3.1]. Based on the input and lessons learned in the different prototypes, and the evolution of our understanding of
the requirements for the main components and features covered in the final architecture described in [D2.2], we are
evaluating two NF-FG model definitions, one service-centric based on the model introduced in [D3.1] and one
approach based on modelling the Virtualizer component introduced in [D2.2].

As we expect these models to further evolve based on prototyping experience within the project these NF-FG
models and the current state of the art models we relate them to are described in a separate, living, document that
can be more easily updated as more experience is gathered, [D3.2a]. Other sections of this document (D3.2) are not
as tightly bound to the exact specification of the NF-FG and therefore have not been placed in D3.2a.

Finally, section two introduces a recursive query language for gathering parameters on Service Graphs by recursing
through the orchestration hierarchy.

2.1 Efficient recursive NF-FG data queries
In NFV environments, operators or developers sometimes need to query the performance of a Virtualized Network
Function. In existing systems this is usually done by mapping the performance metrics of NFV to primitive physical
network function or elements statically and manually when the virtualized service is deployed. However in UNIFY a
multi-layer hierarchical architecture is adopted, and the VNF and associated resources may be composed
recursively in different layers of the architecture. That will put greater challenge on the performance of query on
VNFs as the mapping of VNF performance metrics from service layer to cloud infrastructure is more complex
compared to cloud infrastructure with a single layer orchestration. It is important to have an automatic and dynamic
way to decompose of the performance query in a recursive manner. We propose to use declarative language such
as Datalog to perform recursive queries on NF-FGs.

As shown in Figure 2-1, the Query Engine is responsible to receive the query scripts written in variant of a declarative
language (i.e., Datalog) from receivers like VNF developers and infrastructure operators, and then automatically
translate these queries. The queries should be translated into corresponding database queries based on the
resource graphs described in the NF-FGs, which may contain multiple nested NF-FG corresponding to different
levels of orchestration. Based on the instruction of the query scripts, the Query Engine will parse the NF-FGs and
decompose the performance metrics in a recursive way until some primitive resources (such as CPU of VM, delay
between two physical network elements) are identified or terminated according to instruction. Then the query
engine will query the distributed database containing monitoring results for these decomposed performance
metrics and aggregate them according to the query scripts. The distributed monitoring database stores the
measurement results collected by monitoring functions implemented in WP4, a monitoring function consists of a
Monitoring Function Control Application, and one or more Observability Points. An Observability Point in turn

15 Deliverable D3.2 18.06.2015

2 Programmability interfaces and data models

The main information element of the UNIFY architecture is the Network Function Forwarding Graph, introduced in
[D3.1]. Based on the input and lessons learned in the different prototypes, and the evolution of our understanding of
the requirements for the main components and features covered in the final architecture described in [D2.2], we are
evaluating two NF-FG model definitions, one service-centric based on the model introduced in [D3.1] and one
approach based on modelling the Virtualizer component introduced in [D2.2].

As we expect these models to further evolve based on prototyping experience within the project these NF-FG
models and the current state of the art models we relate them to are described in a separate, living, document that
can be more easily updated as more experience is gathered, [D3.2a]. Other sections of this document (D3.2) are not
as tightly bound to the exact specification of the NF-FG and therefore have not been placed in D3.2a.

Finally, section two introduces a recursive query language for gathering parameters on Service Graphs by recursing
through the orchestration hierarchy.

2.1 Efficient recursive NF-FG data queries
In NFV environments, operators or developers sometimes need to query the performance of a Virtualized Network
Function. In existing systems this is usually done by mapping the performance metrics of NFV to primitive physical
network function or elements statically and manually when the virtualized service is deployed. However in UNIFY a
multi-layer hierarchical architecture is adopted, and the VNF and associated resources may be composed
recursively in different layers of the architecture. That will put greater challenge on the performance of query on
VNFs as the mapping of VNF performance metrics from service layer to cloud infrastructure is more complex
compared to cloud infrastructure with a single layer orchestration. It is important to have an automatic and dynamic
way to decompose of the performance query in a recursive manner. We propose to use declarative language such
as Datalog to perform recursive queries on NF-FGs.

As shown in Figure 2-1, the Query Engine is responsible to receive the query scripts written in variant of a declarative
language (i.e., Datalog) from receivers like VNF developers and infrastructure operators, and then automatically
translate these queries. The queries should be translated into corresponding database queries based on the
resource graphs described in the NF-FGs, which may contain multiple nested NF-FG corresponding to different
levels of orchestration. Based on the instruction of the query scripts, the Query Engine will parse the NF-FGs and
decompose the performance metrics in a recursive way until some primitive resources (such as CPU of VM, delay
between two physical network elements) are identified or terminated according to instruction. Then the query
engine will query the distributed database containing monitoring results for these decomposed performance
metrics and aggregate them according to the query scripts. The distributed monitoring database stores the
measurement results collected by monitoring functions implemented in WP4, a monitoring function consists of a
Monitoring Function Control Application, and one or more Observability Points. An Observability Point in turn

16 Deliverable D3.2 18.06.2015

consists of one or more pairs of node-local control and data plane components (LCP and LDP respectively) which
are the ultimate source of monitoring information. The Query Library is used to store some pre-defined query
template or library developed by the receivers or service provider. A more detailed definition of the language will be
described in upcoming milestone M3.4 of WP3. And further detail on the design of the query engine and sample
usage of the language will be documented in D4.2 of WP4.

Figure 2-1: Recursive Monitoring Query

16 Deliverable D3.2 18.06.2015

consists of one or more pairs of node-local control and data plane components (LCP and LDP respectively) which
are the ultimate source of monitoring information. The Query Library is used to store some pre-defined query
template or library developed by the receivers or service provider. A more detailed definition of the language will be
described in upcoming milestone M3.4 of WP3. And further detail on the design of the query engine and sample
usage of the language will be documented in D4.2 of WP4.

Figure 2-1: Recursive Monitoring Query

16 Deliverable D3.2 18.06.2015

consists of one or more pairs of node-local control and data plane components (LCP and LDP respectively) which
are the ultimate source of monitoring information. The Query Library is used to store some pre-defined query
template or library developed by the receivers or service provider. A more detailed definition of the language will be
described in upcoming milestone M3.4 of WP3. And further detail on the design of the query engine and sample
usage of the language will be documented in D4.2 of WP4.

Figure 2-1: Recursive Monitoring Query

17 Deliverable D3.2 18.06.2015

3 Service decomposition

Model-based service decomposition was introduced in [D2.2], which allows for a step-wise translation of high-level
(compound) NFs into more elementary or atomic NFs, which can eventually be mapped onto the infrastructure. The
decomposition processes and methods were described in [D3.1], including NF-IB based decomposition as well as
ControlApp-driven decomposition. After a short introduction we address aspects related to the benefits of
decomposition and when and to what extent decomposition should be used. We then investigate various potential
atomic blocks that can be composed into larger functions or services. Finally we provide several examples of how
services can be composed from atomic blocks.

3.1 Introduction to service decomposition
One of the main goals of the UNIFY framework is to allow a quick and reliable deployment of services across the
whole network. It is clear that service decomposition is an important aspect in this context. The service decomposes
into discrete NF’s, which we will define as atomic blocks later on in this section. This modular approach offers a more
flexible way of mapping, or orchestrating, the service onto a universal network infrastructure. So the service
decomposition is a logical first step before the orchestration can begin. Also after the initial orchestration and
deployment of a service, reiterations of the decomposition and orchestration can occur due to scalability needs of
NF’s. To illustrate this, we can shortly recapitulate some examples given in earlier deliverables. In the following
subsections we elaborate on the different aspects of decomposing a service.

In [D2.2] Section 3.3.2 a service decomposition example was given to show the monolithic vs. decomposed network
functions and the control and data plane split. This example was about an Intrusion Detection System (IDS), whose
role is to identify and block malicious traffic. It was shown how an IDS can be decomposed as depicted in Figure 3-1.

Figure 3-1: IDS service decomposition (i) a hardware based monolithic component; (ii) a monolithic VM; (iii) a data
and control plane split design; (iv) and a scalable split realization.

In [D3.1] a video use case was described, which from a business point of view has a high potential of increasing the
traffic in the network due to the social media advancement. A critical network function for transferring video is the
transcoder, which is responsible for adapting multimedia streams for different platforms. Transcoding could be
done in order to for example lowering the resolution before sending the video to a mobile device with a small screen

17 Deliverable D3.2 18.06.2015

3 Service decomposition

Model-based service decomposition was introduced in [D2.2], which allows for a step-wise translation of high-level
(compound) NFs into more elementary or atomic NFs, which can eventually be mapped onto the infrastructure. The
decomposition processes and methods were described in [D3.1], including NF-IB based decomposition as well as
ControlApp-driven decomposition. After a short introduction we address aspects related to the benefits of
decomposition and when and to what extent decomposition should be used. We then investigate various potential
atomic blocks that can be composed into larger functions or services. Finally we provide several examples of how
services can be composed from atomic blocks.

3.1 Introduction to service decomposition
One of the main goals of the UNIFY framework is to allow a quick and reliable deployment of services across the
whole network. It is clear that service decomposition is an important aspect in this context. The service decomposes
into discrete NF’s, which we will define as atomic blocks later on in this section. This modular approach offers a more
flexible way of mapping, or orchestrating, the service onto a universal network infrastructure. So the service
decomposition is a logical first step before the orchestration can begin. Also after the initial orchestration and
deployment of a service, reiterations of the decomposition and orchestration can occur due to scalability needs of
NF’s. To illustrate this, we can shortly recapitulate some examples given in earlier deliverables. In the following
subsections we elaborate on the different aspects of decomposing a service.

In [D2.2] Section 3.3.2 a service decomposition example was given to show the monolithic vs. decomposed network
functions and the control and data plane split. This example was about an Intrusion Detection System (IDS), whose
role is to identify and block malicious traffic. It was shown how an IDS can be decomposed as depicted in Figure 3-1.

Figure 3-1: IDS service decomposition (i) a hardware based monolithic component; (ii) a monolithic VM; (iii) a data
and control plane split design; (iv) and a scalable split realization.

In [D3.1] a video use case was described, which from a business point of view has a high potential of increasing the
traffic in the network due to the social media advancement. A critical network function for transferring video is the
transcoder, which is responsible for adapting multimedia streams for different platforms. Transcoding could be
done in order to for example lowering the resolution before sending the video to a mobile device with a small screen

17 Deliverable D3.2 18.06.2015

3 Service decomposition

Model-based service decomposition was introduced in [D2.2], which allows for a step-wise translation of high-level
(compound) NFs into more elementary or atomic NFs, which can eventually be mapped onto the infrastructure. The
decomposition processes and methods were described in [D3.1], including NF-IB based decomposition as well as
ControlApp-driven decomposition. After a short introduction we address aspects related to the benefits of
decomposition and when and to what extent decomposition should be used. We then investigate various potential
atomic blocks that can be composed into larger functions or services. Finally we provide several examples of how
services can be composed from atomic blocks.

3.1 Introduction to service decomposition
One of the main goals of the UNIFY framework is to allow a quick and reliable deployment of services across the
whole network. It is clear that service decomposition is an important aspect in this context. The service decomposes
into discrete NF’s, which we will define as atomic blocks later on in this section. This modular approach offers a more
flexible way of mapping, or orchestrating, the service onto a universal network infrastructure. So the service
decomposition is a logical first step before the orchestration can begin. Also after the initial orchestration and
deployment of a service, reiterations of the decomposition and orchestration can occur due to scalability needs of
NF’s. To illustrate this, we can shortly recapitulate some examples given in earlier deliverables. In the following
subsections we elaborate on the different aspects of decomposing a service.

In [D2.2] Section 3.3.2 a service decomposition example was given to show the monolithic vs. decomposed network
functions and the control and data plane split. This example was about an Intrusion Detection System (IDS), whose
role is to identify and block malicious traffic. It was shown how an IDS can be decomposed as depicted in Figure 3-1.

Figure 3-1: IDS service decomposition (i) a hardware based monolithic component; (ii) a monolithic VM; (iii) a data
and control plane split design; (iv) and a scalable split realization.

In [D3.1] a video use case was described, which from a business point of view has a high potential of increasing the
traffic in the network due to the social media advancement. A critical network function for transferring video is the
transcoder, which is responsible for adapting multimedia streams for different platforms. Transcoding could be
done in order to for example lowering the resolution before sending the video to a mobile device with a small screen

18 Deliverable D3.2 18.06.2015

or changing from one encoding format to another which is better supported by the end device. Interactive two-way
communication services, peer to peer gaming, audio visual conferencing, etc. require that adaptation of the IP media
packet streams is required between different formatted devices in both directions and in real time. Without the
advantages of buffering the GStreamer framework supports constructing pipelines of “atomic” functions in order to
perform various multimedia tasks such as transcoding [GStreamer]. With GStreamer the pipelines are executed on a
single node, but one can imagine constructing similar pipelines in a distributed fashion utilizing multiple VNFs. In
Figure 3-2 an example of transcoding AVI formatted files into FLV and MKV formats using GStreamer is shown.

The boxes represent different functions that can send data to the following function, with the different colours to
represent how they could be grouped into different VNFs for decoding, scaling, encoding, and packaging. The atomic
functions needed in the transcoding pipeline can be flexibly delivered even by third party operators for offering
higher quality audio or video services with less bandwidth.

Figure 3-2: Decomposition of a GStreamer pipeline transcoding AVI to FLV and MKV formats. The different colours
indicate groups of functions that could potentially be placed in different VNFs.

3.1.1 Advantages of service decomposition
There are many motivations for service decomposition. One of them is well-known from software development,
namely the efficiency of reusing existing components to build new modules. It results in increased development
speed and reduced development costs [Bazilchuk2005]. Relying on generic functionality provided by external
components provides flexibility, as seen in software development in case of software libraries. The external libraries
can be updated, bug fixed, optimized, as long as the interface remains the same the application making use of the
library does not have to be changed.

Multiple implementations of the same functionality may also be possible. This allows a generic NF type to be
mapped to different platforms (e.g. x86, ARM, OF switch …). There can be multiple implementations optimized for
different aspects (e.g. one using more CPU but less storage, while another using less CPU but more storage), where
the most appropriate one can be chosen based on various factors. In all these cases the User/Operator does not
need to be aware of what resources are available when requesting the generic service.

18 Deliverable D3.2 18.06.2015

or changing from one encoding format to another which is better supported by the end device. Interactive two-way
communication services, peer to peer gaming, audio visual conferencing, etc. require that adaptation of the IP media
packet streams is required between different formatted devices in both directions and in real time. Without the
advantages of buffering the GStreamer framework supports constructing pipelines of “atomic” functions in order to
perform various multimedia tasks such as transcoding [GStreamer]. With GStreamer the pipelines are executed on a
single node, but one can imagine constructing similar pipelines in a distributed fashion utilizing multiple VNFs. In
Figure 3-2 an example of transcoding AVI formatted files into FLV and MKV formats using GStreamer is shown.

The boxes represent different functions that can send data to the following function, with the different colours to
represent how they could be grouped into different VNFs for decoding, scaling, encoding, and packaging. The atomic
functions needed in the transcoding pipeline can be flexibly delivered even by third party operators for offering
higher quality audio or video services with less bandwidth.

Figure 3-2: Decomposition of a GStreamer pipeline transcoding AVI to FLV and MKV formats. The different colours
indicate groups of functions that could potentially be placed in different VNFs.

3.1.1 Advantages of service decomposition
There are many motivations for service decomposition. One of them is well-known from software development,
namely the efficiency of reusing existing components to build new modules. It results in increased development
speed and reduced development costs [Bazilchuk2005]. Relying on generic functionality provided by external
components provides flexibility, as seen in software development in case of software libraries. The external libraries
can be updated, bug fixed, optimized, as long as the interface remains the same the application making use of the
library does not have to be changed.

Multiple implementations of the same functionality may also be possible. This allows a generic NF type to be
mapped to different platforms (e.g. x86, ARM, OF switch …). There can be multiple implementations optimized for
different aspects (e.g. one using more CPU but less storage, while another using less CPU but more storage), where
the most appropriate one can be chosen based on various factors. In all these cases the User/Operator does not
need to be aware of what resources are available when requesting the generic service.

18 Deliverable D3.2 18.06.2015

or changing from one encoding format to another which is better supported by the end device. Interactive two-way
communication services, peer to peer gaming, audio visual conferencing, etc. require that adaptation of the IP media
packet streams is required between different formatted devices in both directions and in real time. Without the
advantages of buffering the GStreamer framework supports constructing pipelines of “atomic” functions in order to
perform various multimedia tasks such as transcoding [GStreamer]. With GStreamer the pipelines are executed on a
single node, but one can imagine constructing similar pipelines in a distributed fashion utilizing multiple VNFs. In
Figure 3-2 an example of transcoding AVI formatted files into FLV and MKV formats using GStreamer is shown.

The boxes represent different functions that can send data to the following function, with the different colours to
represent how they could be grouped into different VNFs for decoding, scaling, encoding, and packaging. The atomic
functions needed in the transcoding pipeline can be flexibly delivered even by third party operators for offering
higher quality audio or video services with less bandwidth.

Figure 3-2: Decomposition of a GStreamer pipeline transcoding AVI to FLV and MKV formats. The different colours
indicate groups of functions that could potentially be placed in different VNFs.

3.1.1 Advantages of service decomposition
There are many motivations for service decomposition. One of them is well-known from software development,
namely the efficiency of reusing existing components to build new modules. It results in increased development
speed and reduced development costs [Bazilchuk2005]. Relying on generic functionality provided by external
components provides flexibility, as seen in software development in case of software libraries. The external libraries
can be updated, bug fixed, optimized, as long as the interface remains the same the application making use of the
library does not have to be changed.

Multiple implementations of the same functionality may also be possible. This allows a generic NF type to be
mapped to different platforms (e.g. x86, ARM, OF switch …). There can be multiple implementations optimized for
different aspects (e.g. one using more CPU but less storage, while another using less CPU but more storage), where
the most appropriate one can be chosen based on various factors. In all these cases the User/Operator does not
need to be aware of what resources are available when requesting the generic service.

19 Deliverable D3.2 18.06.2015

Decomposition can enable advanced resource optimization by jointly optimizing decomposition and resource
allocation (also see Section 4.6). On one hand, taking available resources into account when deciding which of the
potential decompositions to embed in the infrastructure will increase the likelihood that the embedding can be
satisfied. So providing various decompositions for the same service makes the service available under more
conditions, as well as enables further resource usage optimization.

From a user’s perspective service decomposition is advantageous, because there are cases where with
decomposition higher performance or better KPI/KQI can be achieved than without decomposing the service. For
example, the delay sensitive part of the NF can be placed close to the user, while the computation intensive part can
be placed in a datacenter or in a dedicated hardware appliance.

From operator perspective service decompositions can result in better resource usage, like load balancing to the
appropriate infrastructure components, or sharing resources or even NFs between users based on e.g. statistical
multiplexing. This can reduce the cost while providing the services to the users.

3.1.2 Limits and drawbacks of decomposition
Decomposition of functions to subcomponents has certain limits and overheads. There can be for example
metadata associated to packets of service traffic, to be communicated between the (decomposed) components.
Consider the Click Modular Router platform where a colour can be assigned to packets. This meta-information is to
be transmitted with the original packet between Click components (potentially deployed on remote hosts). There
can be configuration or other type of data not directly associated to packets, which must be shared among the
components.

There is communication overhead between components, compared to the non-split alternative, or compared to the
locally-split alternative. Once a function is decomposed, in the generic case it’s up to the RO where to place them, so
they should be prepared to handle this. There can be additional communication/networking aspects to be
considered, like delay, packet loss, reduced throughput, costs.

Taking available resources into account when deciding which of the potential decompositions to embed in the
infrastructure will increase the likelihood that the embedding can be satisfied. However, providing a description of
available resources may pose other issues such as how to effectively provide a summary of resources or in the
black-box service decomposition case, how to do it in a secure manner, assuming that the decompose functions
may be provided by a 3rd party.

Handling the interaction between automatic service scaling and decomposition may also be an issue, as they should
agree on how a certain NF-FG should be instantiated, in order to avoid cases where the scaling mechanism instantly
modifies a newly instantiated NF-FG determined through decomposition. A potential solution to this problem is to
treat scaling and decomposition as the same process while another is to keep the processes separated but mandate
that the scaling logic uses the same NF models and logic as the decomposition logic. In order to perform scaling in an

19 Deliverable D3.2 18.06.2015

Decomposition can enable advanced resource optimization by jointly optimizing decomposition and resource
allocation (also see Section 4.6). On one hand, taking available resources into account when deciding which of the
potential decompositions to embed in the infrastructure will increase the likelihood that the embedding can be
satisfied. So providing various decompositions for the same service makes the service available under more
conditions, as well as enables further resource usage optimization.

From a user’s perspective service decomposition is advantageous, because there are cases where with
decomposition higher performance or better KPI/KQI can be achieved than without decomposing the service. For
example, the delay sensitive part of the NF can be placed close to the user, while the computation intensive part can
be placed in a datacenter or in a dedicated hardware appliance.

From operator perspective service decompositions can result in better resource usage, like load balancing to the
appropriate infrastructure components, or sharing resources or even NFs between users based on e.g. statistical
multiplexing. This can reduce the cost while providing the services to the users.

3.1.2 Limits and drawbacks of decomposition
Decomposition of functions to subcomponents has certain limits and overheads. There can be for example
metadata associated to packets of service traffic, to be communicated between the (decomposed) components.
Consider the Click Modular Router platform where a colour can be assigned to packets. This meta-information is to
be transmitted with the original packet between Click components (potentially deployed on remote hosts). There
can be configuration or other type of data not directly associated to packets, which must be shared among the
components.

There is communication overhead between components, compared to the non-split alternative, or compared to the
locally-split alternative. Once a function is decomposed, in the generic case it’s up to the RO where to place them, so
they should be prepared to handle this. There can be additional communication/networking aspects to be
considered, like delay, packet loss, reduced throughput, costs.

Taking available resources into account when deciding which of the potential decompositions to embed in the
infrastructure will increase the likelihood that the embedding can be satisfied. However, providing a description of
available resources may pose other issues such as how to effectively provide a summary of resources or in the
black-box service decomposition case, how to do it in a secure manner, assuming that the decompose functions
may be provided by a 3rd party.

Handling the interaction between automatic service scaling and decomposition may also be an issue, as they should
agree on how a certain NF-FG should be instantiated, in order to avoid cases where the scaling mechanism instantly
modifies a newly instantiated NF-FG determined through decomposition. A potential solution to this problem is to
treat scaling and decomposition as the same process while another is to keep the processes separated but mandate
that the scaling logic uses the same NF models and logic as the decomposition logic. In order to perform scaling in an

19 Deliverable D3.2 18.06.2015

Decomposition can enable advanced resource optimization by jointly optimizing decomposition and resource
allocation (also see Section 4.6). On one hand, taking available resources into account when deciding which of the
potential decompositions to embed in the infrastructure will increase the likelihood that the embedding can be
satisfied. So providing various decompositions for the same service makes the service available under more
conditions, as well as enables further resource usage optimization.

From a user’s perspective service decomposition is advantageous, because there are cases where with
decomposition higher performance or better KPI/KQI can be achieved than without decomposing the service. For
example, the delay sensitive part of the NF can be placed close to the user, while the computation intensive part can
be placed in a datacenter or in a dedicated hardware appliance.

From operator perspective service decompositions can result in better resource usage, like load balancing to the
appropriate infrastructure components, or sharing resources or even NFs between users based on e.g. statistical
multiplexing. This can reduce the cost while providing the services to the users.

3.1.2 Limits and drawbacks of decomposition
Decomposition of functions to subcomponents has certain limits and overheads. There can be for example
metadata associated to packets of service traffic, to be communicated between the (decomposed) components.
Consider the Click Modular Router platform where a colour can be assigned to packets. This meta-information is to
be transmitted with the original packet between Click components (potentially deployed on remote hosts). There
can be configuration or other type of data not directly associated to packets, which must be shared among the
components.

There is communication overhead between components, compared to the non-split alternative, or compared to the
locally-split alternative. Once a function is decomposed, in the generic case it’s up to the RO where to place them, so
they should be prepared to handle this. There can be additional communication/networking aspects to be
considered, like delay, packet loss, reduced throughput, costs.

Taking available resources into account when deciding which of the potential decompositions to embed in the
infrastructure will increase the likelihood that the embedding can be satisfied. However, providing a description of
available resources may pose other issues such as how to effectively provide a summary of resources or in the
black-box service decomposition case, how to do it in a secure manner, assuming that the decompose functions
may be provided by a 3rd party.

Handling the interaction between automatic service scaling and decomposition may also be an issue, as they should
agree on how a certain NF-FG should be instantiated, in order to avoid cases where the scaling mechanism instantly
modifies a newly instantiated NF-FG determined through decomposition. A potential solution to this problem is to
treat scaling and decomposition as the same process while another is to keep the processes separated but mandate
that the scaling logic uses the same NF models and logic as the decomposition logic. In order to perform scaling in an

20 Deliverable D3.2 18.06.2015

efficient way state internal to NF instances most likely is necessary to determine when to scale up or down. This
type of internal state and state processing may be difficult to capture in a generic model.

3.1.3 Why and when to decompose
Considering the limits of decomposition, it can be investigated case by case whether/when decomposing a service is
desirable. However, there are certain generic situations, when the advantages of decomposing are hard to question.
Such a situation which allows decomposition is when the interface between the components is very clear, like just
transmitting the pure user payload packets without any metadata between the components. An example can be a
firewall after a NAT.

We can have a strong reason to decompose to a given NF, if there is certain functionality realized by this NF in pure
data plane, or even more, by a dedicated appliance. In this case the speed and cost can motivate decomposition.
There are cases, when certain functionality can be realized close to the source, thus less networking resources have
be used. This can be seen as resource optimization or resource policy motivated decomposition.

From the NF development point of view, once there are proven, cheap, well-known, ready-to-use building blocks
available, the developer aims to use them, by decomposing the more complex NF to make use of the existing
components.

3.1.4 Which actors perform the decomposition?
Deliverable [D3.1] defines the actors relevant to programmability, which corresponds to the potential business roles
as given in [D2.1]. Decomposition steps can be mapped to these actors. According to [D2.2], model-based service
decomposition has a time aspect, as discussed below.

There is a decomposition model, made at design-time by the VNF Developer. When developing a new NF, it’s up to
the developer to use existing functions or to split the high level NF to more atomic ones. Of course, various
alternative decompositions can be provided by the VNF Developer. These decompositions are foreseen to be stored
in the NF-IB. Later the decompositions stored in the NF-IB can be extended or updated.

In the instantiation time the model can be taken from the NF-IB. As there can be multiple possible decompositions,
the instantiation can dynamically take into account e.g. available resources to make the best decision according to its
policies or optimization goals. This step is performed by the Orchestration Layer (developed by the Orchestration SW
Provider, configured and operated by the Service Provider). According to the functional architecture described in
[D2.2], the Resource Orchestrator is the functional entity performing the actual decomposition, in the sense of
selecting which decomposition to use, if multiple ones are possible.

There is also a Service Graph Adaptation layer in the UNIFY architecture, which may also deal with decomposition in
the RO sense, however, its task is to convert a Service Graph (SG) to a NF-FG, but not to decompose NFs in a NF-FG.

20 Deliverable D3.2 18.06.2015

efficient way state internal to NF instances most likely is necessary to determine when to scale up or down. This
type of internal state and state processing may be difficult to capture in a generic model.

3.1.3 Why and when to decompose
Considering the limits of decomposition, it can be investigated case by case whether/when decomposing a service is
desirable. However, there are certain generic situations, when the advantages of decomposing are hard to question.
Such a situation which allows decomposition is when the interface between the components is very clear, like just
transmitting the pure user payload packets without any metadata between the components. An example can be a
firewall after a NAT.

We can have a strong reason to decompose to a given NF, if there is certain functionality realized by this NF in pure
data plane, or even more, by a dedicated appliance. In this case the speed and cost can motivate decomposition.
There are cases, when certain functionality can be realized close to the source, thus less networking resources have
be used. This can be seen as resource optimization or resource policy motivated decomposition.

From the NF development point of view, once there are proven, cheap, well-known, ready-to-use building blocks
available, the developer aims to use them, by decomposing the more complex NF to make use of the existing
components.

3.1.4 Which actors perform the decomposition?
Deliverable [D3.1] defines the actors relevant to programmability, which corresponds to the potential business roles
as given in [D2.1]. Decomposition steps can be mapped to these actors. According to [D2.2], model-based service
decomposition has a time aspect, as discussed below.

There is a decomposition model, made at design-time by the VNF Developer. When developing a new NF, it’s up to
the developer to use existing functions or to split the high level NF to more atomic ones. Of course, various
alternative decompositions can be provided by the VNF Developer. These decompositions are foreseen to be stored
in the NF-IB. Later the decompositions stored in the NF-IB can be extended or updated.

In the instantiation time the model can be taken from the NF-IB. As there can be multiple possible decompositions,
the instantiation can dynamically take into account e.g. available resources to make the best decision according to its
policies or optimization goals. This step is performed by the Orchestration Layer (developed by the Orchestration SW
Provider, configured and operated by the Service Provider). According to the functional architecture described in
[D2.2], the Resource Orchestrator is the functional entity performing the actual decomposition, in the sense of
selecting which decomposition to use, if multiple ones are possible.

There is also a Service Graph Adaptation layer in the UNIFY architecture, which may also deal with decomposition in
the RO sense, however, its task is to convert a Service Graph (SG) to a NF-FG, but not to decompose NFs in a NF-FG.

20 Deliverable D3.2 18.06.2015

efficient way state internal to NF instances most likely is necessary to determine when to scale up or down. This
type of internal state and state processing may be difficult to capture in a generic model.

3.1.3 Why and when to decompose
Considering the limits of decomposition, it can be investigated case by case whether/when decomposing a service is
desirable. However, there are certain generic situations, when the advantages of decomposing are hard to question.
Such a situation which allows decomposition is when the interface between the components is very clear, like just
transmitting the pure user payload packets without any metadata between the components. An example can be a
firewall after a NAT.

We can have a strong reason to decompose to a given NF, if there is certain functionality realized by this NF in pure
data plane, or even more, by a dedicated appliance. In this case the speed and cost can motivate decomposition.
There are cases, when certain functionality can be realized close to the source, thus less networking resources have
be used. This can be seen as resource optimization or resource policy motivated decomposition.

From the NF development point of view, once there are proven, cheap, well-known, ready-to-use building blocks
available, the developer aims to use them, by decomposing the more complex NF to make use of the existing
components.

3.1.4 Which actors perform the decomposition?
Deliverable [D3.1] defines the actors relevant to programmability, which corresponds to the potential business roles
as given in [D2.1]. Decomposition steps can be mapped to these actors. According to [D2.2], model-based service
decomposition has a time aspect, as discussed below.

There is a decomposition model, made at design-time by the VNF Developer. When developing a new NF, it’s up to
the developer to use existing functions or to split the high level NF to more atomic ones. Of course, various
alternative decompositions can be provided by the VNF Developer. These decompositions are foreseen to be stored
in the NF-IB. Later the decompositions stored in the NF-IB can be extended or updated.

In the instantiation time the model can be taken from the NF-IB. As there can be multiple possible decompositions,
the instantiation can dynamically take into account e.g. available resources to make the best decision according to its
policies or optimization goals. This step is performed by the Orchestration Layer (developed by the Orchestration SW
Provider, configured and operated by the Service Provider). According to the functional architecture described in
[D2.2], the Resource Orchestrator is the functional entity performing the actual decomposition, in the sense of
selecting which decomposition to use, if multiple ones are possible.

There is also a Service Graph Adaptation layer in the UNIFY architecture, which may also deal with decomposition in
the RO sense, however, its task is to convert a Service Graph (SG) to a NF-FG, but not to decompose NFs in a NF-FG.

21 Deliverable D3.2 18.06.2015

3.2 Atomic blocks
Decomposition follows a recursive, top-down approach, i.e. the RO point of view. The RO of a NF-FG might involve
decomposition of (potentially abstract) NFs into other (potentially abstract) NFs. Resource orchestration of an NF or
of a subgraph of the NF-FG might be delegated to lower-layer ROs, but ultimately, at the lowest orchestration layer,
NFs must be decomposed into atomic NFs. In UNIFY, we define a NF to be atomic, if;

Definition: An NF is atomic if the NF type is directly1 instantiable from the RO perspective on the available
infrastructure nodes.

Another approach could be VNF developer’s view. Here the atomicity level may depend on the NF itself. It could be
split according to logical/practical components or interfaces. The atomicity level may depend on the development
environment, e.g. the available software library. Choosing the right level of atomic blocks has some kind of analogy
to choosing the right programming language as well as associated libraries for the task (assembly vs. C vs. C++ vs.
Java vs. Python, etc.).

During decomposition, the RO will have the following priorities:

1. Fulfil requirements of the request (NF-FG). Maybe only a decomposed NF can be placed close enough to
meet delay requirements. Maybe a decomposed NF can relax on requirements: NF needs high BW, but as
decomposed only one component needs this.

2. Optimize cost, once both compound and decomposed NF requirements are fulfilled. Cost = NF costs +
Communication costs of decomposed NFs. This depends on resource availability and placement. It may be
impossible to scan all options, therefore heuristics should be applied [Sahhaf2015a].

We can classify atomic NF’s according to the platform they are running on or the framework they fit in. As explained
above, the abstraction level for atomic blocks will differ also depending on the context (e.g. for a VNF developer, for
the Controller Adaption layer, and for the Resource Orchestrator).

3.2.1 Hardware-defined atomic blocks
Hardware defined NFs refer to dedicated resources implemented in hardware which are only able to implement a
particular functionality, for example a Firewall function. The NFs that may be deployed on such devices are atomic
due to the constrained infrastructure/substrate. Required deployment information (i.e., software) in order to
instantiate NFs in this case is minimal, as the functionality itself is already hardwired in the infrastructure.

In fact, any infrastructure hardware substrate constrains the NFs that may be deployed on them, due to the
architecture and programmability of the platform. In the context of UNIFY, we might consider two ends of the
spectrum. On one end, we can consider specialized hardware-implementations for one particular NF, which offer

1 This implies that deployment information for the considered NF is directly available to instantiate it on suitableinfrastructure.
21 Deliverable D3.2 18.06.2015

3.2 Atomic blocks
Decomposition follows a recursive, top-down approach, i.e. the RO point of view. The RO of a NF-FG might involve
decomposition of (potentially abstract) NFs into other (potentially abstract) NFs. Resource orchestration of an NF or
of a subgraph of the NF-FG might be delegated to lower-layer ROs, but ultimately, at the lowest orchestration layer,
NFs must be decomposed into atomic NFs. In UNIFY, we define a NF to be atomic, if;

Definition: An NF is atomic if the NF type is directly1 instantiable from the RO perspective on the available
infrastructure nodes.

Another approach could be VNF developer’s view. Here the atomicity level may depend on the NF itself. It could be
split according to logical/practical components or interfaces. The atomicity level may depend on the development
environment, e.g. the available software library. Choosing the right level of atomic blocks has some kind of analogy
to choosing the right programming language as well as associated libraries for the task (assembly vs. C vs. C++ vs.
Java vs. Python, etc.).

During decomposition, the RO will have the following priorities:

1. Fulfil requirements of the request (NF-FG). Maybe only a decomposed NF can be placed close enough to
meet delay requirements. Maybe a decomposed NF can relax on requirements: NF needs high BW, but as
decomposed only one component needs this.

2. Optimize cost, once both compound and decomposed NF requirements are fulfilled. Cost = NF costs +
Communication costs of decomposed NFs. This depends on resource availability and placement. It may be
impossible to scan all options, therefore heuristics should be applied [Sahhaf2015a].

We can classify atomic NF’s according to the platform they are running on or the framework they fit in. As explained
above, the abstraction level for atomic blocks will differ also depending on the context (e.g. for a VNF developer, for
the Controller Adaption layer, and for the Resource Orchestrator).

3.2.1 Hardware-defined atomic blocks
Hardware defined NFs refer to dedicated resources implemented in hardware which are only able to implement a
particular functionality, for example a Firewall function. The NFs that may be deployed on such devices are atomic
due to the constrained infrastructure/substrate. Required deployment information (i.e., software) in order to
instantiate NFs in this case is minimal, as the functionality itself is already hardwired in the infrastructure.

In fact, any infrastructure hardware substrate constrains the NFs that may be deployed on them, due to the
architecture and programmability of the platform. In the context of UNIFY, we might consider two ends of the
spectrum. On one end, we can consider specialized hardware-implementations for one particular NF, which offer

1 This implies that deployment information for the considered NF is directly available to instantiate it on suitableinfrastructure.
21 Deliverable D3.2 18.06.2015

3.2 Atomic blocks
Decomposition follows a recursive, top-down approach, i.e. the RO point of view. The RO of a NF-FG might involve
decomposition of (potentially abstract) NFs into other (potentially abstract) NFs. Resource orchestration of an NF or
of a subgraph of the NF-FG might be delegated to lower-layer ROs, but ultimately, at the lowest orchestration layer,
NFs must be decomposed into atomic NFs. In UNIFY, we define a NF to be atomic, if;

Definition: An NF is atomic if the NF type is directly1 instantiable from the RO perspective on the available
infrastructure nodes.

Another approach could be VNF developer’s view. Here the atomicity level may depend on the NF itself. It could be
split according to logical/practical components or interfaces. The atomicity level may depend on the development
environment, e.g. the available software library. Choosing the right level of atomic blocks has some kind of analogy
to choosing the right programming language as well as associated libraries for the task (assembly vs. C vs. C++ vs.
Java vs. Python, etc.).

During decomposition, the RO will have the following priorities:

1. Fulfil requirements of the request (NF-FG). Maybe only a decomposed NF can be placed close enough to
meet delay requirements. Maybe a decomposed NF can relax on requirements: NF needs high BW, but as
decomposed only one component needs this.

2. Optimize cost, once both compound and decomposed NF requirements are fulfilled. Cost = NF costs +
Communication costs of decomposed NFs. This depends on resource availability and placement. It may be
impossible to scan all options, therefore heuristics should be applied [Sahhaf2015a].

We can classify atomic NF’s according to the platform they are running on or the framework they fit in. As explained
above, the abstraction level for atomic blocks will differ also depending on the context (e.g. for a VNF developer, for
the Controller Adaption layer, and for the Resource Orchestrator).

3.2.1 Hardware-defined atomic blocks
Hardware defined NFs refer to dedicated resources implemented in hardware which are only able to implement a
particular functionality, for example a Firewall function. The NFs that may be deployed on such devices are atomic
due to the constrained infrastructure/substrate. Required deployment information (i.e., software) in order to
instantiate NFs in this case is minimal, as the functionality itself is already hardwired in the infrastructure.

In fact, any infrastructure hardware substrate constrains the NFs that may be deployed on them, due to the
architecture and programmability of the platform. In the context of UNIFY, we might consider two ends of the
spectrum. On one end, we can consider specialized hardware-implementations for one particular NF, which offer

1 This implies that deployment information for the considered NF is directly available to instantiate it on suitableinfrastructure.

22 Deliverable D3.2 18.06.2015

very few programmability options for changing the considered NF (mainly configuration of the function), while on
the other end, we can consider the Universal Nodes (UNs) developed in WP5 and COTS servers which offer
significant programmability, although still constrained by their architecture (e.g., number CPU’s, 32-bit vs. 64-bit,
ARM vs. x86, etc.) [D5.2, D5.4]. In between, there are a range of hardware substrates such as FPGAs which do allow
wider programmability (e.g., VERILOG specs) than specialized hardware-implementations of NFs. In fact, any
hardware substrate defines or rather constrains the atomicity of the NFs that may be deployed on them. However,
very programmable platforms, such as the Universal Node, may benefit from finer-grained software-defined atomic
blocks, which will be discussed in the next section.

3.2.2 Software-defined atomic blocks
The infrastructure platforms considered in UNIFY, in particular COTS server hardware, offers tremendous
programming opportunities for VNF developers. Software defined atomic NFs for service composition are
characterized by their choice of programming language or specific networking software framework. They can be
considered as blocks of code providing an easier and optimized way of programming networking functionality. This
allows a more modular and higher-level abstraction of network functions, which can otherwise be complicated,
error-prone and difficult to develop and maintain, among other advantages listed earlier in this section. We highlight
some examples of these frameworks below.

3.2.2.1 Program- and daemon based NFs
The majority of existing software implementations of network functions are programs and daemons, for which
either the source code or the binary files are available. The first requires compilation (potentially after installing
required libraries), while the second may be directly executed if compatible with the architecture (incl. hardware and
OS-architecture) for which it has been prepared. A related way of packaging executables as well as their
dependencies based on isolation technology is Docker, documented in section 3.2.3.2.

A growing range of programs becomes available, which can be combined in different ways to construct services
and/or NF’s. These might be independent executables, or sets of executables which interact with each using
predefined interfaces. Below, we give a brief snapshot of typical NFs in the context of routing (a similar exercise
could be done for other NF categories).

Routing-related NFs: Routing-related NFs provide functionality to distribute and discover topological information
and calculate paths within networks. Traditional monolithic routing software is made as a one process program
which provides all of the routing protocol functionalities. Routing platforms such as Quagga, XORP or BIRD [Quagga,
XORP, Bird] take a different approach. They are made from a collection of several daemons that work together to
build the routing table and populate the OS-level forwarding table. There may be several protocol-specific routing
daemons (for OSPF, RIP, BGP…) involved, as well as executables responsible for internal communication between
daemons and or OS-level functionality (e.g., ‘zebra’ the kernel routing manager). A feature that illustrates the
control/data plane layering is a 'FIB push' interface. This allows an external component to learn the forwarding

22 Deliverable D3.2 18.06.2015

very few programmability options for changing the considered NF (mainly configuration of the function), while on
the other end, we can consider the Universal Nodes (UNs) developed in WP5 and COTS servers which offer
significant programmability, although still constrained by their architecture (e.g., number CPU’s, 32-bit vs. 64-bit,
ARM vs. x86, etc.) [D5.2, D5.4]. In between, there are a range of hardware substrates such as FPGAs which do allow
wider programmability (e.g., VERILOG specs) than specialized hardware-implementations of NFs. In fact, any
hardware substrate defines or rather constrains the atomicity of the NFs that may be deployed on them. However,
very programmable platforms, such as the Universal Node, may benefit from finer-grained software-defined atomic
blocks, which will be discussed in the next section.

3.2.2 Software-defined atomic blocks
The infrastructure platforms considered in UNIFY, in particular COTS server hardware, offers tremendous
programming opportunities for VNF developers. Software defined atomic NFs for service composition are
characterized by their choice of programming language or specific networking software framework. They can be
considered as blocks of code providing an easier and optimized way of programming networking functionality. This
allows a more modular and higher-level abstraction of network functions, which can otherwise be complicated,
error-prone and difficult to develop and maintain, among other advantages listed earlier in this section. We highlight
some examples of these frameworks below.

3.2.2.1 Program- and daemon based NFs
The majority of existing software implementations of network functions are programs and daemons, for which
either the source code or the binary files are available. The first requires compilation (potentially after installing
required libraries), while the second may be directly executed if compatible with the architecture (incl. hardware and
OS-architecture) for which it has been prepared. A related way of packaging executables as well as their
dependencies based on isolation technology is Docker, documented in section 3.2.3.2.

A growing range of programs becomes available, which can be combined in different ways to construct services
and/or NF’s. These might be independent executables, or sets of executables which interact with each using
predefined interfaces. Below, we give a brief snapshot of typical NFs in the context of routing (a similar exercise
could be done for other NF categories).

Routing-related NFs: Routing-related NFs provide functionality to distribute and discover topological information
and calculate paths within networks. Traditional monolithic routing software is made as a one process program
which provides all of the routing protocol functionalities. Routing platforms such as Quagga, XORP or BIRD [Quagga,
XORP, Bird] take a different approach. They are made from a collection of several daemons that work together to
build the routing table and populate the OS-level forwarding table. There may be several protocol-specific routing
daemons (for OSPF, RIP, BGP…) involved, as well as executables responsible for internal communication between
daemons and or OS-level functionality (e.g., ‘zebra’ the kernel routing manager). A feature that illustrates the
control/data plane layering is a 'FIB push' interface. This allows an external component to learn the forwarding

22 Deliverable D3.2 18.06.2015

very few programmability options for changing the considered NF (mainly configuration of the function), while on
the other end, we can consider the Universal Nodes (UNs) developed in WP5 and COTS servers which offer
significant programmability, although still constrained by their architecture (e.g., number CPU’s, 32-bit vs. 64-bit,
ARM vs. x86, etc.) [D5.2, D5.4]. In between, there are a range of hardware substrates such as FPGAs which do allow
wider programmability (e.g., VERILOG specs) than specialized hardware-implementations of NFs. In fact, any
hardware substrate defines or rather constrains the atomicity of the NFs that may be deployed on them. However,
very programmable platforms, such as the Universal Node, may benefit from finer-grained software-defined atomic
blocks, which will be discussed in the next section.

3.2.2 Software-defined atomic blocks
The infrastructure platforms considered in UNIFY, in particular COTS server hardware, offers tremendous
programming opportunities for VNF developers. Software defined atomic NFs for service composition are
characterized by their choice of programming language or specific networking software framework. They can be
considered as blocks of code providing an easier and optimized way of programming networking functionality. This
allows a more modular and higher-level abstraction of network functions, which can otherwise be complicated,
error-prone and difficult to develop and maintain, among other advantages listed earlier in this section. We highlight
some examples of these frameworks below.

3.2.2.1 Program- and daemon based NFs
The majority of existing software implementations of network functions are programs and daemons, for which
either the source code or the binary files are available. The first requires compilation (potentially after installing
required libraries), while the second may be directly executed if compatible with the architecture (incl. hardware and
OS-architecture) for which it has been prepared. A related way of packaging executables as well as their
dependencies based on isolation technology is Docker, documented in section 3.2.3.2.

A growing range of programs becomes available, which can be combined in different ways to construct services
and/or NF’s. These might be independent executables, or sets of executables which interact with each using
predefined interfaces. Below, we give a brief snapshot of typical NFs in the context of routing (a similar exercise
could be done for other NF categories).

Routing-related NFs: Routing-related NFs provide functionality to distribute and discover topological information
and calculate paths within networks. Traditional monolithic routing software is made as a one process program
which provides all of the routing protocol functionalities. Routing platforms such as Quagga, XORP or BIRD [Quagga,
XORP, Bird] take a different approach. They are made from a collection of several daemons that work together to
build the routing table and populate the OS-level forwarding table. There may be several protocol-specific routing
daemons (for OSPF, RIP, BGP…) involved, as well as executables responsible for internal communication between
daemons and or OS-level functionality (e.g., ‘zebra’ the kernel routing manager). A feature that illustrates the
control/data plane layering is a 'FIB push' interface. This allows an external component to learn the forwarding

23 Deliverable D3.2 18.06.2015

information computed by the Quagga routing suite. This architecture creates new possibilities for the routing system
as the multi-process architecture brings extensibility, modularity and maintainability. It can be run with Linux and
can use the standard Linux kernel for forwarding (as software router), or it could be connected to a distributed
forwarding platform using OpenFlow or any other open or proprietary interface (as a high-end distributed router),
e.g., [Nascimento2011]. It could also be used just for the routing protocols to interface with off-the shelf routers to
receive and announce routes. In Quagga, the Routing Information Base (RIB) resides inside zebra. Routing protocols
communicate their best routes to zebra, and zebra computes the best route across protocols for each prefix. This
latter information makes up the Forwarding Information Base (FIB). Zebra feeds the FIB to the kernel, which allows
the IP stack in the kernel to forward packets according to the routes computed by Quagga. The FIB push interface
aims to provide a cross-platform mechanism to support scenarios where the router has a forwarding path that is
distinct from the kernel, commonly a hardware-based fast path. In these cases, the FIB needs to be maintained
reliably in the fast path as well. This routing architecture is illustrated in Figure 3-3. Similar dependencies between
routing executables/daemons exist in frameworks such as [XORP, BIRD].

Figure 3-3: Routing atomic blocks as used in eg. Quagga

Forwarding-related NFs: Forwarding-related NFs provide optimized programs for processing and forwarding
network packets (usually based on header content), typical examples are [OpenVSwitch, VALE, xDPd, LINCX]. These
functions are often relying on libraries which are able to enhance packet processing handling such as [xDPd,
NETMAP]. The performance impact of these is being investigated in WP5.

3.2.2.2 Click Modular Router NFs
Click is a software framework for building NF’s in a modular way by combining elements, which perform simple
operations on network packets, into a graph-like structure defining the packet’s processing flows and thus
implementing a more advanced NF. This modularity offers unique possibilities for (de)composing VNF’s, which can
be difficult to achieve using other frameworks for VNF programming. The very fine-grained modularity which can
be achieved by implementing VNF’s using these discrete elements, the easy re-use and development of new
elements, are key aspects making the Click framework very suitable as a tool to deploy VNF’s in a decomposed way.

OSPF daemon RIP daemon BGP daemon

zebra daemon
(RIB)

Kernel Routing Table (FIB)

Control Plane

Data Plane

23 Deliverable D3.2 18.06.2015

information computed by the Quagga routing suite. This architecture creates new possibilities for the routing system
as the multi-process architecture brings extensibility, modularity and maintainability. It can be run with Linux and
can use the standard Linux kernel for forwarding (as software router), or it could be connected to a distributed
forwarding platform using OpenFlow or any other open or proprietary interface (as a high-end distributed router),
e.g., [Nascimento2011]. It could also be used just for the routing protocols to interface with off-the shelf routers to
receive and announce routes. In Quagga, the Routing Information Base (RIB) resides inside zebra. Routing protocols
communicate their best routes to zebra, and zebra computes the best route across protocols for each prefix. This
latter information makes up the Forwarding Information Base (FIB). Zebra feeds the FIB to the kernel, which allows
the IP stack in the kernel to forward packets according to the routes computed by Quagga. The FIB push interface
aims to provide a cross-platform mechanism to support scenarios where the router has a forwarding path that is
distinct from the kernel, commonly a hardware-based fast path. In these cases, the FIB needs to be maintained
reliably in the fast path as well. This routing architecture is illustrated in Figure 3-3. Similar dependencies between
routing executables/daemons exist in frameworks such as [XORP, BIRD].

Figure 3-3: Routing atomic blocks as used in eg. Quagga

Forwarding-related NFs: Forwarding-related NFs provide optimized programs for processing and forwarding
network packets (usually based on header content), typical examples are [OpenVSwitch, VALE, xDPd, LINCX]. These
functions are often relying on libraries which are able to enhance packet processing handling such as [xDPd,
NETMAP]. The performance impact of these is being investigated in WP5.

3.2.2.2 Click Modular Router NFs
Click is a software framework for building NF’s in a modular way by combining elements, which perform simple
operations on network packets, into a graph-like structure defining the packet’s processing flows and thus
implementing a more advanced NF. This modularity offers unique possibilities for (de)composing VNF’s, which can
be difficult to achieve using other frameworks for VNF programming. The very fine-grained modularity which can
be achieved by implementing VNF’s using these discrete elements, the easy re-use and development of new
elements, are key aspects making the Click framework very suitable as a tool to deploy VNF’s in a decomposed way.

OSPF daemon RIP daemon BGP daemon

zebra daemon
(RIB)

Kernel Routing Table (FIB)

Control Plane

Data Plane

23 Deliverable D3.2 18.06.2015

information computed by the Quagga routing suite. This architecture creates new possibilities for the routing system
as the multi-process architecture brings extensibility, modularity and maintainability. It can be run with Linux and
can use the standard Linux kernel for forwarding (as software router), or it could be connected to a distributed
forwarding platform using OpenFlow or any other open or proprietary interface (as a high-end distributed router),
e.g., [Nascimento2011]. It could also be used just for the routing protocols to interface with off-the shelf routers to
receive and announce routes. In Quagga, the Routing Information Base (RIB) resides inside zebra. Routing protocols
communicate their best routes to zebra, and zebra computes the best route across protocols for each prefix. This
latter information makes up the Forwarding Information Base (FIB). Zebra feeds the FIB to the kernel, which allows
the IP stack in the kernel to forward packets according to the routes computed by Quagga. The FIB push interface
aims to provide a cross-platform mechanism to support scenarios where the router has a forwarding path that is
distinct from the kernel, commonly a hardware-based fast path. In these cases, the FIB needs to be maintained
reliably in the fast path as well. This routing architecture is illustrated in Figure 3-3. Similar dependencies between
routing executables/daemons exist in frameworks such as [XORP, BIRD].

Figure 3-3: Routing atomic blocks as used in eg. Quagga

Forwarding-related NFs: Forwarding-related NFs provide optimized programs for processing and forwarding
network packets (usually based on header content), typical examples are [OpenVSwitch, VALE, xDPd, LINCX]. These
functions are often relying on libraries which are able to enhance packet processing handling such as [xDPd,
NETMAP]. The performance impact of these is being investigated in WP5.

3.2.2.2 Click Modular Router NFs
Click is a software framework for building NF’s in a modular way by combining elements, which perform simple
operations on network packets, into a graph-like structure defining the packet’s processing flows and thus
implementing a more advanced NF. This modularity offers unique possibilities for (de)composing VNF’s, which can
be difficult to achieve using other frameworks for VNF programming. The very fine-grained modularity which can
be achieved by implementing VNF’s using these discrete elements, the easy re-use and development of new
elements, are key aspects making the Click framework very suitable as a tool to deploy VNF’s in a decomposed way.

OSPF daemon RIP daemon BGP daemon

zebra daemon
(RIB)

Kernel Routing Table (FIB)

Control Plane

Data Plane

24 Deliverable D3.2 18.06.2015

In ESCAPE, the Unify prototyping framework, VNF’s implemented using Click can be deployed. The ESCAPE
architecture is further explained in section 7.1.

Figure 3-4: Example VNF implemented as a Click script. The VNF functionality is decomposed into atomic elements.
Network packets follow the programmed flow according to the connections between the elements.

The elements are the lowest level atomic part of the Click framework. These contain basic (sub) network
functionality. Individual elements implement simple packet-processing network functions like packet classification,
queuing, scheduling, and interfacing with network devices. Inside a running Click configuration, each element is a
C++ object and connections are pointers to elements.

A higher-level, Click-specific, language is used to connect elements into a graph-like structure, packets flow along
the graph’s edges. The overhead of passing a packet along a connection is a single virtual function call. Advanced
network functions can be implemented through combination of multiple Click elements. To illustrate the versatility
of this framework, some example network functions and basic Click elements to support them are reported in Table
3-1. Documentation and source code of existing Click elements can be obtained from this reference [Kohler2000].

FromDevice(eth0)

Classifier

Packet processing
element

Packet processing
element

Queue

ToDevice(eth0)

24 Deliverable D3.2 18.06.2015

In ESCAPE, the Unify prototyping framework, VNF’s implemented using Click can be deployed. The ESCAPE
architecture is further explained in section 7.1.

Figure 3-4: Example VNF implemented as a Click script. The VNF functionality is decomposed into atomic elements.
Network packets follow the programmed flow according to the connections between the elements.

The elements are the lowest level atomic part of the Click framework. These contain basic (sub) network
functionality. Individual elements implement simple packet-processing network functions like packet classification,
queuing, scheduling, and interfacing with network devices. Inside a running Click configuration, each element is a
C++ object and connections are pointers to elements.

A higher-level, Click-specific, language is used to connect elements into a graph-like structure, packets flow along
the graph’s edges. The overhead of passing a packet along a connection is a single virtual function call. Advanced
network functions can be implemented through combination of multiple Click elements. To illustrate the versatility
of this framework, some example network functions and basic Click elements to support them are reported in Table
3-1. Documentation and source code of existing Click elements can be obtained from this reference [Kohler2000].

FromDevice(eth0)

Classifier

Packet processing
element

Packet processing
element

Queue

ToDevice(eth0)

24 Deliverable D3.2 18.06.2015

In ESCAPE, the Unify prototyping framework, VNF’s implemented using Click can be deployed. The ESCAPE
architecture is further explained in section 7.1.

Figure 3-4: Example VNF implemented as a Click script. The VNF functionality is decomposed into atomic elements.
Network packets follow the programmed flow according to the connections between the elements.

The elements are the lowest level atomic part of the Click framework. These contain basic (sub) network
functionality. Individual elements implement simple packet-processing network functions like packet classification,
queuing, scheduling, and interfacing with network devices. Inside a running Click configuration, each element is a
C++ object and connections are pointers to elements.

A higher-level, Click-specific, language is used to connect elements into a graph-like structure, packets flow along
the graph’s edges. The overhead of passing a packet along a connection is a single virtual function call. Advanced
network functions can be implemented through combination of multiple Click elements. To illustrate the versatility
of this framework, some example network functions and basic Click elements to support them are reported in Table
3-1. Documentation and source code of existing Click elements can be obtained from this reference [Kohler2000].

FromDevice(eth0)

Classifier

Packet processing
element

Packet processing
element

Queue

ToDevice(eth0)

25 Deliverable D3.2 18.06.2015

Table 3-1: Click Network Function examples

Network function Click elements

Firewall FromDevice, ToDevice, Classifier, CheckIPHeader, IPFilter, Queue

Transparent HTTP Proxy Classifier, CheckIPHeader, IPRewriter, EtherEncap

Parental control Traffic classifier, HTTP proxy, Firewall

Forwarder FromDevice, ToDevice, Queue, Forwarder (e.g. LookupIPRoute)

IP Router
Classifier, Queue, EtherEncap, ARPResponder, StaticIPLookup, Strip,
CheckIPHeader, Paint, DropBroadcasts, IPFragmenter, DecIPTTL,
IPGWOptions, ..

NAT
AddressInfo, FromDevice, Queue, ToDevice, ScheduleInfo, ToHostSniffers,
EtherEncap, Classifier, ARPQuerier, ARPResponder, IPRewriter,
TCPRewriter, GetIPAddress, CheckIPHeader, ...

DNS proxy Classifier, KernelTun, IPRewriter, CheckIPHeader, Discard

The fine-grained decomposition possibilities imply also a trade-off regarding performance. Click's modularity
imposes performance costs in two ways: the overhead of passing packets between elements, and the overhead of
unnecessarily general element code [Kohler2000]:

 For best performance, extra patches are needed. (kernel patch for optimized driver performance ; netmap,
kernel module for high speed I/O packet processing)

 Performance delta reported 10% slower for using a Click implemented router to using the Linux network stack
on a standard PC.

 The cost of packet handoff by adding an element to the flow is measured to be 70ns on a Pentium III setup.

 Some tools are included in the Click distribution, which alter the configuration code. They optimize the passing
from one element to another (by eliminating virtual function calls) or by code-optimizing certain elements for
their use (e.g. by using compiled-in constants)

Regarding monitoring and migration, Click supports two techniques for reading/changing a configuration without
losing information:

Handlers: Each element can easily install any number of handlers, which are access points for user interaction. This
lightweight mechanism is most appropriate for modifications local to an element, such as changing a maximum

25 Deliverable D3.2 18.06.2015

Table 3-1: Click Network Function examples

Network function Click elements

Firewall FromDevice, ToDevice, Classifier, CheckIPHeader, IPFilter, Queue

Transparent HTTP Proxy Classifier, CheckIPHeader, IPRewriter, EtherEncap

Parental control Traffic classifier, HTTP proxy, Firewall

Forwarder FromDevice, ToDevice, Queue, Forwarder (e.g. LookupIPRoute)

IP Router
Classifier, Queue, EtherEncap, ARPResponder, StaticIPLookup, Strip,
CheckIPHeader, Paint, DropBroadcasts, IPFragmenter, DecIPTTL,
IPGWOptions, ..

NAT
AddressInfo, FromDevice, Queue, ToDevice, ScheduleInfo, ToHostSniffers,
EtherEncap, Classifier, ARPQuerier, ARPResponder, IPRewriter,
TCPRewriter, GetIPAddress, CheckIPHeader, ...

DNS proxy Classifier, KernelTun, IPRewriter, CheckIPHeader, Discard

The fine-grained decomposition possibilities imply also a trade-off regarding performance. Click's modularity
imposes performance costs in two ways: the overhead of passing packets between elements, and the overhead of
unnecessarily general element code [Kohler2000]:

 For best performance, extra patches are needed. (kernel patch for optimized driver performance ; netmap,
kernel module for high speed I/O packet processing)

 Performance delta reported 10% slower for using a Click implemented router to using the Linux network stack
on a standard PC.

 The cost of packet handoff by adding an element to the flow is measured to be 70ns on a Pentium III setup.

 Some tools are included in the Click distribution, which alter the configuration code. They optimize the passing
from one element to another (by eliminating virtual function calls) or by code-optimizing certain elements for
their use (e.g. by using compiled-in constants)

Regarding monitoring and migration, Click supports two techniques for reading/changing a configuration without
losing information:

Handlers: Each element can easily install any number of handlers, which are access points for user interaction. This
lightweight mechanism is most appropriate for modifications local to an element, such as changing a maximum

25 Deliverable D3.2 18.06.2015

Table 3-1: Click Network Function examples

Network function Click elements

Firewall FromDevice, ToDevice, Classifier, CheckIPHeader, IPFilter, Queue

Transparent HTTP Proxy Classifier, CheckIPHeader, IPRewriter, EtherEncap

Parental control Traffic classifier, HTTP proxy, Firewall

Forwarder FromDevice, ToDevice, Queue, Forwarder (e.g. LookupIPRoute)

IP Router
Classifier, Queue, EtherEncap, ARPResponder, StaticIPLookup, Strip,
CheckIPHeader, Paint, DropBroadcasts, IPFragmenter, DecIPTTL,
IPGWOptions, ..

NAT
AddressInfo, FromDevice, Queue, ToDevice, ScheduleInfo, ToHostSniffers,
EtherEncap, Classifier, ARPQuerier, ARPResponder, IPRewriter,
TCPRewriter, GetIPAddress, CheckIPHeader, ...

DNS proxy Classifier, KernelTun, IPRewriter, CheckIPHeader, Discard

The fine-grained decomposition possibilities imply also a trade-off regarding performance. Click's modularity
imposes performance costs in two ways: the overhead of passing packets between elements, and the overhead of
unnecessarily general element code [Kohler2000]:

 For best performance, extra patches are needed. (kernel patch for optimized driver performance ; netmap,
kernel module for high speed I/O packet processing)

 Performance delta reported 10% slower for using a Click implemented router to using the Linux network stack
on a standard PC.

 The cost of packet handoff by adding an element to the flow is measured to be 70ns on a Pentium III setup.

 Some tools are included in the Click distribution, which alter the configuration code. They optimize the passing
from one element to another (by eliminating virtual function calls) or by code-optimizing certain elements for
their use (e.g. by using compiled-in constants)

Regarding monitoring and migration, Click supports two techniques for reading/changing a configuration without
losing information:

Handlers: Each element can easily install any number of handlers, which are access points for user interaction. This
lightweight mechanism is most appropriate for modifications local to an element, such as changing a maximum

26 Deliverable D3.2 18.06.2015

queue length, adding/deleting routes in table, exporting statistics and other element information. An example of
how handlers can be implemented to offer fast state migration can be found in [Dietz2015].

Hot swapping: Some configuration changes, such as adding new elements, are more complex than handlers can
support. In these cases, the user can write a new configuration handle and install it with a hot-swapping option. Also,
if the new configuration is correct, it will automatically take the old configuration's state before being placed on line;
for example, any enqueued packets are moved into the new configuration.

As a next step to virtualizing network functions as Click scripts, we also mention ClickOS as a light-weight VM for
Click NF’s [Martins2014]. With ClickOS, the Click script is incorporated in a VM image, as explained further in 3.2.3.1.

3.2.3 Virtualization/isolation technologies

Virtualization technology enables NFs to be deployed on an isolated set of resources of an infrastructure node. This
technology is of particular interest as it may provide: snapshotting functionality, easy and predictable reproducibility
of installations, pre-configured dependencies between lower-layer software. We distinguish between two types of
technologies: VM-based and container-based technologies.

Figure 3-5 illustrates the typical architecture of a VM or Container environment, we will elaborate some more on
both types in below sections.

Figure 3-5: VM a) versus Container b) architecture

3.2.3.1 Virtual Machine based atomic blocks
Virtual Machine (VM) for hosting an NF can be seen as images to be mounted in a network node. The atomicity is at
the level of an image file which contains the programs to execute the NF. The image typically combines several

Host OS / Hypervisor

Hardware (Infrastructure Layer)

Virtual Machine 1

NF/Application

Bins / Libs

Guest OS

Virtual Machine 2

NF/Application

Bins / Libs

Guest OS

Base Kernel

Hardware (Infrastructure Layer)

Container 1

NF/Application

Bins / Libs

Container 2

NF/Application

Bins / Libs

(Docker Engine)

(Host OS)

a) Virtual Machine Environment b) Container Environment

26 Deliverable D3.2 18.06.2015

queue length, adding/deleting routes in table, exporting statistics and other element information. An example of
how handlers can be implemented to offer fast state migration can be found in [Dietz2015].

Hot swapping: Some configuration changes, such as adding new elements, are more complex than handlers can
support. In these cases, the user can write a new configuration handle and install it with a hot-swapping option. Also,
if the new configuration is correct, it will automatically take the old configuration's state before being placed on line;
for example, any enqueued packets are moved into the new configuration.

As a next step to virtualizing network functions as Click scripts, we also mention ClickOS as a light-weight VM for
Click NF’s [Martins2014]. With ClickOS, the Click script is incorporated in a VM image, as explained further in 3.2.3.1.

3.2.3 Virtualization/isolation technologies

Virtualization technology enables NFs to be deployed on an isolated set of resources of an infrastructure node. This
technology is of particular interest as it may provide: snapshotting functionality, easy and predictable reproducibility
of installations, pre-configured dependencies between lower-layer software. We distinguish between two types of
technologies: VM-based and container-based technologies.

Figure 3-5 illustrates the typical architecture of a VM or Container environment, we will elaborate some more on
both types in below sections.

Figure 3-5: VM a) versus Container b) architecture

3.2.3.1 Virtual Machine based atomic blocks
Virtual Machine (VM) for hosting an NF can be seen as images to be mounted in a network node. The atomicity is at
the level of an image file which contains the programs to execute the NF. The image typically combines several

Host OS / Hypervisor

Hardware (Infrastructure Layer)

Virtual Machine 1

NF/Application

Bins / Libs

Guest OS

Virtual Machine 2

NF/Application

Bins / Libs

Guest OS

Base Kernel

Hardware (Infrastructure Layer)

Container 1

NF/Application

Bins / Libs

Container 2

NF/Application

Bins / Libs

(Docker Engine)

(Host OS)

a) Virtual Machine Environment b) Container Environment

26 Deliverable D3.2 18.06.2015

queue length, adding/deleting routes in table, exporting statistics and other element information. An example of
how handlers can be implemented to offer fast state migration can be found in [Dietz2015].

Hot swapping: Some configuration changes, such as adding new elements, are more complex than handlers can
support. In these cases, the user can write a new configuration handle and install it with a hot-swapping option. Also,
if the new configuration is correct, it will automatically take the old configuration's state before being placed on line;
for example, any enqueued packets are moved into the new configuration.

As a next step to virtualizing network functions as Click scripts, we also mention ClickOS as a light-weight VM for
Click NF’s [Martins2014]. With ClickOS, the Click script is incorporated in a VM image, as explained further in 3.2.3.1.

3.2.3 Virtualization/isolation technologies

Virtualization technology enables NFs to be deployed on an isolated set of resources of an infrastructure node. This
technology is of particular interest as it may provide: snapshotting functionality, easy and predictable reproducibility
of installations, pre-configured dependencies between lower-layer software. We distinguish between two types of
technologies: VM-based and container-based technologies.

Figure 3-5 illustrates the typical architecture of a VM or Container environment, we will elaborate some more on
both types in below sections.

Figure 3-5: VM a) versus Container b) architecture

3.2.3.1 Virtual Machine based atomic blocks
Virtual Machine (VM) for hosting an NF can be seen as images to be mounted in a network node. The atomicity is at
the level of an image file which contains the programs to execute the NF. The image typically combines several

Host OS / Hypervisor

Hardware (Infrastructure Layer)

Virtual Machine 1

NF/Application

Bins / Libs

Guest OS

Virtual Machine 2

NF/Application

Bins / Libs

Guest OS

Base Kernel

Hardware (Infrastructure Layer)

Container 1

NF/Application

Bins / Libs

Container 2

NF/Application

Bins / Libs

(Docker Engine)

(Host OS)

a) Virtual Machine Environment b) Container Environment

27 Deliverable D3.2 18.06.2015

software blocks as described above in combination with an Operating System. The hardware platform of the
network node is a server environment, where the VM manager (a hypervisor-like control layer) can instantiate and
manage several images (e.g. Xen, KVM, VMWare, Virtual Box). Each VM image has its own limited pool of resources
such as CPU cores or memory. Also traffic steering elements such as switches need to be implemented to enable
communication between several VMs (e.g. OpenvSwitch). The server can be built with COTS hardware, possibly
specialized HW blocks can be added. Performance and specifications of such an environment is the focus of work
performed in WP5 (Universal Node). The VM is considered a very practical tool to deploy NF’s as it offers high
flexibility and modularity. By instantiating more or less VM’s, scalability is easily achieved. By running NF’s in VM’s,
they can also be more isolated and offer better possibilities for resiliency. Live migration of VM’s is possible but
needs to be supported by the VM manager.

The RO can easily deploy a VM of a NF on any appropriate infrastructure node. It can offer a good level of
abstraction, as it can be described with high-level parameters (such as high-level functionality, needed resources)
without any further details on the inner workings.

Below is a short description of some research examples, to illustrate how VM’s can be used in this context.

ClickOS consists of a tiny, Xen-based virtual machine aimed at network processing. ClickOS VMs are made up of the
Click modular software (see previous section) running on top of MiniOS, a minimalistic OS provided with the Xen
sources [Martins2014]. It can be seen as a dedicated VM which is running only a Click config file. The lightweight
nature of ClickOS images makes it comparable to a container (as explained in Section 3.2.3.2). It has the advantage
of being small in size (around 5MB) and fast instantiable (order of 30ms). A more in-depth analysis of how ClickOS
can be used in an NFV scenario is found in [Martins2014].

An implementation of a BRAS in ClickOS is discussed in [Dietz2015]. The main advantage is that easy and fast state
transfer can be accomplished by implementing a new specialized Click element. By using the Click framework, it is
inherently easy to visualize and analyse the different lower-level atomic blocks (Click elements) which make up this
BRAS VNF.

Several case studies emerge that propose a VNF architecture based on VM’s (implemented with proprietary VM
images). As example we can mention:

NFV has been applied to a specific network function, the Session Border Controller [Monteleone2015]. Deployed at
the border between different network domains, an SBC must concurrently process a high number of media flows
transmitted by the users, with strict real-time constraints. For the SBC, the following atomic blocks are used (each
unit is supposed to run on a dedicated VM):

1. BCF: operating on the control plane, implements the Border Control Function (BCF). It performs call and session
control, establishing communication sessions between different users and/or network applications.

27 Deliverable D3.2 18.06.2015

software blocks as described above in combination with an Operating System. The hardware platform of the
network node is a server environment, where the VM manager (a hypervisor-like control layer) can instantiate and
manage several images (e.g. Xen, KVM, VMWare, Virtual Box). Each VM image has its own limited pool of resources
such as CPU cores or memory. Also traffic steering elements such as switches need to be implemented to enable
communication between several VMs (e.g. OpenvSwitch). The server can be built with COTS hardware, possibly
specialized HW blocks can be added. Performance and specifications of such an environment is the focus of work
performed in WP5 (Universal Node). The VM is considered a very practical tool to deploy NF’s as it offers high
flexibility and modularity. By instantiating more or less VM’s, scalability is easily achieved. By running NF’s in VM’s,
they can also be more isolated and offer better possibilities for resiliency. Live migration of VM’s is possible but
needs to be supported by the VM manager.

The RO can easily deploy a VM of a NF on any appropriate infrastructure node. It can offer a good level of
abstraction, as it can be described with high-level parameters (such as high-level functionality, needed resources)
without any further details on the inner workings.

Below is a short description of some research examples, to illustrate how VM’s can be used in this context.

ClickOS consists of a tiny, Xen-based virtual machine aimed at network processing. ClickOS VMs are made up of the
Click modular software (see previous section) running on top of MiniOS, a minimalistic OS provided with the Xen
sources [Martins2014]. It can be seen as a dedicated VM which is running only a Click config file. The lightweight
nature of ClickOS images makes it comparable to a container (as explained in Section 3.2.3.2). It has the advantage
of being small in size (around 5MB) and fast instantiable (order of 30ms). A more in-depth analysis of how ClickOS
can be used in an NFV scenario is found in [Martins2014].

An implementation of a BRAS in ClickOS is discussed in [Dietz2015]. The main advantage is that easy and fast state
transfer can be accomplished by implementing a new specialized Click element. By using the Click framework, it is
inherently easy to visualize and analyse the different lower-level atomic blocks (Click elements) which make up this
BRAS VNF.

Several case studies emerge that propose a VNF architecture based on VM’s (implemented with proprietary VM
images). As example we can mention:

NFV has been applied to a specific network function, the Session Border Controller [Monteleone2015]. Deployed at
the border between different network domains, an SBC must concurrently process a high number of media flows
transmitted by the users, with strict real-time constraints. For the SBC, the following atomic blocks are used (each
unit is supposed to run on a dedicated VM):

1. BCF: operating on the control plane, implements the Border Control Function (BCF). It performs call and session
control, establishing communication sessions between different users and/or network applications.

27 Deliverable D3.2 18.06.2015

software blocks as described above in combination with an Operating System. The hardware platform of the
network node is a server environment, where the VM manager (a hypervisor-like control layer) can instantiate and
manage several images (e.g. Xen, KVM, VMWare, Virtual Box). Each VM image has its own limited pool of resources
such as CPU cores or memory. Also traffic steering elements such as switches need to be implemented to enable
communication between several VMs (e.g. OpenvSwitch). The server can be built with COTS hardware, possibly
specialized HW blocks can be added. Performance and specifications of such an environment is the focus of work
performed in WP5 (Universal Node). The VM is considered a very practical tool to deploy NF’s as it offers high
flexibility and modularity. By instantiating more or less VM’s, scalability is easily achieved. By running NF’s in VM’s,
they can also be more isolated and offer better possibilities for resiliency. Live migration of VM’s is possible but
needs to be supported by the VM manager.

The RO can easily deploy a VM of a NF on any appropriate infrastructure node. It can offer a good level of
abstraction, as it can be described with high-level parameters (such as high-level functionality, needed resources)
without any further details on the inner workings.

Below is a short description of some research examples, to illustrate how VM’s can be used in this context.

ClickOS consists of a tiny, Xen-based virtual machine aimed at network processing. ClickOS VMs are made up of the
Click modular software (see previous section) running on top of MiniOS, a minimalistic OS provided with the Xen
sources [Martins2014]. It can be seen as a dedicated VM which is running only a Click config file. The lightweight
nature of ClickOS images makes it comparable to a container (as explained in Section 3.2.3.2). It has the advantage
of being small in size (around 5MB) and fast instantiable (order of 30ms). A more in-depth analysis of how ClickOS
can be used in an NFV scenario is found in [Martins2014].

An implementation of a BRAS in ClickOS is discussed in [Dietz2015]. The main advantage is that easy and fast state
transfer can be accomplished by implementing a new specialized Click element. By using the Click framework, it is
inherently easy to visualize and analyse the different lower-level atomic blocks (Click elements) which make up this
BRAS VNF.

Several case studies emerge that propose a VNF architecture based on VM’s (implemented with proprietary VM
images). As example we can mention:

NFV has been applied to a specific network function, the Session Border Controller [Monteleone2015]. Deployed at
the border between different network domains, an SBC must concurrently process a high number of media flows
transmitted by the users, with strict real-time constraints. For the SBC, the following atomic blocks are used (each
unit is supposed to run on a dedicated VM):

1. BCF: operating on the control plane, implements the Border Control Function (BCF). It performs call and session
control, establishing communication sessions between different users and/or network applications.

28 Deliverable D3.2 18.06.2015

2. BGF: operating on data plane, implements the Border Gateway Function (BGF) performing control of media
streams. It provides media processing functions under the control of the BCF, allowing establishing media
streams.

3. LBF: operating on the control plane, implements the Front End and Load Balancing Function (LBF). The LBF
unit has the role of distributing signaling messages towards different instances of the BCF unit (and, for
optimization, also between different processes internal to a single BCF unit). Load balancing is not required for
the BGF unit, because the choice of a specific instance is performed by the BCF, according to specific resource
management algorithms.

4. OAM: dedicated to providing the SBC Operation, Administration & Management (OA&M) functions

The use of VM’s can also be applied to a Gateway architecture, which can decompose into one VM dedicated to CP
and another VM dedicated to DP. This can be beneficial for resource management, as described in [Hahn2015] and
also further on in section 3.3.3. The usefulness of VM’s in a Virtual Wireless Sensor Network use case is shown in
[Mouradian2015], where VMs are used for their elastic and scalable deployment and migration characteristics. This
makes it easy to deploy specific gateway images in function of the targeted type of sensors or communication
protocol.

3.2.3.2 Container based atomic blocks
Container based atomic blocks are processes confined to a limited set resources on the platform they run on.
Container virtualization is also known as Operating-System-level virtualization. There are however important
differences between a container and the above described VM environment. Most processes running on a server can
easily share a machine with others, if they could be isolated and secured. Further, in most situations, different
operating systems are not required on the same server, merely multiple instances of a single operating system. OS-
level virtualization systems have been designed to provide the required isolation and security to run multiple
applications or copies of the same OS (but different distributions of the OS) on the same server. So containers tend
to have less overhead since no complete OS has to be included in the NF image, but have therefore also less
flexibility since all containers running on a host are all need to be on top of the same kernel. Multiple container
technologies exist (e.g. Docker, OpenVZ, Virtuozzo, Linux-VServer, Solaris Zones, FreeBSD Jails) and further analysis
and benchmarking is necessary to see how these compare to each other and the VM based deployment of NF’s.

An interesting feature of certain container technologies is the ability to do checkpointing. This is a kernel feature that
makes it possible to freeze a running container (i.e. pause all its processes) and dump its complete in-kernel state
into a file on disk. Such a dump file contains everything about processes inside a container: their memory, opened
files, network connections, states etc. Then, a running container can be restored from the dump file and continue to
run normally. The concept is somewhat similar to suspend-to-disk, only for a single container and much faster. A
container can be restored from a dump file on a different physical server, opening the door for live migration. Live

28 Deliverable D3.2 18.06.2015

2. BGF: operating on data plane, implements the Border Gateway Function (BGF) performing control of media
streams. It provides media processing functions under the control of the BCF, allowing establishing media
streams.

3. LBF: operating on the control plane, implements the Front End and Load Balancing Function (LBF). The LBF
unit has the role of distributing signaling messages towards different instances of the BCF unit (and, for
optimization, also between different processes internal to a single BCF unit). Load balancing is not required for
the BGF unit, because the choice of a specific instance is performed by the BCF, according to specific resource
management algorithms.

4. OAM: dedicated to providing the SBC Operation, Administration & Management (OA&M) functions

The use of VM’s can also be applied to a Gateway architecture, which can decompose into one VM dedicated to CP
and another VM dedicated to DP. This can be beneficial for resource management, as described in [Hahn2015] and
also further on in section 3.3.3. The usefulness of VM’s in a Virtual Wireless Sensor Network use case is shown in
[Mouradian2015], where VMs are used for their elastic and scalable deployment and migration characteristics. This
makes it easy to deploy specific gateway images in function of the targeted type of sensors or communication
protocol.

3.2.3.2 Container based atomic blocks
Container based atomic blocks are processes confined to a limited set resources on the platform they run on.
Container virtualization is also known as Operating-System-level virtualization. There are however important
differences between a container and the above described VM environment. Most processes running on a server can
easily share a machine with others, if they could be isolated and secured. Further, in most situations, different
operating systems are not required on the same server, merely multiple instances of a single operating system. OS-
level virtualization systems have been designed to provide the required isolation and security to run multiple
applications or copies of the same OS (but different distributions of the OS) on the same server. So containers tend
to have less overhead since no complete OS has to be included in the NF image, but have therefore also less
flexibility since all containers running on a host are all need to be on top of the same kernel. Multiple container
technologies exist (e.g. Docker, OpenVZ, Virtuozzo, Linux-VServer, Solaris Zones, FreeBSD Jails) and further analysis
and benchmarking is necessary to see how these compare to each other and the VM based deployment of NF’s.

An interesting feature of certain container technologies is the ability to do checkpointing. This is a kernel feature that
makes it possible to freeze a running container (i.e. pause all its processes) and dump its complete in-kernel state
into a file on disk. Such a dump file contains everything about processes inside a container: their memory, opened
files, network connections, states etc. Then, a running container can be restored from the dump file and continue to
run normally. The concept is somewhat similar to suspend-to-disk, only for a single container and much faster. A
container can be restored from a dump file on a different physical server, opening the door for live migration. Live

28 Deliverable D3.2 18.06.2015

2. BGF: operating on data plane, implements the Border Gateway Function (BGF) performing control of media
streams. It provides media processing functions under the control of the BCF, allowing establishing media
streams.

3. LBF: operating on the control plane, implements the Front End and Load Balancing Function (LBF). The LBF
unit has the role of distributing signaling messages towards different instances of the BCF unit (and, for
optimization, also between different processes internal to a single BCF unit). Load balancing is not required for
the BGF unit, because the choice of a specific instance is performed by the BCF, according to specific resource
management algorithms.

4. OAM: dedicated to providing the SBC Operation, Administration & Management (OA&M) functions

The use of VM’s can also be applied to a Gateway architecture, which can decompose into one VM dedicated to CP
and another VM dedicated to DP. This can be beneficial for resource management, as described in [Hahn2015] and
also further on in section 3.3.3. The usefulness of VM’s in a Virtual Wireless Sensor Network use case is shown in
[Mouradian2015], where VMs are used for their elastic and scalable deployment and migration characteristics. This
makes it easy to deploy specific gateway images in function of the targeted type of sensors or communication
protocol.

3.2.3.2 Container based atomic blocks
Container based atomic blocks are processes confined to a limited set resources on the platform they run on.
Container virtualization is also known as Operating-System-level virtualization. There are however important
differences between a container and the above described VM environment. Most processes running on a server can
easily share a machine with others, if they could be isolated and secured. Further, in most situations, different
operating systems are not required on the same server, merely multiple instances of a single operating system. OS-
level virtualization systems have been designed to provide the required isolation and security to run multiple
applications or copies of the same OS (but different distributions of the OS) on the same server. So containers tend
to have less overhead since no complete OS has to be included in the NF image, but have therefore also less
flexibility since all containers running on a host are all need to be on top of the same kernel. Multiple container
technologies exist (e.g. Docker, OpenVZ, Virtuozzo, Linux-VServer, Solaris Zones, FreeBSD Jails) and further analysis
and benchmarking is necessary to see how these compare to each other and the VM based deployment of NF’s.

An interesting feature of certain container technologies is the ability to do checkpointing. This is a kernel feature that
makes it possible to freeze a running container (i.e. pause all its processes) and dump its complete in-kernel state
into a file on disk. Such a dump file contains everything about processes inside a container: their memory, opened
files, network connections, states etc. Then, a running container can be restored from the dump file and continue to
run normally. The concept is somewhat similar to suspend-to-disk, only for a single container and much faster. A
container can be restored from a dump file on a different physical server, opening the door for live migration. Live

29 Deliverable D3.2 18.06.2015

migration is an ability to move a running container from one physical server to another without a shutdown or
service interruption. Network connections are migrated as well, so from a user's point of view it looks like some
delay in response. Systems that support this are [OpenVZ, Virtuozzo], while other solutions are trying to provide
similar functionality even for processes that are not containerized [CRIU].

There is another difference to VM’s: Updates in the kernel (required for e.g. driver or security updates), require an
update of the complete VM images. Things are easier with containers: since the kernel is outside of the scope of the
container image, you don’t have to change all your container images when you upgrade the kernel. Also, in a
container environment, the single point of failure points to the kernel, while in VM environments this is the VM
manager (hypervisor), see Figure 3-5.

A traditional “atomic block” for computing is the process, which typically runs in an execution environment where it
gets a certain share of CPU time and access to an isolated chunk of memory. Usually whole programs are divided
into separate processes when different tasks can be isolated and act somewhat independent, with low requirements
on shared state between them. When tasks can be identified but have high demands on state sharing usually
threads are used instead, which share access to the same chunk of memory. Processes typically communicate with
each other by exchanging messages using one of many IPC mechanisms provided by the operating system or
libraries such as signals, pipes, message queues, and shared files when they are executing on the same host. When
processes are not executing on the same host the typical method of IPC is TCP/UDP sockets, Remote Procedure
Calls, or through middleware providing distributed shared memory or file systems.

Based on the atomic block requirement that an atomic block must be able to run on separate hosts, a large amount
of software implemented as one or more processes fits. Some processes do not, for example ones that require IPC
mechanism such as memory mapped files or directly shared memory in order to communicate large amounts of
data with low latencies2. Docker is a system that allows us to package processes into containers and deploy them on
substrate nodes, these containers be good candidates to be atomic blocks according to the above requirement
[Docker].

A basic structure in Docker is the image, a file system containing data, runnable processes, and initial configuration.
One image can be instantiated in an isolated environment called a container, which runs one or more processes.
Processes inside the container are restricted to their own namespace of for example process IDs, file system,
network interfaces, mounted file systems, and SysV IPC mechanisms, allowing multiple processes, which would
normally interfere with each other, run independently [Menage2015]. The container acts similarly to a virtual
machine but with significantly lower overhead.

Docker allows relationships between containers to be easily configured and modified if necessary when instantiated.
Container relationships can be defined using links, exposed ports, and volumes. Links and ports refer to network

2 Although many of these may be able to function using a distributed / networked file system or memory.
29 Deliverable D3.2 18.06.2015

migration is an ability to move a running container from one physical server to another without a shutdown or
service interruption. Network connections are migrated as well, so from a user's point of view it looks like some
delay in response. Systems that support this are [OpenVZ, Virtuozzo], while other solutions are trying to provide
similar functionality even for processes that are not containerized [CRIU].

There is another difference to VM’s: Updates in the kernel (required for e.g. driver or security updates), require an
update of the complete VM images. Things are easier with containers: since the kernel is outside of the scope of the
container image, you don’t have to change all your container images when you upgrade the kernel. Also, in a
container environment, the single point of failure points to the kernel, while in VM environments this is the VM
manager (hypervisor), see Figure 3-5.

A traditional “atomic block” for computing is the process, which typically runs in an execution environment where it
gets a certain share of CPU time and access to an isolated chunk of memory. Usually whole programs are divided
into separate processes when different tasks can be isolated and act somewhat independent, with low requirements
on shared state between them. When tasks can be identified but have high demands on state sharing usually
threads are used instead, which share access to the same chunk of memory. Processes typically communicate with
each other by exchanging messages using one of many IPC mechanisms provided by the operating system or
libraries such as signals, pipes, message queues, and shared files when they are executing on the same host. When
processes are not executing on the same host the typical method of IPC is TCP/UDP sockets, Remote Procedure
Calls, or through middleware providing distributed shared memory or file systems.

Based on the atomic block requirement that an atomic block must be able to run on separate hosts, a large amount
of software implemented as one or more processes fits. Some processes do not, for example ones that require IPC
mechanism such as memory mapped files or directly shared memory in order to communicate large amounts of
data with low latencies2. Docker is a system that allows us to package processes into containers and deploy them on
substrate nodes, these containers be good candidates to be atomic blocks according to the above requirement
[Docker].

A basic structure in Docker is the image, a file system containing data, runnable processes, and initial configuration.
One image can be instantiated in an isolated environment called a container, which runs one or more processes.
Processes inside the container are restricted to their own namespace of for example process IDs, file system,
network interfaces, mounted file systems, and SysV IPC mechanisms, allowing multiple processes, which would
normally interfere with each other, run independently [Menage2015]. The container acts similarly to a virtual
machine but with significantly lower overhead.

Docker allows relationships between containers to be easily configured and modified if necessary when instantiated.
Container relationships can be defined using links, exposed ports, and volumes. Links and ports refer to network

2 Although many of these may be able to function using a distributed / networked file system or memory.
29 Deliverable D3.2 18.06.2015

migration is an ability to move a running container from one physical server to another without a shutdown or
service interruption. Network connections are migrated as well, so from a user's point of view it looks like some
delay in response. Systems that support this are [OpenVZ, Virtuozzo], while other solutions are trying to provide
similar functionality even for processes that are not containerized [CRIU].

There is another difference to VM’s: Updates in the kernel (required for e.g. driver or security updates), require an
update of the complete VM images. Things are easier with containers: since the kernel is outside of the scope of the
container image, you don’t have to change all your container images when you upgrade the kernel. Also, in a
container environment, the single point of failure points to the kernel, while in VM environments this is the VM
manager (hypervisor), see Figure 3-5.

A traditional “atomic block” for computing is the process, which typically runs in an execution environment where it
gets a certain share of CPU time and access to an isolated chunk of memory. Usually whole programs are divided
into separate processes when different tasks can be isolated and act somewhat independent, with low requirements
on shared state between them. When tasks can be identified but have high demands on state sharing usually
threads are used instead, which share access to the same chunk of memory. Processes typically communicate with
each other by exchanging messages using one of many IPC mechanisms provided by the operating system or
libraries such as signals, pipes, message queues, and shared files when they are executing on the same host. When
processes are not executing on the same host the typical method of IPC is TCP/UDP sockets, Remote Procedure
Calls, or through middleware providing distributed shared memory or file systems.

Based on the atomic block requirement that an atomic block must be able to run on separate hosts, a large amount
of software implemented as one or more processes fits. Some processes do not, for example ones that require IPC
mechanism such as memory mapped files or directly shared memory in order to communicate large amounts of
data with low latencies2. Docker is a system that allows us to package processes into containers and deploy them on
substrate nodes, these containers be good candidates to be atomic blocks according to the above requirement
[Docker].

A basic structure in Docker is the image, a file system containing data, runnable processes, and initial configuration.
One image can be instantiated in an isolated environment called a container, which runs one or more processes.
Processes inside the container are restricted to their own namespace of for example process IDs, file system,
network interfaces, mounted file systems, and SysV IPC mechanisms, allowing multiple processes, which would
normally interfere with each other, run independently [Menage2015]. The container acts similarly to a virtual
machine but with significantly lower overhead.

Docker allows relationships between containers to be easily configured and modified if necessary when instantiated.
Container relationships can be defined using links, exposed ports, and volumes. Links and ports refer to network

2 Although many of these may be able to function using a distributed / networked file system or memory.

30 Deliverable D3.2 18.06.2015

connectivity and by linking container B to container A, container B will have environment variables and hostnames
automatically created containing the IP address of container A and it’s exposed ports. Volumes can be used to share
files and directories between containers, for example container A may generate data files in directory /output that
should be processed by container B. When starting B we can specify that all data volumes from container A should
be mapped to B, processes running in container B will then be able to access files mounted in /output on B. An
example of this is illustrated in Figure 3-6 where one process running in a container is acting as a Producer and
creating files into a volume. Container B has both types of relations to A, more specifically it is linked to A (see Link
relationship) and additionally, it is importing A’s volume(s) (see Volume_from relationship). B then processes the
files generated by A and communicates with A using the linked information such as the IP address, port number and
password.

Figure 3-6: Two Docker containers A and B. B is related to A with both links and volumes.

Docker-compose [DockerComp] allow us to compose a service from multiple containers, define their relationships
and scale in or out individual roles. To create the service File consisting of the producer and consumer(s) illustrated
in Figure 3-6 we first create two images, file-generator and file-processor. These images contain any libraries that
the processes need, configuration files, and the processes themselves. We then use the docker-compose
configuration to define the service as:

producer:
image: file-generator
volumes:

-/output
environment:

- passwd=qwe
expose:

- “1234”

consumer:
image: file-processor
links:

- producer
volumes_from:

- producer

To start our File service composed of the two container types we run “docker-compose up”which would start
one producer and one consumer, and automatically link them and mount the data volumes. If File service is not
running fast enough, perhaps the consumer container is not fast enough to process generated files, we can add
more consumers using the scale command “docker-compose scale consumer=3”, which would create two

IP addr
1.1.1.1

Port(s)
1234/tcp

Env vars:
Passwd:qwe

Volume(s):
/output

P1

/output

A: 1.1.1.1
A_PORT:1234/tcp
A_Passwd:qwe

P2

Generate files Process filesVolume_from

Link

Connect(A:A_PORT)
Password: A_Password

Container A - Producer Container B - Consumer

30 Deliverable D3.2 18.06.2015

connectivity and by linking container B to container A, container B will have environment variables and hostnames
automatically created containing the IP address of container A and it’s exposed ports. Volumes can be used to share
files and directories between containers, for example container A may generate data files in directory /output that
should be processed by container B. When starting B we can specify that all data volumes from container A should
be mapped to B, processes running in container B will then be able to access files mounted in /output on B. An
example of this is illustrated in Figure 3-6 where one process running in a container is acting as a Producer and
creating files into a volume. Container B has both types of relations to A, more specifically it is linked to A (see Link
relationship) and additionally, it is importing A’s volume(s) (see Volume_from relationship). B then processes the
files generated by A and communicates with A using the linked information such as the IP address, port number and
password.

Figure 3-6: Two Docker containers A and B. B is related to A with both links and volumes.

Docker-compose [DockerComp] allow us to compose a service from multiple containers, define their relationships
and scale in or out individual roles. To create the service File consisting of the producer and consumer(s) illustrated
in Figure 3-6 we first create two images, file-generator and file-processor. These images contain any libraries that
the processes need, configuration files, and the processes themselves. We then use the docker-compose
configuration to define the service as:

producer:
image: file-generator
volumes:

-/output
environment:

- passwd=qwe
expose:

- “1234”

consumer:
image: file-processor
links:

- producer
volumes_from:

- producer

To start our File service composed of the two container types we run “docker-compose up”which would start
one producer and one consumer, and automatically link them and mount the data volumes. If File service is not
running fast enough, perhaps the consumer container is not fast enough to process generated files, we can add
more consumers using the scale command “docker-compose scale consumer=3”, which would create two

IP addr
1.1.1.1

Port(s)
1234/tcp

Env vars:
Passwd:qwe

Volume(s):
/output

P1

/output

A: 1.1.1.1
A_PORT:1234/tcp
A_Passwd:qwe

P2

Generate files Process filesVolume_from

Link

Connect(A:A_PORT)
Password: A_Password

Container A - Producer Container B - Consumer

30 Deliverable D3.2 18.06.2015

connectivity and by linking container B to container A, container B will have environment variables and hostnames
automatically created containing the IP address of container A and it’s exposed ports. Volumes can be used to share
files and directories between containers, for example container A may generate data files in directory /output that
should be processed by container B. When starting B we can specify that all data volumes from container A should
be mapped to B, processes running in container B will then be able to access files mounted in /output on B. An
example of this is illustrated in Figure 3-6 where one process running in a container is acting as a Producer and
creating files into a volume. Container B has both types of relations to A, more specifically it is linked to A (see Link
relationship) and additionally, it is importing A’s volume(s) (see Volume_from relationship). B then processes the
files generated by A and communicates with A using the linked information such as the IP address, port number and
password.

Figure 3-6: Two Docker containers A and B. B is related to A with both links and volumes.

Docker-compose [DockerComp] allow us to compose a service from multiple containers, define their relationships
and scale in or out individual roles. To create the service File consisting of the producer and consumer(s) illustrated
in Figure 3-6 we first create two images, file-generator and file-processor. These images contain any libraries that
the processes need, configuration files, and the processes themselves. We then use the docker-compose
configuration to define the service as:

producer:
image: file-generator
volumes:

-/output
environment:

- passwd=qwe
expose:

- “1234”

consumer:
image: file-processor
links:

- producer
volumes_from:

- producer

To start our File service composed of the two container types we run “docker-compose up”which would start
one producer and one consumer, and automatically link them and mount the data volumes. If File service is not
running fast enough, perhaps the consumer container is not fast enough to process generated files, we can add
more consumers using the scale command “docker-compose scale consumer=3”, which would create two

IP addr
1.1.1.1

Port(s)
1234/tcp

Env vars:
Passwd:qwe

Volume(s):
/output

P1

/output

A: 1.1.1.1
A_PORT:1234/tcp
A_Passwd:qwe

P2

Generate files Process filesVolume_from

Link

Connect(A:A_PORT)
Password: A_Password

Container A - Producer Container B - Consumer

31 Deliverable D3.2 18.06.2015

additional consumer containers and link them with the producer. In this example the two containers cannot be seen
as two atomic blocks as they have to be instantiated on the same node due to the shared file system volume, the
atomic block in this case is the File service itself. If we remove the volume relationship leaving only the linking, the
individual containers could be seen as atomic blocks. While the current Docker version (version 1.6) alone is not able
to automatically link containers instantiated on different hosts there are many projects aimed at solving this issue
[SocketPlane, Flocker, Swarm, Kubernetes], which likely will be integrated into Docker soon. With this issue solved
we could analyze a docker-compose service definition and automatically detect what the atomic blocks are, i.e.
those container types without volume dependencies. Another option is to introduce new configuration commands
into the docker-compose configuration to manually define atomic blocks / deployment groups that have to be co-
located on the same node, this approach is taken in Kubernetes which calls this concept pods.

A practical example of decomposing a WebCache VNF into atomic block as processes is presented in Figure 3-7,
where load-balancing is implemented by an haproxy process, sending connections to squid process(es). The squid
process in turn is assisted by a RADIUS process for user authentication and MongoDB process for storing cached
objects. When the WebCache service is deployed all these processes may run on other servers and could be scaled
independently from each other. This enables a single service definition to handle various load scenarios, e.g. if the
total throughput is putting a load on the Squid process, it can be scaled out. If however it is the amount of objects
that is causing performance issues, the MongoDB process can be scaled.

Figure 3-7: WebCache decomposed into 4 processes

WebCache

haproxy
HTTP/TCP

loadbalancer

Squid
caching proxy

outin

RADIUS
AAA server

MongoDB
NoSQL server

User auth

Logging

in out

31 Deliverable D3.2 18.06.2015

additional consumer containers and link them with the producer. In this example the two containers cannot be seen
as two atomic blocks as they have to be instantiated on the same node due to the shared file system volume, the
atomic block in this case is the File service itself. If we remove the volume relationship leaving only the linking, the
individual containers could be seen as atomic blocks. While the current Docker version (version 1.6) alone is not able
to automatically link containers instantiated on different hosts there are many projects aimed at solving this issue
[SocketPlane, Flocker, Swarm, Kubernetes], which likely will be integrated into Docker soon. With this issue solved
we could analyze a docker-compose service definition and automatically detect what the atomic blocks are, i.e.
those container types without volume dependencies. Another option is to introduce new configuration commands
into the docker-compose configuration to manually define atomic blocks / deployment groups that have to be co-
located on the same node, this approach is taken in Kubernetes which calls this concept pods.

A practical example of decomposing a WebCache VNF into atomic block as processes is presented in Figure 3-7,
where load-balancing is implemented by an haproxy process, sending connections to squid process(es). The squid
process in turn is assisted by a RADIUS process for user authentication and MongoDB process for storing cached
objects. When the WebCache service is deployed all these processes may run on other servers and could be scaled
independently from each other. This enables a single service definition to handle various load scenarios, e.g. if the
total throughput is putting a load on the Squid process, it can be scaled out. If however it is the amount of objects
that is causing performance issues, the MongoDB process can be scaled.

Figure 3-7: WebCache decomposed into 4 processes

WebCache

haproxy
HTTP/TCP

loadbalancer

Squid
caching proxy

outin

RADIUS
AAA server

MongoDB
NoSQL server

User auth

Logging

in out

31 Deliverable D3.2 18.06.2015

additional consumer containers and link them with the producer. In this example the two containers cannot be seen
as two atomic blocks as they have to be instantiated on the same node due to the shared file system volume, the
atomic block in this case is the File service itself. If we remove the volume relationship leaving only the linking, the
individual containers could be seen as atomic blocks. While the current Docker version (version 1.6) alone is not able
to automatically link containers instantiated on different hosts there are many projects aimed at solving this issue
[SocketPlane, Flocker, Swarm, Kubernetes], which likely will be integrated into Docker soon. With this issue solved
we could analyze a docker-compose service definition and automatically detect what the atomic blocks are, i.e.
those container types without volume dependencies. Another option is to introduce new configuration commands
into the docker-compose configuration to manually define atomic blocks / deployment groups that have to be co-
located on the same node, this approach is taken in Kubernetes which calls this concept pods.

A practical example of decomposing a WebCache VNF into atomic block as processes is presented in Figure 3-7,
where load-balancing is implemented by an haproxy process, sending connections to squid process(es). The squid
process in turn is assisted by a RADIUS process for user authentication and MongoDB process for storing cached
objects. When the WebCache service is deployed all these processes may run on other servers and could be scaled
independently from each other. This enables a single service definition to handle various load scenarios, e.g. if the
total throughput is putting a load on the Squid process, it can be scaled out. If however it is the amount of objects
that is causing performance issues, the MongoDB process can be scaled.

Figure 3-7: WebCache decomposed into 4 processes

WebCache

haproxy
HTTP/TCP

loadbalancer

Squid
caching proxy

outin

RADIUS
AAA server

MongoDB
NoSQL server

User auth

Logging

in out

32 Deliverable D3.2 18.06.2015

3.2.4 Atomic Block overview
The above described atomic block categories each have their own advantages and limitations. We try to give a high-
level comparison and overview in below table.

Table 3-2: Atomic Block overview

HW based SW based VM based Container based Monolithic HW+SW

Atomic HW block Atomic SW code block Atomic VM image file Atomic container
image file

Atomic physical
device with dedicated
firmware

Significant
processing power
gain

Need optimized
code for
maximum
performance

Only useful for
specific
decomposed NF
tasks (eg.
encryption,
transcoding)

RO or Controller
needs to support
the HW specific
functions

Higher abstraction
offers better view on
possible decompositions
(eg. Click)

Flexible for reuse by
developers

Can be a piece of code,
library, executable,
daemon, OS, or kernel

Very fine granularity of
NF’s can be achieved

Can be deployed in a
container or VM context

Image contains NF
code + OS

Each image can have
different OS

Image file size might
contain significant
overhead

Can run on COTS HW
(possibly combined
with HW optimized
blocks)

Checkpointing and
(live) migration can
be supported

Easy scalability

Isolation down to the
hypervisor level

Image contains only
the NF code

Kernel is shared
between all
containers

Image file size is
compact

More resource
efficient

Can run on COTS HW
(possibly combined
with HW optimized
blocks)

Checkpointing and
(live) migration can
be supported

Easy scalability,
manageability

Isolation down to the
kernel level

Optimized
performance by
combination of
closed SW +
proprietary HW

Not open, expensive,
vendor specific

Not flexible for
updating, scaling,
migrating

Can be preferred
solution in case of
very strict
requirements
regarding SLA,
security, reliability,
and performance

Example: FPGA,
ASIC, Network
Processors

Example: Click, Quagga,
NOX controller code

Example: ClickOS
image for Xen

Example: Container
repository for Docker

Example: Vendor
specific hardware

32 Deliverable D3.2 18.06.2015

3.2.4 Atomic Block overview
The above described atomic block categories each have their own advantages and limitations. We try to give a high-
level comparison and overview in below table.

Table 3-2: Atomic Block overview

HW based SW based VM based Container based Monolithic HW+SW

Atomic HW block Atomic SW code block Atomic VM image file Atomic container
image file

Atomic physical
device with dedicated
firmware

Significant
processing power
gain

Need optimized
code for
maximum
performance

Only useful for
specific
decomposed NF
tasks (eg.
encryption,
transcoding)

RO or Controller
needs to support
the HW specific
functions

Higher abstraction
offers better view on
possible decompositions
(eg. Click)

Flexible for reuse by
developers

Can be a piece of code,
library, executable,
daemon, OS, or kernel

Very fine granularity of
NF’s can be achieved

Can be deployed in a
container or VM context

Image contains NF
code + OS

Each image can have
different OS

Image file size might
contain significant
overhead

Can run on COTS HW
(possibly combined
with HW optimized
blocks)

Checkpointing and
(live) migration can
be supported

Easy scalability

Isolation down to the
hypervisor level

Image contains only
the NF code

Kernel is shared
between all
containers

Image file size is
compact

More resource
efficient

Can run on COTS HW
(possibly combined
with HW optimized
blocks)

Checkpointing and
(live) migration can
be supported

Easy scalability,
manageability

Isolation down to the
kernel level

Optimized
performance by
combination of
closed SW +
proprietary HW

Not open, expensive,
vendor specific

Not flexible for
updating, scaling,
migrating

Can be preferred
solution in case of
very strict
requirements
regarding SLA,
security, reliability,
and performance

Example: FPGA,
ASIC, Network
Processors

Example: Click, Quagga,
NOX controller code

Example: ClickOS
image for Xen

Example: Container
repository for Docker

Example: Vendor
specific hardware

32 Deliverable D3.2 18.06.2015

3.2.4 Atomic Block overview
The above described atomic block categories each have their own advantages and limitations. We try to give a high-
level comparison and overview in below table.

Table 3-2: Atomic Block overview

HW based SW based VM based Container based Monolithic HW+SW

Atomic HW block Atomic SW code block Atomic VM image file Atomic container
image file

Atomic physical
device with dedicated
firmware

Significant
processing power
gain

Need optimized
code for
maximum
performance

Only useful for
specific
decomposed NF
tasks (eg.
encryption,
transcoding)

RO or Controller
needs to support
the HW specific
functions

Higher abstraction
offers better view on
possible decompositions
(eg. Click)

Flexible for reuse by
developers

Can be a piece of code,
library, executable,
daemon, OS, or kernel

Very fine granularity of
NF’s can be achieved

Can be deployed in a
container or VM context

Image contains NF
code + OS

Each image can have
different OS

Image file size might
contain significant
overhead

Can run on COTS HW
(possibly combined
with HW optimized
blocks)

Checkpointing and
(live) migration can
be supported

Easy scalability

Isolation down to the
hypervisor level

Image contains only
the NF code

Kernel is shared
between all
containers

Image file size is
compact

More resource
efficient

Can run on COTS HW
(possibly combined
with HW optimized
blocks)

Checkpointing and
(live) migration can
be supported

Easy scalability,
manageability

Isolation down to the
kernel level

Optimized
performance by
combination of
closed SW +
proprietary HW

Not open, expensive,
vendor specific

Not flexible for
updating, scaling,
migrating

Can be preferred
solution in case of
very strict
requirements
regarding SLA,
security, reliability,
and performance

Example: FPGA,
ASIC, Network
Processors

Example: Click, Quagga,
NOX controller code

Example: ClickOS
image for Xen

Example: Container
repository for Docker

Example: Vendor
specific hardware

33 Deliverable D3.2 18.06.2015

3.3 Monolithic VNF’s and Services constructed from atomic blocks
The ability to remotely deploy and run decomposed VNF’s in a VNF infrastructure opens up a new domain of
possibilities. Trade-offs are created between latency, reliability, centralizing services, scalability, communication
overhead, etc. A service provider might use its own VNF infrastructure domain or someone else’s; this will also have
security, policy enforcement implications.

SDN principles and above described atomic blocks bring new possibilities to legacy (monolithic) Network Functions.
They can bring the appropriate granularity (fine- or coarse-grained) depending on the target scenario. It offers
flexibility to dynamically identify the needed functions for the decomposition (e.g. atomic blocks and a set of flow
configurations).

A high-level description of different VNF use cases is available in ETSI documentation [ETSI NFV Use case]. The
Unify project is developing a framework in which these use cases are practically deployable. Focusing solely on the
decomposition aspect (the orchestration part will be handled in a next chapter), below subsections highlight some
examples to illustrate how existing services can be practically decomposed into the aforementioned atomic blocks.

3.3.1 Elastic Router use case
One category out of different VNF use cases is to offer a Virtual Network Function as a Service (VNFaaS):
Functionality can be moved from purpose-built hardware to Universal Nodes. This enables e.g. a service provider to
offer these services as scalable and decomposed VNF deployments, as is illustrated in this subsection with a basic
network function such as an elastic router.

The objective of the Elastic Network Function use case is to demonstrate the different dynamicity and, more
specifically, scalability approaches supported by the UNIFY architecture (use case proposed in D2.1 sec 3.4.1 [D2.1]).
Later on, the elastic router use case in D2.1 was amended with an elastic stateful firewall use case to illustrate more
the state migration possibilities in the UNIFY framework. The decomposition of the elastic firewall is discussed in
[D2.1 a], however, to better illustrate the decomposition options into different atomic blocks we build further upon
the elastic router. From a top-bottom analysis, we can decompose the elastic router like this:

Router functionality is either a monolithic HW+SW atomic block or decomposed into a SW part in combination with a
HW forwarding part. The SW part will calculate the routes and store them in the RIB (Routing Information Base). The
HW forwarding plane is part of the general Data Plane (DP), which holds the Forwarding Information Base (FIB) and
the forwarding HW itself. CP and DP can now be decomposed further.

 Control Plane (CP): As mentioned under SW defined atomic blocks in section 3.2.2, several SW solutions exist
who implement legacy routing protocols (Quagga, XORP, BIRD). Additionally, routing CP functions can be
implemented in an Openflow controller, or be supported by OS network stack.

33 Deliverable D3.2 18.06.2015

3.3 Monolithic VNF’s and Services constructed from atomic blocks
The ability to remotely deploy and run decomposed VNF’s in a VNF infrastructure opens up a new domain of
possibilities. Trade-offs are created between latency, reliability, centralizing services, scalability, communication
overhead, etc. A service provider might use its own VNF infrastructure domain or someone else’s; this will also have
security, policy enforcement implications.

SDN principles and above described atomic blocks bring new possibilities to legacy (monolithic) Network Functions.
They can bring the appropriate granularity (fine- or coarse-grained) depending on the target scenario. It offers
flexibility to dynamically identify the needed functions for the decomposition (e.g. atomic blocks and a set of flow
configurations).

A high-level description of different VNF use cases is available in ETSI documentation [ETSI NFV Use case]. The
Unify project is developing a framework in which these use cases are practically deployable. Focusing solely on the
decomposition aspect (the orchestration part will be handled in a next chapter), below subsections highlight some
examples to illustrate how existing services can be practically decomposed into the aforementioned atomic blocks.

3.3.1 Elastic Router use case
One category out of different VNF use cases is to offer a Virtual Network Function as a Service (VNFaaS):
Functionality can be moved from purpose-built hardware to Universal Nodes. This enables e.g. a service provider to
offer these services as scalable and decomposed VNF deployments, as is illustrated in this subsection with a basic
network function such as an elastic router.

The objective of the Elastic Network Function use case is to demonstrate the different dynamicity and, more
specifically, scalability approaches supported by the UNIFY architecture (use case proposed in D2.1 sec 3.4.1 [D2.1]).
Later on, the elastic router use case in D2.1 was amended with an elastic stateful firewall use case to illustrate more
the state migration possibilities in the UNIFY framework. The decomposition of the elastic firewall is discussed in
[D2.1 a], however, to better illustrate the decomposition options into different atomic blocks we build further upon
the elastic router. From a top-bottom analysis, we can decompose the elastic router like this:

Router functionality is either a monolithic HW+SW atomic block or decomposed into a SW part in combination with a
HW forwarding part. The SW part will calculate the routes and store them in the RIB (Routing Information Base). The
HW forwarding plane is part of the general Data Plane (DP), which holds the Forwarding Information Base (FIB) and
the forwarding HW itself. CP and DP can now be decomposed further.

 Control Plane (CP): As mentioned under SW defined atomic blocks in section 3.2.2, several SW solutions exist
who implement legacy routing protocols (Quagga, XORP, BIRD). Additionally, routing CP functions can be
implemented in an Openflow controller, or be supported by OS network stack.

33 Deliverable D3.2 18.06.2015

3.3 Monolithic VNF’s and Services constructed from atomic blocks
The ability to remotely deploy and run decomposed VNF’s in a VNF infrastructure opens up a new domain of
possibilities. Trade-offs are created between latency, reliability, centralizing services, scalability, communication
overhead, etc. A service provider might use its own VNF infrastructure domain or someone else’s; this will also have
security, policy enforcement implications.

SDN principles and above described atomic blocks bring new possibilities to legacy (monolithic) Network Functions.
They can bring the appropriate granularity (fine- or coarse-grained) depending on the target scenario. It offers
flexibility to dynamically identify the needed functions for the decomposition (e.g. atomic blocks and a set of flow
configurations).

A high-level description of different VNF use cases is available in ETSI documentation [ETSI NFV Use case]. The
Unify project is developing a framework in which these use cases are practically deployable. Focusing solely on the
decomposition aspect (the orchestration part will be handled in a next chapter), below subsections highlight some
examples to illustrate how existing services can be practically decomposed into the aforementioned atomic blocks.

3.3.1 Elastic Router use case
One category out of different VNF use cases is to offer a Virtual Network Function as a Service (VNFaaS):
Functionality can be moved from purpose-built hardware to Universal Nodes. This enables e.g. a service provider to
offer these services as scalable and decomposed VNF deployments, as is illustrated in this subsection with a basic
network function such as an elastic router.

The objective of the Elastic Network Function use case is to demonstrate the different dynamicity and, more
specifically, scalability approaches supported by the UNIFY architecture (use case proposed in D2.1 sec 3.4.1 [D2.1]).
Later on, the elastic router use case in D2.1 was amended with an elastic stateful firewall use case to illustrate more
the state migration possibilities in the UNIFY framework. The decomposition of the elastic firewall is discussed in
[D2.1 a], however, to better illustrate the decomposition options into different atomic blocks we build further upon
the elastic router. From a top-bottom analysis, we can decompose the elastic router like this:

Router functionality is either a monolithic HW+SW atomic block or decomposed into a SW part in combination with a
HW forwarding part. The SW part will calculate the routes and store them in the RIB (Routing Information Base). The
HW forwarding plane is part of the general Data Plane (DP), which holds the Forwarding Information Base (FIB) and
the forwarding HW itself. CP and DP can now be decomposed further.

 Control Plane (CP): As mentioned under SW defined atomic blocks in section 3.2.2, several SW solutions exist
who implement legacy routing protocols (Quagga, XORP, BIRD). Additionally, routing CP functions can be
implemented in an Openflow controller, or be supported by OS network stack.

34 Deliverable D3.2 18.06.2015

 Data Plane (DP): OS Network stack, Click, or (Virtual) OpenFlow switch DP decomposition is relatively easy. A
decomposed part of the NF can be split of and put in series, it can duplicated and run in parallel, whether or not
combined with load balancing. This principle was explained in Deliverable 2.1 (section 3.4.1.1).

 Semi-transparent scalable service chain: Distribute incoming packets via load balancing over parallel CP and/or
DP chunks.

 Non-transparent scalable service chain: NF’s in the forward path can be put in series. Eg. Click implemented
buffers/queues, HW acceleration by using NICs with faster line-rate.

The general decomposition of a router is visualized in Figure 3-8.

State migration can be implemented by exporting the RIB, FIB tables in a reliable way. Mechanisms such as OpenNF
can do this and are further described in Section 5.2.1. Achieving fine-grained decomposition or scalability in the DP
seems easier achievable, as CP decomposition seems to stop at the coarse-grained level of the different routing
protocols. One could state that legacy routing protocols were not designed for scalability or decomposition. More
research in this area can reveal if scalability or decomposition is a limiting factor and come up with new ways to do it.
As stated in [ETSI NFV Use case] traditional IP routers based on custom hardware are among the most capital-
intensive portions of service provider infrastructure. Provider Edge (PE) routers run out of control plane resources
before they run out of data plane resources and virtualisation of control plane functions improves scalability.
Substantial cost saving may be possible by moving routing functionality from purpose-built routers to equivalent
VNF in COTS hardware environments. Such an SDN/NFV enabled network architecture, as developed in the UNIFY
framework, offers a lot more possibilities to tackle this problem. E.g. a possible way of implementing an elastic
control plane is handled in [Wang2014] by exploiting the high control plane throughput capacity and scalability of
vSwitches.

34 Deliverable D3.2 18.06.2015

 Data Plane (DP): OS Network stack, Click, or (Virtual) OpenFlow switch DP decomposition is relatively easy. A
decomposed part of the NF can be split of and put in series, it can duplicated and run in parallel, whether or not
combined with load balancing. This principle was explained in Deliverable 2.1 (section 3.4.1.1).

 Semi-transparent scalable service chain: Distribute incoming packets via load balancing over parallel CP and/or
DP chunks.

 Non-transparent scalable service chain: NF’s in the forward path can be put in series. Eg. Click implemented
buffers/queues, HW acceleration by using NICs with faster line-rate.

The general decomposition of a router is visualized in Figure 3-8.

State migration can be implemented by exporting the RIB, FIB tables in a reliable way. Mechanisms such as OpenNF
can do this and are further described in Section 5.2.1. Achieving fine-grained decomposition or scalability in the DP
seems easier achievable, as CP decomposition seems to stop at the coarse-grained level of the different routing
protocols. One could state that legacy routing protocols were not designed for scalability or decomposition. More
research in this area can reveal if scalability or decomposition is a limiting factor and come up with new ways to do it.
As stated in [ETSI NFV Use case] traditional IP routers based on custom hardware are among the most capital-
intensive portions of service provider infrastructure. Provider Edge (PE) routers run out of control plane resources
before they run out of data plane resources and virtualisation of control plane functions improves scalability.
Substantial cost saving may be possible by moving routing functionality from purpose-built routers to equivalent
VNF in COTS hardware environments. Such an SDN/NFV enabled network architecture, as developed in the UNIFY
framework, offers a lot more possibilities to tackle this problem. E.g. a possible way of implementing an elastic
control plane is handled in [Wang2014] by exploiting the high control plane throughput capacity and scalability of
vSwitches.

34 Deliverable D3.2 18.06.2015

 Data Plane (DP): OS Network stack, Click, or (Virtual) OpenFlow switch DP decomposition is relatively easy. A
decomposed part of the NF can be split of and put in series, it can duplicated and run in parallel, whether or not
combined with load balancing. This principle was explained in Deliverable 2.1 (section 3.4.1.1).

 Semi-transparent scalable service chain: Distribute incoming packets via load balancing over parallel CP and/or
DP chunks.

 Non-transparent scalable service chain: NF’s in the forward path can be put in series. Eg. Click implemented
buffers/queues, HW acceleration by using NICs with faster line-rate.

The general decomposition of a router is visualized in Figure 3-8.

State migration can be implemented by exporting the RIB, FIB tables in a reliable way. Mechanisms such as OpenNF
can do this and are further described in Section 5.2.1. Achieving fine-grained decomposition or scalability in the DP
seems easier achievable, as CP decomposition seems to stop at the coarse-grained level of the different routing
protocols. One could state that legacy routing protocols were not designed for scalability or decomposition. More
research in this area can reveal if scalability or decomposition is a limiting factor and come up with new ways to do it.
As stated in [ETSI NFV Use case] traditional IP routers based on custom hardware are among the most capital-
intensive portions of service provider infrastructure. Provider Edge (PE) routers run out of control plane resources
before they run out of data plane resources and virtualisation of control plane functions improves scalability.
Substantial cost saving may be possible by moving routing functionality from purpose-built routers to equivalent
VNF in COTS hardware environments. Such an SDN/NFV enabled network architecture, as developed in the UNIFY
framework, offers a lot more possibilities to tackle this problem. E.g. a possible way of implementing an elastic
control plane is handled in [Wang2014] by exploiting the high control plane throughput capacity and scalability of
vSwitches.

35 Deliverable D3.2 18.06.2015

Figure 3-8: Elastic Router Decomposition. Starting at the top, it is decomposed further into finer-grained atomic
blocks, grouped by the dashed boxes. (CP, DP, RIB, FIB, forwarding elements). Dark grey dashed boxes depict

possible technology choices (which could also run in combined way).

3.3.2 Flow-based Network Access Control
In addition to the elastic router function described in previous subsection, we can also use VNF decomposition in
more advanced network functions such as access control services. This is illustrated in FlowNAC [FlowNAC], a Flow-
based Network Access Control solution that allows granting users the rights to access the network depending on the
target service requested. Each service, defined univocally as a set of flows, can be independently requested and
multiple services can be authorized simultaneously. Building this proposal over SDN principles has several benefits:

35 Deliverable D3.2 18.06.2015

Figure 3-8: Elastic Router Decomposition. Starting at the top, it is decomposed further into finer-grained atomic
blocks, grouped by the dashed boxes. (CP, DP, RIB, FIB, forwarding elements). Dark grey dashed boxes depict

possible technology choices (which could also run in combined way).

3.3.2 Flow-based Network Access Control
In addition to the elastic router function described in previous subsection, we can also use VNF decomposition in
more advanced network functions such as access control services. This is illustrated in FlowNAC [FlowNAC], a Flow-
based Network Access Control solution that allows granting users the rights to access the network depending on the
target service requested. Each service, defined univocally as a set of flows, can be independently requested and
multiple services can be authorized simultaneously. Building this proposal over SDN principles has several benefits:

35 Deliverable D3.2 18.06.2015

Figure 3-8: Elastic Router Decomposition. Starting at the top, it is decomposed further into finer-grained atomic
blocks, grouped by the dashed boxes. (CP, DP, RIB, FIB, forwarding elements). Dark grey dashed boxes depict

possible technology choices (which could also run in combined way).

3.3.2 Flow-based Network Access Control
In addition to the elastic router function described in previous subsection, we can also use VNF decomposition in
more advanced network functions such as access control services. This is illustrated in FlowNAC [FlowNAC], a Flow-
based Network Access Control solution that allows granting users the rights to access the network depending on the
target service requested. Each service, defined univocally as a set of flows, can be independently requested and
multiple services can be authorized simultaneously. Building this proposal over SDN principles has several benefits:

36 Deliverable D3.2 18.06.2015

SDN adds the appropriate granularity (fine- or coarse-grained) depending on the target scenario and flexibility to
dynamically identify the services at data plane as a set of flows to enforce the adequate policy.

Instead of a monolithic authenticator or Policy Enforcement Point (PEP), three different elements are separated
performing the same functionality:

1. The SDN datapath is a flow-based forwarding element (i.e. OpenFlow datapath). The flow entries (matching
fields and actions) that rule its behaviour are stateless, since they do not depend on previous matched frames.
It basically distinguishes between two types of traffic. On the one hand, the authentication traffic is allowed
and forwarded to the authenticator network function to be processed. This type of frames can be easily
identified in the datapath by its Ethertype (i.e. 0x888E). On the other hand, the rest of the traffic or the service
related traffic is enabled or dropped depending on the result of the authentication process. Both types of
traffic (i.e. authentication frames and service traffic) can be controlled for each user (i.e. identified by its MAC
address) by any standard SDN datapath. It basically enforces access control at port (flow)–level (i.e. the
physical port of the network node)

2. The Authenticator Network Function (ANF) basically implements the access control process and operation. It
receives and parses the authentication frames exchanged with the users (forwarded by the SDN datapath) and
encapsulates them in the appropriate protocol (e.g. RADIUS) to communicate with the authentication server.
The ANF also maintains the state associated with each AA (Authentication and Authorization) process coming
from the same or different users. The entire authentication related traffic (i.e. the AA control traffic) remains in
the data plane and is not processed by the SDN controller. This means that this traffic is not encapsulated by
OpenFlow in Packet_In messages, avoiding the overhead and the consolidation of the AA processing in the
controller.

3. The SDN controller is responsible of adding and removing the flow entries at the SDN datapath. Both the
authentication frames and the service traffic depend on this component. Therefore, it rules the behaviour of
the SDN datapath by enforcing the policy decision on the access device. In this case, the southbound protocol
used to communicate is OpenFlow. On the other hand, the northbound interface exposes the programmability
of the SDN datapath to forward the authentication traffic to the ANF and activate the authorized services. This
means that the authorization of services (i.e. adding the authorized flow entries) is achieved by means of this
northbound interface.

36 Deliverable D3.2 18.06.2015

SDN adds the appropriate granularity (fine- or coarse-grained) depending on the target scenario and flexibility to
dynamically identify the services at data plane as a set of flows to enforce the adequate policy.

Instead of a monolithic authenticator or Policy Enforcement Point (PEP), three different elements are separated
performing the same functionality:

1. The SDN datapath is a flow-based forwarding element (i.e. OpenFlow datapath). The flow entries (matching
fields and actions) that rule its behaviour are stateless, since they do not depend on previous matched frames.
It basically distinguishes between two types of traffic. On the one hand, the authentication traffic is allowed
and forwarded to the authenticator network function to be processed. This type of frames can be easily
identified in the datapath by its Ethertype (i.e. 0x888E). On the other hand, the rest of the traffic or the service
related traffic is enabled or dropped depending on the result of the authentication process. Both types of
traffic (i.e. authentication frames and service traffic) can be controlled for each user (i.e. identified by its MAC
address) by any standard SDN datapath. It basically enforces access control at port (flow)–level (i.e. the
physical port of the network node)

2. The Authenticator Network Function (ANF) basically implements the access control process and operation. It
receives and parses the authentication frames exchanged with the users (forwarded by the SDN datapath) and
encapsulates them in the appropriate protocol (e.g. RADIUS) to communicate with the authentication server.
The ANF also maintains the state associated with each AA (Authentication and Authorization) process coming
from the same or different users. The entire authentication related traffic (i.e. the AA control traffic) remains in
the data plane and is not processed by the SDN controller. This means that this traffic is not encapsulated by
OpenFlow in Packet_In messages, avoiding the overhead and the consolidation of the AA processing in the
controller.

3. The SDN controller is responsible of adding and removing the flow entries at the SDN datapath. Both the
authentication frames and the service traffic depend on this component. Therefore, it rules the behaviour of
the SDN datapath by enforcing the policy decision on the access device. In this case, the southbound protocol
used to communicate is OpenFlow. On the other hand, the northbound interface exposes the programmability
of the SDN datapath to forward the authentication traffic to the ANF and activate the authorized services. This
means that the authorization of services (i.e. adding the authorized flow entries) is achieved by means of this
northbound interface.

36 Deliverable D3.2 18.06.2015

SDN adds the appropriate granularity (fine- or coarse-grained) depending on the target scenario and flexibility to
dynamically identify the services at data plane as a set of flows to enforce the adequate policy.

Instead of a monolithic authenticator or Policy Enforcement Point (PEP), three different elements are separated
performing the same functionality:

1. The SDN datapath is a flow-based forwarding element (i.e. OpenFlow datapath). The flow entries (matching
fields and actions) that rule its behaviour are stateless, since they do not depend on previous matched frames.
It basically distinguishes between two types of traffic. On the one hand, the authentication traffic is allowed
and forwarded to the authenticator network function to be processed. This type of frames can be easily
identified in the datapath by its Ethertype (i.e. 0x888E). On the other hand, the rest of the traffic or the service
related traffic is enabled or dropped depending on the result of the authentication process. Both types of
traffic (i.e. authentication frames and service traffic) can be controlled for each user (i.e. identified by its MAC
address) by any standard SDN datapath. It basically enforces access control at port (flow)–level (i.e. the
physical port of the network node)

2. The Authenticator Network Function (ANF) basically implements the access control process and operation. It
receives and parses the authentication frames exchanged with the users (forwarded by the SDN datapath) and
encapsulates them in the appropriate protocol (e.g. RADIUS) to communicate with the authentication server.
The ANF also maintains the state associated with each AA (Authentication and Authorization) process coming
from the same or different users. The entire authentication related traffic (i.e. the AA control traffic) remains in
the data plane and is not processed by the SDN controller. This means that this traffic is not encapsulated by
OpenFlow in Packet_In messages, avoiding the overhead and the consolidation of the AA processing in the
controller.

3. The SDN controller is responsible of adding and removing the flow entries at the SDN datapath. Both the
authentication frames and the service traffic depend on this component. Therefore, it rules the behaviour of
the SDN datapath by enforcing the policy decision on the access device. In this case, the southbound protocol
used to communicate is OpenFlow. On the other hand, the northbound interface exposes the programmability
of the SDN datapath to forward the authentication traffic to the ANF and activate the authorized services. This
means that the authorization of services (i.e. adding the authorized flow entries) is achieved by means of this
northbound interface.

37 Deliverable D3.2 18.06.2015

Figure 3-9: FlowNAC architecture

3.3.3 Gateway decomposition
This example fits in a typical use case described in [ETSI NFV Use case]: Virtualisation of the Mobile Core Network
and/or virtualisation of the Home Environment: The gateway decomposition shows how gateway functions typically
implemented in mobile network EPC architectures or Home-environment Set-top-boxes can be virtualized and
decomposed in a more efficient way.

Gateways are present in many network topologies on different levels e.g. mobile networks, service provider access
networks, and aggregation network. Service provider networks typically include a Provider Edge (PE) gateway at the
edge of the core, facing the Customer Premises Equipment (CPE) gateway at the end-host. Both gateway types
could be decomposed and virtualized which offers advantages in the context of: centralized management and data,
modest tool footprint at the end-user, and efficient use of resources. In the rest of this section we give more details
on use cases from the mobile network world.

Evolved Packet Core (EPC) is a flat architecture that provides a converged voice and data networking framework to
connect users on a Long-Term Evolution (LTE) network. The key components of the EPC are:

 Mobility Management Entity (MME) - manages session states and authenticates and tracks a user across the
network.

 Serving Gateway (SGW) - routes data packets through the access network, also specific signalling data between
network nodes (e.g. during handover, authentication data).

 Packet Data Node Gateway (PGW) - acts as the interface between the LTE network and other packet data
networks; manages quality of service (QoS) and provides deep packet inspection (DPI).

 Policy and Charging Rules Function (PCRF) - supports service data flow detection, policy enforcement and flow-
based charging.

OpenFlow
Authentication
frames

SDN Datapath

SDN
Controller

Authentication
Network
Function

Authentication
Server

Service
Traffic

37 Deliverable D3.2 18.06.2015

Figure 3-9: FlowNAC architecture

3.3.3 Gateway decomposition
This example fits in a typical use case described in [ETSI NFV Use case]: Virtualisation of the Mobile Core Network
and/or virtualisation of the Home Environment: The gateway decomposition shows how gateway functions typically
implemented in mobile network EPC architectures or Home-environment Set-top-boxes can be virtualized and
decomposed in a more efficient way.

Gateways are present in many network topologies on different levels e.g. mobile networks, service provider access
networks, and aggregation network. Service provider networks typically include a Provider Edge (PE) gateway at the
edge of the core, facing the Customer Premises Equipment (CPE) gateway at the end-host. Both gateway types
could be decomposed and virtualized which offers advantages in the context of: centralized management and data,
modest tool footprint at the end-user, and efficient use of resources. In the rest of this section we give more details
on use cases from the mobile network world.

Evolved Packet Core (EPC) is a flat architecture that provides a converged voice and data networking framework to
connect users on a Long-Term Evolution (LTE) network. The key components of the EPC are:

 Mobility Management Entity (MME) - manages session states and authenticates and tracks a user across the
network.

 Serving Gateway (SGW) - routes data packets through the access network, also specific signalling data between
network nodes (e.g. during handover, authentication data).

 Packet Data Node Gateway (PGW) - acts as the interface between the LTE network and other packet data
networks; manages quality of service (QoS) and provides deep packet inspection (DPI).

 Policy and Charging Rules Function (PCRF) - supports service data flow detection, policy enforcement and flow-
based charging.

OpenFlow
Authentication
frames

SDN Datapath

SDN
Controller

Authentication
Network
Function

Authentication
Server

Service
Traffic

37 Deliverable D3.2 18.06.2015

Figure 3-9: FlowNAC architecture

3.3.3 Gateway decomposition
This example fits in a typical use case described in [ETSI NFV Use case]: Virtualisation of the Mobile Core Network
and/or virtualisation of the Home Environment: The gateway decomposition shows how gateway functions typically
implemented in mobile network EPC architectures or Home-environment Set-top-boxes can be virtualized and
decomposed in a more efficient way.

Gateways are present in many network topologies on different levels e.g. mobile networks, service provider access
networks, and aggregation network. Service provider networks typically include a Provider Edge (PE) gateway at the
edge of the core, facing the Customer Premises Equipment (CPE) gateway at the end-host. Both gateway types
could be decomposed and virtualized which offers advantages in the context of: centralized management and data,
modest tool footprint at the end-user, and efficient use of resources. In the rest of this section we give more details
on use cases from the mobile network world.

Evolved Packet Core (EPC) is a flat architecture that provides a converged voice and data networking framework to
connect users on a Long-Term Evolution (LTE) network. The key components of the EPC are:

 Mobility Management Entity (MME) - manages session states and authenticates and tracks a user across the
network.

 Serving Gateway (SGW) - routes data packets through the access network, also specific signalling data between
network nodes (e.g. during handover, authentication data).

 Packet Data Node Gateway (PGW) - acts as the interface between the LTE network and other packet data
networks; manages quality of service (QoS) and provides deep packet inspection (DPI).

 Policy and Charging Rules Function (PCRF) - supports service data flow detection, policy enforcement and flow-
based charging.

OpenFlow
Authentication
frames

SDN Datapath

SDN
Controller

Authentication
Network
Function

Authentication
Server

Service
Traffic

38 Deliverable D3.2 18.06.2015

The modular architecture of the EPC makes it inherently fit for decomposition using some of the above described
atomic blocks. Especially the SGW and PGW can benefit from an even further decomposition. In the EPC context,
there is a specific classification of the traffic (That is different from the CP/DP layering in an SDN-context):

 User plane traffic (UP): the application creates or processes data packets that are processed by protocols such
as TCP, UDP and IP.

 Control plane traffic (CP): the radio resource control protocol writes the signalling messages that are exchanged
between the base station and the mobile.

Both types of traffic are passing through the S/PGW, but have a different nature and require a different routing
strategy. In [Hahn2015] two main approaches are investigated: combined GW implementation within a single virtual
machine handling both user and control plane traffic and, alternatively a GW implementation that relies on a
decomposed processing of user and control plane data in dedicated virtual machines. Both virtualized GW models
can benefit from dynamic adaptation of GW resources based on current traffic demands (eg. night/day,
weekday/weekend traffic load). Different VM’s are created, each with the specific characteristic of assigned cores.

 Inelastic model: Fixed physical gateway (HW+SW atomic block) with fixed CP/UP core allocation.

 Elastic model 1: The number of gateway VMs can be scaled in/out according to the current network load.

 Elastic model 2: previous model enhanced with an added specific day and night image of network elements. The
images are characterized by different CP/UP cores allocation schemas. The number of network elements can
be scaled in/out according to the traffic requirements.

 Decomposed model: assuming a CP and UP split and the possibility of independent scaling of CP and UP cores
of a gateway according to the traffic characteristics.

In this use case, the resource saving achieved with the Decomposed model are only a few percent more, compared
to Elastic Model 2. Most of the gain is already achieved when changing from an Inelastic model to an Elastic Model 2.
The decomposition architecture needs to consider firstly that traffic profiles usually do not change so dramatically
over the day as but instead in a longer time frame and secondly the simplicity of the Elastic model 2, its good
performance and compatibility with the present GW design. Hence the scalability gains of a decomposed GW
implementation might not be a sufficient reason to substitute combined GW solutions.

This is a good example of possible trade-offs we need to consider during decomposition. In addition to this we can
highlight an investigation done in [Basta2014]. Similar to above, an operator has a network of multiple clusters of 1
PGW with several SGW’s. Or more general, several CPE’s connected to a PE node, or several access network nodes
connected to an aggregation network node. With the help of NFV/SDN decompostion, some optimizations can be
done:

38 Deliverable D3.2 18.06.2015

The modular architecture of the EPC makes it inherently fit for decomposition using some of the above described
atomic blocks. Especially the SGW and PGW can benefit from an even further decomposition. In the EPC context,
there is a specific classification of the traffic (That is different from the CP/DP layering in an SDN-context):

 User plane traffic (UP): the application creates or processes data packets that are processed by protocols such
as TCP, UDP and IP.

 Control plane traffic (CP): the radio resource control protocol writes the signalling messages that are exchanged
between the base station and the mobile.

Both types of traffic are passing through the S/PGW, but have a different nature and require a different routing
strategy. In [Hahn2015] two main approaches are investigated: combined GW implementation within a single virtual
machine handling both user and control plane traffic and, alternatively a GW implementation that relies on a
decomposed processing of user and control plane data in dedicated virtual machines. Both virtualized GW models
can benefit from dynamic adaptation of GW resources based on current traffic demands (eg. night/day,
weekday/weekend traffic load). Different VM’s are created, each with the specific characteristic of assigned cores.

 Inelastic model: Fixed physical gateway (HW+SW atomic block) with fixed CP/UP core allocation.

 Elastic model 1: The number of gateway VMs can be scaled in/out according to the current network load.

 Elastic model 2: previous model enhanced with an added specific day and night image of network elements. The
images are characterized by different CP/UP cores allocation schemas. The number of network elements can
be scaled in/out according to the traffic requirements.

 Decomposed model: assuming a CP and UP split and the possibility of independent scaling of CP and UP cores
of a gateway according to the traffic characteristics.

In this use case, the resource saving achieved with the Decomposed model are only a few percent more, compared
to Elastic Model 2. Most of the gain is already achieved when changing from an Inelastic model to an Elastic Model 2.
The decomposition architecture needs to consider firstly that traffic profiles usually do not change so dramatically
over the day as but instead in a longer time frame and secondly the simplicity of the Elastic model 2, its good
performance and compatibility with the present GW design. Hence the scalability gains of a decomposed GW
implementation might not be a sufficient reason to substitute combined GW solutions.

This is a good example of possible trade-offs we need to consider during decomposition. In addition to this we can
highlight an investigation done in [Basta2014]. Similar to above, an operator has a network of multiple clusters of 1
PGW with several SGW’s. Or more general, several CPE’s connected to a PE node, or several access network nodes
connected to an aggregation network node. With the help of NFV/SDN decompostion, some optimizations can be
done:

38 Deliverable D3.2 18.06.2015

The modular architecture of the EPC makes it inherently fit for decomposition using some of the above described
atomic blocks. Especially the SGW and PGW can benefit from an even further decomposition. In the EPC context,
there is a specific classification of the traffic (That is different from the CP/DP layering in an SDN-context):

 User plane traffic (UP): the application creates or processes data packets that are processed by protocols such
as TCP, UDP and IP.

 Control plane traffic (CP): the radio resource control protocol writes the signalling messages that are exchanged
between the base station and the mobile.

Both types of traffic are passing through the S/PGW, but have a different nature and require a different routing
strategy. In [Hahn2015] two main approaches are investigated: combined GW implementation within a single virtual
machine handling both user and control plane traffic and, alternatively a GW implementation that relies on a
decomposed processing of user and control plane data in dedicated virtual machines. Both virtualized GW models
can benefit from dynamic adaptation of GW resources based on current traffic demands (eg. night/day,
weekday/weekend traffic load). Different VM’s are created, each with the specific characteristic of assigned cores.

 Inelastic model: Fixed physical gateway (HW+SW atomic block) with fixed CP/UP core allocation.

 Elastic model 1: The number of gateway VMs can be scaled in/out according to the current network load.

 Elastic model 2: previous model enhanced with an added specific day and night image of network elements. The
images are characterized by different CP/UP cores allocation schemas. The number of network elements can
be scaled in/out according to the traffic requirements.

 Decomposed model: assuming a CP and UP split and the possibility of independent scaling of CP and UP cores
of a gateway according to the traffic characteristics.

In this use case, the resource saving achieved with the Decomposed model are only a few percent more, compared
to Elastic Model 2. Most of the gain is already achieved when changing from an Inelastic model to an Elastic Model 2.
The decomposition architecture needs to consider firstly that traffic profiles usually do not change so dramatically
over the day as but instead in a longer time frame and secondly the simplicity of the Elastic model 2, its good
performance and compatibility with the present GW design. Hence the scalability gains of a decomposed GW
implementation might not be a sufficient reason to substitute combined GW solutions.

This is a good example of possible trade-offs we need to consider during decomposition. In addition to this we can
highlight an investigation done in [Basta2014]. Similar to above, an operator has a network of multiple clusters of 1
PGW with several SGW’s. Or more general, several CPE’s connected to a PE node, or several access network nodes
connected to an aggregation network node. With the help of NFV/SDN decompostion, some optimizations can be
done:

39 Deliverable D3.2 18.06.2015

Figure 3-10: Gateway decomposition example (fully meshed network, only main connections are drawn)

 Use virtualized GW’s: To reduce costs, all GW’s could be centralized and virtualized in just a limited number of
datacenters. The datacenter locations are strategically chosen to minimize latency. All traffic is routed to those
central virtualized GW’s in the datacenters. If all latencies are known in the network, an optimal topology can be
calculated where the virtualized gateways must be located to ensure a certain delay budget. This is shown in
Figure 3-10 where eg. all gateways in (a) can be virtualized in 2 central nodes (b). The orignial GW’s in (a) are
replaced by a virtual instance (vP,vS) + a simple switching network element (NE).

 Next, we can decompose the virtual GW into a control plane and a SDN data plane (As in a classic SDN context).
The measurable advantage: not all traffic needs to be routed to the data centres, the SDN data plane can offer
faster traffic delivery. So to meet the delay budget, less data centres are needed. This is illustrated in above
figure, where multiple GW control planes (vP+,vS+) are centralized in 1 datacentre and the data plane is
implemented via SDN enabled switching elements (NE+).
The disadvantage we introduce is that more SDN control data is generated which imposes more traffic
overhead in total. Which induces again more delay, and compromises the delay budget. The volume of SDN
control data is a specific to the network (a range of 10-50% of the non-SDN network load is proposed). So
decomposing the virtual GW’s further is only possible up to the point where the delay budget contraint is met.

This shows that decomposition will have its limits in function of the available data centres, delay-budgets and SDN
control volume.

3.3.4 Service Decomposition trade-offs
Each decomposition should specify quantitative parameters for the derived VNF’s including the required delay
upper bound, function call frequency, exchanged data volume or deployment cost. This was illustrated in the

S

S

S

S

S

S

S

S

S

S

P

P

P

NE
vP
vS

NE+

vP+
vS+

NE

NE

NE+

NE+

NE+

NE+

NE+ NE+
NE+

SDN API

P: gateway (PGW)
S: gateway (SGW)

vP: virtual gateway (PGW)
vS: virtual gateway (SGW)
NE: network element
vP+,vS+: decomposed gateway (control plane)
NE+: decomposed gateway part (data/user plane)

(a) Original network (b) Virtual + decomposed gateways

39 Deliverable D3.2 18.06.2015

Figure 3-10: Gateway decomposition example (fully meshed network, only main connections are drawn)

 Use virtualized GW’s: To reduce costs, all GW’s could be centralized and virtualized in just a limited number of
datacenters. The datacenter locations are strategically chosen to minimize latency. All traffic is routed to those
central virtualized GW’s in the datacenters. If all latencies are known in the network, an optimal topology can be
calculated where the virtualized gateways must be located to ensure a certain delay budget. This is shown in
Figure 3-10 where eg. all gateways in (a) can be virtualized in 2 central nodes (b). The orignial GW’s in (a) are
replaced by a virtual instance (vP,vS) + a simple switching network element (NE).

 Next, we can decompose the virtual GW into a control plane and a SDN data plane (As in a classic SDN context).
The measurable advantage: not all traffic needs to be routed to the data centres, the SDN data plane can offer
faster traffic delivery. So to meet the delay budget, less data centres are needed. This is illustrated in above
figure, where multiple GW control planes (vP+,vS+) are centralized in 1 datacentre and the data plane is
implemented via SDN enabled switching elements (NE+).
The disadvantage we introduce is that more SDN control data is generated which imposes more traffic
overhead in total. Which induces again more delay, and compromises the delay budget. The volume of SDN
control data is a specific to the network (a range of 10-50% of the non-SDN network load is proposed). So
decomposing the virtual GW’s further is only possible up to the point where the delay budget contraint is met.

This shows that decomposition will have its limits in function of the available data centres, delay-budgets and SDN
control volume.

3.3.4 Service Decomposition trade-offs
Each decomposition should specify quantitative parameters for the derived VNF’s including the required delay
upper bound, function call frequency, exchanged data volume or deployment cost. This was illustrated in the

S

S

S

S

S

S

S

S

S

S

P

P

P

NE
vP
vS

NE+

vP+
vS+

NE

NE

NE+

NE+

NE+

NE+

NE+ NE+
NE+

SDN API

P: gateway (PGW)
S: gateway (SGW)

vP: virtual gateway (PGW)
vS: virtual gateway (SGW)
NE: network element
vP+,vS+: decomposed gateway (control plane)
NE+: decomposed gateway part (data/user plane)

(a) Original network (b) Virtual + decomposed gateways

39 Deliverable D3.2 18.06.2015

Figure 3-10: Gateway decomposition example (fully meshed network, only main connections are drawn)

 Use virtualized GW’s: To reduce costs, all GW’s could be centralized and virtualized in just a limited number of
datacenters. The datacenter locations are strategically chosen to minimize latency. All traffic is routed to those
central virtualized GW’s in the datacenters. If all latencies are known in the network, an optimal topology can be
calculated where the virtualized gateways must be located to ensure a certain delay budget. This is shown in
Figure 3-10 where eg. all gateways in (a) can be virtualized in 2 central nodes (b). The orignial GW’s in (a) are
replaced by a virtual instance (vP,vS) + a simple switching network element (NE).

 Next, we can decompose the virtual GW into a control plane and a SDN data plane (As in a classic SDN context).
The measurable advantage: not all traffic needs to be routed to the data centres, the SDN data plane can offer
faster traffic delivery. So to meet the delay budget, less data centres are needed. This is illustrated in above
figure, where multiple GW control planes (vP+,vS+) are centralized in 1 datacentre and the data plane is
implemented via SDN enabled switching elements (NE+).
The disadvantage we introduce is that more SDN control data is generated which imposes more traffic
overhead in total. Which induces again more delay, and compromises the delay budget. The volume of SDN
control data is a specific to the network (a range of 10-50% of the non-SDN network load is proposed). So
decomposing the virtual GW’s further is only possible up to the point where the delay budget contraint is met.

This shows that decomposition will have its limits in function of the available data centres, delay-budgets and SDN
control volume.

3.3.4 Service Decomposition trade-offs
Each decomposition should specify quantitative parameters for the derived VNF’s including the required delay
upper bound, function call frequency, exchanged data volume or deployment cost. This was illustrated in the

S

S

S

S

S

S

S

S

S

S

P

P

P

NE
vP
vS

NE+

vP+
vS+

NE

NE

NE+

NE+

NE+

NE+

NE+ NE+
NE+

SDN API

P: gateway (PGW)
S: gateway (SGW)

vP: virtual gateway (PGW)
vS: virtual gateway (SGW)
NE: network element
vP+,vS+: decomposed gateway (control plane)
NE+: decomposed gateway part (data/user plane)

(a) Original network (b) Virtual + decomposed gateways

40 Deliverable D3.2 18.06.2015

examples in above section 3.3.3 where CPU core usage, end-to-end delay or traffic overhead is considered as a KPI
for the decomposed service. As discussed also in [Basta2013], Figure 3-11 illustrates the expected behaviour of some
chosen key criteria where decomposition results in cost savings (black line). It is generally accepted that
decomposing into VNF’s will mean a cost saving specific to each use case up to a certain decomposition degree. If we
decompose too much, we realize that cost will rise again e.g. because of the many (un-optimized) interconnections
between the blocks, rising development effort, maintenance, and overhead. We also argue that decomposing or
virtualizing may impose some additional data and delay overhead (red and blue lines). Note that the order of the
functions might be different for each cost line. Given the right order, the cost function will be a decreasing function,
however not necessarily steady, but with steps and possible flat parts. Our future prospective target is to find the
optimal deployment solution via a quantitative evaluation of the function deployment and decomposition in the
context of specific use-cases.

Figure 3-11: Decomposition trade-offs

40 Deliverable D3.2 18.06.2015

examples in above section 3.3.3 where CPU core usage, end-to-end delay or traffic overhead is considered as a KPI
for the decomposed service. As discussed also in [Basta2013], Figure 3-11 illustrates the expected behaviour of some
chosen key criteria where decomposition results in cost savings (black line). It is generally accepted that
decomposing into VNF’s will mean a cost saving specific to each use case up to a certain decomposition degree. If we
decompose too much, we realize that cost will rise again e.g. because of the many (un-optimized) interconnections
between the blocks, rising development effort, maintenance, and overhead. We also argue that decomposing or
virtualizing may impose some additional data and delay overhead (red and blue lines). Note that the order of the
functions might be different for each cost line. Given the right order, the cost function will be a decreasing function,
however not necessarily steady, but with steps and possible flat parts. Our future prospective target is to find the
optimal deployment solution via a quantitative evaluation of the function deployment and decomposition in the
context of specific use-cases.

Figure 3-11: Decomposition trade-offs

40 Deliverable D3.2 18.06.2015

examples in above section 3.3.3 where CPU core usage, end-to-end delay or traffic overhead is considered as a KPI
for the decomposed service. As discussed also in [Basta2013], Figure 3-11 illustrates the expected behaviour of some
chosen key criteria where decomposition results in cost savings (black line). It is generally accepted that
decomposing into VNF’s will mean a cost saving specific to each use case up to a certain decomposition degree. If we
decompose too much, we realize that cost will rise again e.g. because of the many (un-optimized) interconnections
between the blocks, rising development effort, maintenance, and overhead. We also argue that decomposing or
virtualizing may impose some additional data and delay overhead (red and blue lines). Note that the order of the
functions might be different for each cost line. Given the right order, the cost function will be a decreasing function,
however not necessarily steady, but with steps and possible flat parts. Our future prospective target is to find the
optimal deployment solution via a quantitative evaluation of the function deployment and decomposition in the
context of specific use-cases.

Figure 3-11: Decomposition trade-offs

41 Deliverable D3.2 18.06.2015

4 Scalable orchestration algorithms

The programmability framework described in [D3.1] and in section 2 above describes the data models involved in
orchestrating service graphs (SG) or network function forwarding graphs (NF-FG) respectively. Within the
orchestration layer appropriate mappings of network functions (NFs) to physical devices as well as a mapping of the
NFs’ interconnections to routes have to be determined. Within this section we focus on the algorithmic challenges
involved and how UNIFY tackles and plans to tackle these. We start with some context on the scale of the resource
orchestration problem in Section 4.1 and provide an introduction to the Virtual Network Embedding (VNE) problem
in Section 4.2. Within Sections 4.3 to 4.5 we focus on the so called pure embedding problem that frames the NF-FG
embedding in rather general terms. While in Section 4.3 the online problem is considered, Sections 4.4 and Section
4.5 deal with how offline solutions can be incorporated. In Section 4.6 we highlight our work on tackling a novel
problem arising in the service chain context, namely the joint decomposition of composed network functions and
their embedding. Lastly, we outline in Section 4.7 how the technical challenge of distributed embedding processes
can be tackled.

4.1 Context of the resource orchestration problem
The orchestration brings together two information flows: a top-down flow initiated by the users of the UNIFY
platform initiating service requests, and a bottom-up information flow driven by available resources in the cloud and
carrier network. As a consequence, the difficulty of the orchestration challenge is heavily related to the scale of
these involved processes and their underlying (re-)sources.

This section documents assumptions on these processes based on publicly available documentation, as well as input
by the operator partners in the consortium. The considered network architecture and associated parameters is
based on the UK BT network and information available on datacenters in UK.

A typical Telecom operator network has a hierarchical structure with a dense core router meshed network
consisting of inner and outer core Points of Presence (PoPs). The end customers are interconnected to this core
network via a hierarchy of tree-structured access- and metro aggregation networks. As an example, Figure 4-1
illustrates the network structure of BT operator network in UK.

Based on the information available in [BT21CN, DCMap, ISPreview, SPARCD2.1], an (maximum3) estimation of the
number of devices in a service provider network (BT) is made which is reported in Table 4-1.

According to this estimation, a typical network operator infrastructure consists of almost 50K devices at different
parts in the network and data centres excluding CPEs. In case of including CPEs, almost 10M devices are needed to
be orchestrated.

3 When room for interpretation (or detailed information is lacking), estimations were rounded upward, in orderhave quantitative orchestration targets which are sufficiently future proof.
41 Deliverable D3.2 18.06.2015

4 Scalable orchestration algorithms

The programmability framework described in [D3.1] and in section 2 above describes the data models involved in
orchestrating service graphs (SG) or network function forwarding graphs (NF-FG) respectively. Within the
orchestration layer appropriate mappings of network functions (NFs) to physical devices as well as a mapping of the
NFs’ interconnections to routes have to be determined. Within this section we focus on the algorithmic challenges
involved and how UNIFY tackles and plans to tackle these. We start with some context on the scale of the resource
orchestration problem in Section 4.1 and provide an introduction to the Virtual Network Embedding (VNE) problem
in Section 4.2. Within Sections 4.3 to 4.5 we focus on the so called pure embedding problem that frames the NF-FG
embedding in rather general terms. While in Section 4.3 the online problem is considered, Sections 4.4 and Section
4.5 deal with how offline solutions can be incorporated. In Section 4.6 we highlight our work on tackling a novel
problem arising in the service chain context, namely the joint decomposition of composed network functions and
their embedding. Lastly, we outline in Section 4.7 how the technical challenge of distributed embedding processes
can be tackled.

4.1 Context of the resource orchestration problem
The orchestration brings together two information flows: a top-down flow initiated by the users of the UNIFY
platform initiating service requests, and a bottom-up information flow driven by available resources in the cloud and
carrier network. As a consequence, the difficulty of the orchestration challenge is heavily related to the scale of
these involved processes and their underlying (re-)sources.

This section documents assumptions on these processes based on publicly available documentation, as well as input
by the operator partners in the consortium. The considered network architecture and associated parameters is
based on the UK BT network and information available on datacenters in UK.

A typical Telecom operator network has a hierarchical structure with a dense core router meshed network
consisting of inner and outer core Points of Presence (PoPs). The end customers are interconnected to this core
network via a hierarchy of tree-structured access- and metro aggregation networks. As an example, Figure 4-1
illustrates the network structure of BT operator network in UK.

Based on the information available in [BT21CN, DCMap, ISPreview, SPARCD2.1], an (maximum3) estimation of the
number of devices in a service provider network (BT) is made which is reported in Table 4-1.

According to this estimation, a typical network operator infrastructure consists of almost 50K devices at different
parts in the network and data centres excluding CPEs. In case of including CPEs, almost 10M devices are needed to
be orchestrated.

3 When room for interpretation (or detailed information is lacking), estimations were rounded upward, in orderhave quantitative orchestration targets which are sufficiently future proof.
41 Deliverable D3.2 18.06.2015

4 Scalable orchestration algorithms

The programmability framework described in [D3.1] and in section 2 above describes the data models involved in
orchestrating service graphs (SG) or network function forwarding graphs (NF-FG) respectively. Within the
orchestration layer appropriate mappings of network functions (NFs) to physical devices as well as a mapping of the
NFs’ interconnections to routes have to be determined. Within this section we focus on the algorithmic challenges
involved and how UNIFY tackles and plans to tackle these. We start with some context on the scale of the resource
orchestration problem in Section 4.1 and provide an introduction to the Virtual Network Embedding (VNE) problem
in Section 4.2. Within Sections 4.3 to 4.5 we focus on the so called pure embedding problem that frames the NF-FG
embedding in rather general terms. While in Section 4.3 the online problem is considered, Sections 4.4 and Section
4.5 deal with how offline solutions can be incorporated. In Section 4.6 we highlight our work on tackling a novel
problem arising in the service chain context, namely the joint decomposition of composed network functions and
their embedding. Lastly, we outline in Section 4.7 how the technical challenge of distributed embedding processes
can be tackled.

4.1 Context of the resource orchestration problem
The orchestration brings together two information flows: a top-down flow initiated by the users of the UNIFY
platform initiating service requests, and a bottom-up information flow driven by available resources in the cloud and
carrier network. As a consequence, the difficulty of the orchestration challenge is heavily related to the scale of
these involved processes and their underlying (re-)sources.

This section documents assumptions on these processes based on publicly available documentation, as well as input
by the operator partners in the consortium. The considered network architecture and associated parameters is
based on the UK BT network and information available on datacenters in UK.

A typical Telecom operator network has a hierarchical structure with a dense core router meshed network
consisting of inner and outer core Points of Presence (PoPs). The end customers are interconnected to this core
network via a hierarchy of tree-structured access- and metro aggregation networks. As an example, Figure 4-1
illustrates the network structure of BT operator network in UK.

Based on the information available in [BT21CN, DCMap, ISPreview, SPARCD2.1], an (maximum3) estimation of the
number of devices in a service provider network (BT) is made which is reported in Table 4-1.

According to this estimation, a typical network operator infrastructure consists of almost 50K devices at different
parts in the network and data centres excluding CPEs. In case of including CPEs, almost 10M devices are needed to
be orchestrated.

3 When room for interpretation (or detailed information is lacking), estimations were rounded upward, in orderhave quantitative orchestration targets which are sufficiently future proof.

42 Deliverable D3.2 18.06.2015

Figure 4-1: BT network structure

Based on a set of studies in UK [ISPreview, UBM, Tonse, BIS], the number of new customers per day is about 2.5K
and the number of service requests that may be expected to a network operator such as BT is estimated around 5-
10K per day. From an NF-FG orchestration point of view, we expect that the number of "IP Edge" PoPs / "Service
PoPs" is the most indicative number4, as the access node only plays a role in the subscriber physical access
connection to the "Service PoP". But when the dealing with the provisioning of services, or dynamically asking for
new services, or changing profile, etc. it is the IP Edge/service edge that the actual configuration has to be
performed. The targeted timescale of actions in the orchestrator should be as low as possible with significant
difference from traditional/manual provisioning. The resulting timescale is thus expected to be in the range of 100
ms to 1 s.

4 When a new customer needs to be initially provisioned a broadband line, some operation involves the access network segment
(including the MSAN) too.

Inner core physical PoPs
 8 PoPs (inc. 2-4 internet PoPs)
 Fully meshed
Outer core physical PoPs
 12 PoPs
 At least triple parented to inner
Metro physical PoPs
 86 PoPs
 Dual parented to core

Tier 1 MSAN physical PoPs
 Circa 1000 sites

MSAN physical PoPs
 Circa 4400 sites

42 Deliverable D3.2 18.06.2015

Figure 4-1: BT network structure

Based on a set of studies in UK [ISPreview, UBM, Tonse, BIS], the number of new customers per day is about 2.5K
and the number of service requests that may be expected to a network operator such as BT is estimated around 5-
10K per day. From an NF-FG orchestration point of view, we expect that the number of "IP Edge" PoPs / "Service
PoPs" is the most indicative number4, as the access node only plays a role in the subscriber physical access
connection to the "Service PoP". But when the dealing with the provisioning of services, or dynamically asking for
new services, or changing profile, etc. it is the IP Edge/service edge that the actual configuration has to be
performed. The targeted timescale of actions in the orchestrator should be as low as possible with significant
difference from traditional/manual provisioning. The resulting timescale is thus expected to be in the range of 100
ms to 1 s.

4 When a new customer needs to be initially provisioned a broadband line, some operation involves the access network segment
(including the MSAN) too.

Inner core physical PoPs
 8 PoPs (inc. 2-4 internet PoPs)
 Fully meshed
Outer core physical PoPs
 12 PoPs
 At least triple parented to inner
Metro physical PoPs
 86 PoPs
 Dual parented to core

Tier 1 MSAN physical PoPs
 Circa 1000 sites

MSAN physical PoPs
 Circa 4400 sites

42 Deliverable D3.2 18.06.2015

Figure 4-1: BT network structure

Based on a set of studies in UK [ISPreview, UBM, Tonse, BIS], the number of new customers per day is about 2.5K
and the number of service requests that may be expected to a network operator such as BT is estimated around 5-
10K per day. From an NF-FG orchestration point of view, we expect that the number of "IP Edge" PoPs / "Service
PoPs" is the most indicative number4, as the access node only plays a role in the subscriber physical access
connection to the "Service PoP". But when the dealing with the provisioning of services, or dynamically asking for
new services, or changing profile, etc. it is the IP Edge/service edge that the actual configuration has to be
performed. The targeted timescale of actions in the orchestrator should be as low as possible with significant
difference from traditional/manual provisioning. The resulting timescale is thus expected to be in the range of 100
ms to 1 s.

4 When a new customer needs to be initially provisioned a broadband line, some operation involves the access network segment
(including the MSAN) too.

Inner core physical PoPs
 8 PoPs (inc. 2-4 internet PoPs)
 Fully meshed
Outer core physical PoPs
 12 PoPs
 At least triple parented to inner
Metro physical PoPs
 86 PoPs
 Dual parented to core

Tier 1 MSAN physical PoPs
 Circa 1000 sites

MSAN physical PoPs
 Circa 4400 sites

43 Deliverable D3.2 18.06.2015

Table 4-1: Service provider network size

Total number

Telecom network

Access network

End-user CPEs (for market share of
30%)

10,000,000

MSANs (DSLAMs) 30,000+

IP Edge/Service PoPs 1,000

Core network

Core PoPs 10

Datacenter network

BT data centres (assuming 70% of 45
global data centres in UK)

32

BT data centre servers (assuming 70%
of 25000 global BT data centre servers
in UK)

17,500

Top of the rack switches (1 switch per
40 servers)

438

Data centre routers (2 per site) 64

Total # of devices to be orchestrated 49,011

Total # of devices incl. CPE for market
share of 30%

10,049,011

43 Deliverable D3.2 18.06.2015

Table 4-1: Service provider network size

Total number

Telecom network

Access network

End-user CPEs (for market share of
30%)

10,000,000

MSANs (DSLAMs) 30,000+

IP Edge/Service PoPs 1,000

Core network

Core PoPs 10

Datacenter network

BT data centres (assuming 70% of 45
global data centres in UK)

32

BT data centre servers (assuming 70%
of 25000 global BT data centre servers
in UK)

17,500

Top of the rack switches (1 switch per
40 servers)

438

Data centre routers (2 per site) 64

Total # of devices to be orchestrated 49,011

Total # of devices incl. CPE for market
share of 30%

10,049,011

43 Deliverable D3.2 18.06.2015

Table 4-1: Service provider network size

Total number

Telecom network

Access network

End-user CPEs (for market share of
30%)

10,000,000

MSANs (DSLAMs) 30,000+

IP Edge/Service PoPs 1,000

Core network

Core PoPs 10

Datacenter network

BT data centres (assuming 70% of 45
global data centres in UK)

32

BT data centre servers (assuming 70%
of 25000 global BT data centre servers
in UK)

17,500

Top of the rack switches (1 switch per
40 servers)

438

Data centre routers (2 per site) 64

Total # of devices to be orchestrated 49,011

Total # of devices incl. CPE for market
share of 30%

10,049,011

44 Deliverable D3.2 18.06.2015

4.2 Background on the Service Chain Embedding Problem
In the early 2000's the so called “Testbed Problem” arose when researchers were trying to embed overlay
topologies into a given testbed. Back then, the task was to place the overlay nodes in such a fashion that the testbed
nodes as well as the testbed links were not over-provisioned [Ricci2003]. In the light of the virtualisation trend, the
Virtual Network Embedding Problem (VNEP) arose, to attend to the general problem of mapping or embedding a
(virtual) graph onto another (substrate) graph.

Figure 4-2 outlines the general idea: Given multiple Virtual Networks (VNets) and a common physical infrastructure,
an embedding which maps virtual nodes onto substrate nodes and virtual links onto paths in the substrate is
searched for. In the literature many different versions of the VNEP are considered (see [Belbekkouche2012;
Fischer2013] for surveys). The VNEP’s very general problem formulation allows for modelling arbitrary resources, as
e.g. CPU, RAM and hard drive space and arbitrary type information (see e.g. [Schaffrath2012] for an hierarchical
description language of resources). Especially the ability to attribute network nodes with specific type information is
important in the area of service chaining, as embedding e.g. a Firewall on a universal node will impose different
resource requirements than embedding a Firewall on a hardware-based middlebox. For further information on the
different application of the VNEP and the models we also refer the reader to the Appendix A.2.6 of D.3.1 providing a
brief taxonomy.

Figure 4-2: Network embedding concept

The service chain embedding problem that pertains to UNIFY is closely related to the classic VNEP, as the VNEP
generally allows for location and type requirements on network nodes and generally considers strict QoS guarantees
in terms of the used resources and e.g. the end-to-end latency. However, the service chain embedding problem
differs from the VNEP problem by representing network functions rather than specific node locations with no
semantic information about the function. In Figure 4-3 the firewall functionality may e.g. be implemented using a
load-balanced series of firewalls. For embedding service chains, functional decompositions therefore must be taken
into account (see Section 4.6). This is of particular importance as NFV capable COTS hardware may be easily
extended by additional specialized hardware such as network processors, ASICs, FPGAs to improve performance.
Therefore some nodes may e.g. do load-balancing on the fly while others may require more computing power.
Optimizing the hardware choice during decomposition can thus greatly improve the total performance and reduce

44 Deliverable D3.2 18.06.2015

4.2 Background on the Service Chain Embedding Problem
In the early 2000's the so called “Testbed Problem” arose when researchers were trying to embed overlay
topologies into a given testbed. Back then, the task was to place the overlay nodes in such a fashion that the testbed
nodes as well as the testbed links were not over-provisioned [Ricci2003]. In the light of the virtualisation trend, the
Virtual Network Embedding Problem (VNEP) arose, to attend to the general problem of mapping or embedding a
(virtual) graph onto another (substrate) graph.

Figure 4-2 outlines the general idea: Given multiple Virtual Networks (VNets) and a common physical infrastructure,
an embedding which maps virtual nodes onto substrate nodes and virtual links onto paths in the substrate is
searched for. In the literature many different versions of the VNEP are considered (see [Belbekkouche2012;
Fischer2013] for surveys). The VNEP’s very general problem formulation allows for modelling arbitrary resources, as
e.g. CPU, RAM and hard drive space and arbitrary type information (see e.g. [Schaffrath2012] for an hierarchical
description language of resources). Especially the ability to attribute network nodes with specific type information is
important in the area of service chaining, as embedding e.g. a Firewall on a universal node will impose different
resource requirements than embedding a Firewall on a hardware-based middlebox. For further information on the
different application of the VNEP and the models we also refer the reader to the Appendix A.2.6 of D.3.1 providing a
brief taxonomy.

Figure 4-2: Network embedding concept

The service chain embedding problem that pertains to UNIFY is closely related to the classic VNEP, as the VNEP
generally allows for location and type requirements on network nodes and generally considers strict QoS guarantees
in terms of the used resources and e.g. the end-to-end latency. However, the service chain embedding problem
differs from the VNEP problem by representing network functions rather than specific node locations with no
semantic information about the function. In Figure 4-3 the firewall functionality may e.g. be implemented using a
load-balanced series of firewalls. For embedding service chains, functional decompositions therefore must be taken
into account (see Section 4.6). This is of particular importance as NFV capable COTS hardware may be easily
extended by additional specialized hardware such as network processors, ASICs, FPGAs to improve performance.
Therefore some nodes may e.g. do load-balancing on the fly while others may require more computing power.
Optimizing the hardware choice during decomposition can thus greatly improve the total performance and reduce

44 Deliverable D3.2 18.06.2015

4.2 Background on the Service Chain Embedding Problem
In the early 2000's the so called “Testbed Problem” arose when researchers were trying to embed overlay
topologies into a given testbed. Back then, the task was to place the overlay nodes in such a fashion that the testbed
nodes as well as the testbed links were not over-provisioned [Ricci2003]. In the light of the virtualisation trend, the
Virtual Network Embedding Problem (VNEP) arose, to attend to the general problem of mapping or embedding a
(virtual) graph onto another (substrate) graph.

Figure 4-2 outlines the general idea: Given multiple Virtual Networks (VNets) and a common physical infrastructure,
an embedding which maps virtual nodes onto substrate nodes and virtual links onto paths in the substrate is
searched for. In the literature many different versions of the VNEP are considered (see [Belbekkouche2012;
Fischer2013] for surveys). The VNEP’s very general problem formulation allows for modelling arbitrary resources, as
e.g. CPU, RAM and hard drive space and arbitrary type information (see e.g. [Schaffrath2012] for an hierarchical
description language of resources). Especially the ability to attribute network nodes with specific type information is
important in the area of service chaining, as embedding e.g. a Firewall on a universal node will impose different
resource requirements than embedding a Firewall on a hardware-based middlebox. For further information on the
different application of the VNEP and the models we also refer the reader to the Appendix A.2.6 of D.3.1 providing a
brief taxonomy.

Figure 4-2: Network embedding concept

The service chain embedding problem that pertains to UNIFY is closely related to the classic VNEP, as the VNEP
generally allows for location and type requirements on network nodes and generally considers strict QoS guarantees
in terms of the used resources and e.g. the end-to-end latency. However, the service chain embedding problem
differs from the VNEP problem by representing network functions rather than specific node locations with no
semantic information about the function. In Figure 4-3 the firewall functionality may e.g. be implemented using a
load-balanced series of firewalls. For embedding service chains, functional decompositions therefore must be taken
into account (see Section 4.6). This is of particular importance as NFV capable COTS hardware may be easily
extended by additional specialized hardware such as network processors, ASICs, FPGAs to improve performance.
Therefore some nodes may e.g. do load-balancing on the fly while others may require more computing power.
Optimizing the hardware choice during decomposition can thus greatly improve the total performance and reduce

45 Deliverable D3.2 18.06.2015

the resources necessary to establish services. The special capabilities of HW optimized atomic blocks must be
advertised appropriately and understood by the controllers [D3.1, D2.2] and taken into account while orchestrating.

However, once a concrete decomposition is found, the orchestration problem reduces to the VNEP with
decomposition specific constraints pertaining e.g. to the type of implementation variants and concrete SAP
endpoints.

Figure 4-3: A simple NF-FG to be orchestrated.

With respect to our VNEP based work, we mainly orient the following sections along the division of online vs. offline
algorithms. The VNEP is classically treated as an online problem, i.e. requests arrive over time without any
knowledge about future requests and the orchestrator needs to decide which of the requests to accept or reject one
by one. In contrast, offline algorithms are given a set of multiple requests to be orchestrated at the same time.

4.3 Online Algorithms
Online algorithms have the objective of finding the best embedding of a single request with respect to the currently
available resources. Within the VNEP literature most proposed algorithms target the online use case in different
settings with random network sizes (uniformly drawn number of nodes and uniform edge connections) and
resource requirements (see [Chowdhury2009] for the work introducing the specific settings and [Fischer2013] for
an overview). It must be noted that all works except [Even2012] and [Bienkowski2014] consider heuristics.

Within UNIFY the following contributions to the state of the art have been made:

 On very dense graphs, where nodes are connected via multiple edges, we have considered randomized graph
search algorithms to find suitable end-to-end paths (see Section 4.3.1)

 For a very specific virtual topology, namely the virtual cluster which is often used in data centers, it was shown
that the online embedding problem can be solved in polynomial time. While the virtual cluster topology was
specifically designed for the data center use case, it shows that not all embedding problems are actually hard to
solve and may be a step towards approximation algorithms or competitive online algorithms (see Section 4.3.2)

 For the joint decomposition and embedding of service chains a simple graph search was devised to find a
suitable embedding quickly (see Section 4.6.3 for details)

45 Deliverable D3.2 18.06.2015

the resources necessary to establish services. The special capabilities of HW optimized atomic blocks must be
advertised appropriately and understood by the controllers [D3.1, D2.2] and taken into account while orchestrating.

However, once a concrete decomposition is found, the orchestration problem reduces to the VNEP with
decomposition specific constraints pertaining e.g. to the type of implementation variants and concrete SAP
endpoints.

Figure 4-3: A simple NF-FG to be orchestrated.

With respect to our VNEP based work, we mainly orient the following sections along the division of online vs. offline
algorithms. The VNEP is classically treated as an online problem, i.e. requests arrive over time without any
knowledge about future requests and the orchestrator needs to decide which of the requests to accept or reject one
by one. In contrast, offline algorithms are given a set of multiple requests to be orchestrated at the same time.

4.3 Online Algorithms
Online algorithms have the objective of finding the best embedding of a single request with respect to the currently
available resources. Within the VNEP literature most proposed algorithms target the online use case in different
settings with random network sizes (uniformly drawn number of nodes and uniform edge connections) and
resource requirements (see [Chowdhury2009] for the work introducing the specific settings and [Fischer2013] for
an overview). It must be noted that all works except [Even2012] and [Bienkowski2014] consider heuristics.

Within UNIFY the following contributions to the state of the art have been made:

 On very dense graphs, where nodes are connected via multiple edges, we have considered randomized graph
search algorithms to find suitable end-to-end paths (see Section 4.3.1)

 For a very specific virtual topology, namely the virtual cluster which is often used in data centers, it was shown
that the online embedding problem can be solved in polynomial time. While the virtual cluster topology was
specifically designed for the data center use case, it shows that not all embedding problems are actually hard to
solve and may be a step towards approximation algorithms or competitive online algorithms (see Section 4.3.2)

 For the joint decomposition and embedding of service chains a simple graph search was devised to find a
suitable embedding quickly (see Section 4.6.3 for details)

45 Deliverable D3.2 18.06.2015

the resources necessary to establish services. The special capabilities of HW optimized atomic blocks must be
advertised appropriately and understood by the controllers [D3.1, D2.2] and taken into account while orchestrating.

However, once a concrete decomposition is found, the orchestration problem reduces to the VNEP with
decomposition specific constraints pertaining e.g. to the type of implementation variants and concrete SAP
endpoints.

Figure 4-3: A simple NF-FG to be orchestrated.

With respect to our VNEP based work, we mainly orient the following sections along the division of online vs. offline
algorithms. The VNEP is classically treated as an online problem, i.e. requests arrive over time without any
knowledge about future requests and the orchestrator needs to decide which of the requests to accept or reject one
by one. In contrast, offline algorithms are given a set of multiple requests to be orchestrated at the same time.

4.3 Online Algorithms
Online algorithms have the objective of finding the best embedding of a single request with respect to the currently
available resources. Within the VNEP literature most proposed algorithms target the online use case in different
settings with random network sizes (uniformly drawn number of nodes and uniform edge connections) and
resource requirements (see [Chowdhury2009] for the work introducing the specific settings and [Fischer2013] for
an overview). It must be noted that all works except [Even2012] and [Bienkowski2014] consider heuristics.

Within UNIFY the following contributions to the state of the art have been made:

 On very dense graphs, where nodes are connected via multiple edges, we have considered randomized graph
search algorithms to find suitable end-to-end paths (see Section 4.3.1)

 For a very specific virtual topology, namely the virtual cluster which is often used in data centers, it was shown
that the online embedding problem can be solved in polynomial time. While the virtual cluster topology was
specifically designed for the data center use case, it shows that not all embedding problems are actually hard to
solve and may be a step towards approximation algorithms or competitive online algorithms (see Section 4.3.2)

 For the joint decomposition and embedding of service chains a simple graph search was devised to find a
suitable embedding quickly (see Section 4.6.3 for details)

46 Deliverable D3.2 18.06.2015

4.3.1 End-to-end Embedding on Dense (Multi-)Graphs
In the VNEP literature graphs the substrate and the request networks are generally considered to be simple directed
graphs, i.e. two nodes are connected by at most one edge. While this model generally is quite suitable, it fails to
recognize that especially when considering an aggregated network view, two routers may be connected by multiple
connections with varying available bandwidth and varying latencies. While a multi-graph, i.e. a graph with multiple
edges connecting two nodes, can always be represented as a simple graph by introducing one additional node per
edge, algorithms on simple graphs may fail to identify the underlying graph structure, hence increasing the
algorithm’s runtime manifold. Multi-graphs are generally of interest as e.g. ISPs use multiple connections to connect
PoPs for the sake of resiliency. The work presented in this section can help in designing faster algorithms for end-
to-end computations.

A problem field where multi-graphs naturally arise are so called IXP multi-graphs, where nodes are IXP locations
and are connected by multiple transit ISPs (see Figure 4-4). On this graph, we have considered the problem of
installing end-to-end paths from a source to a destination via a centralized CXP controller / orchestrator.

1. The path may carry some specific amount of bandwidth, and

2. The path has a total latency less than specified by the customer.

Figure 4-4: Inter-IXP network with multiple potential transit ISPs.

Three different graph search algorithms have been considered in a sample-and-select framework. First a set of
feasible paths is sampled from the exponential number of potential paths. According to an arbitrary complex
selection criterion, the best of the found paths is chosen to embed the path.

The above approach is especially useful in the light of the fact that choosing one path optimizing multi-objectives is
generally NP-hard and opting for an optimal path may be prohibitive based on the runtime [Garroppo2010]. We have
devised three graph search algorithms presented in the following sections.

46 Deliverable D3.2 18.06.2015

4.3.1 End-to-end Embedding on Dense (Multi-)Graphs
In the VNEP literature graphs the substrate and the request networks are generally considered to be simple directed
graphs, i.e. two nodes are connected by at most one edge. While this model generally is quite suitable, it fails to
recognize that especially when considering an aggregated network view, two routers may be connected by multiple
connections with varying available bandwidth and varying latencies. While a multi-graph, i.e. a graph with multiple
edges connecting two nodes, can always be represented as a simple graph by introducing one additional node per
edge, algorithms on simple graphs may fail to identify the underlying graph structure, hence increasing the
algorithm’s runtime manifold. Multi-graphs are generally of interest as e.g. ISPs use multiple connections to connect
PoPs for the sake of resiliency. The work presented in this section can help in designing faster algorithms for end-
to-end computations.

A problem field where multi-graphs naturally arise are so called IXP multi-graphs, where nodes are IXP locations
and are connected by multiple transit ISPs (see Figure 4-4). On this graph, we have considered the problem of
installing end-to-end paths from a source to a destination via a centralized CXP controller / orchestrator.

1. The path may carry some specific amount of bandwidth, and

2. The path has a total latency less than specified by the customer.

Figure 4-4: Inter-IXP network with multiple potential transit ISPs.

Three different graph search algorithms have been considered in a sample-and-select framework. First a set of
feasible paths is sampled from the exponential number of potential paths. According to an arbitrary complex
selection criterion, the best of the found paths is chosen to embed the path.

The above approach is especially useful in the light of the fact that choosing one path optimizing multi-objectives is
generally NP-hard and opting for an optimal path may be prohibitive based on the runtime [Garroppo2010]. We have
devised three graph search algorithms presented in the following sections.

46 Deliverable D3.2 18.06.2015

4.3.1 End-to-end Embedding on Dense (Multi-)Graphs
In the VNEP literature graphs the substrate and the request networks are generally considered to be simple directed
graphs, i.e. two nodes are connected by at most one edge. While this model generally is quite suitable, it fails to
recognize that especially when considering an aggregated network view, two routers may be connected by multiple
connections with varying available bandwidth and varying latencies. While a multi-graph, i.e. a graph with multiple
edges connecting two nodes, can always be represented as a simple graph by introducing one additional node per
edge, algorithms on simple graphs may fail to identify the underlying graph structure, hence increasing the
algorithm’s runtime manifold. Multi-graphs are generally of interest as e.g. ISPs use multiple connections to connect
PoPs for the sake of resiliency. The work presented in this section can help in designing faster algorithms for end-
to-end computations.

A problem field where multi-graphs naturally arise are so called IXP multi-graphs, where nodes are IXP locations
and are connected by multiple transit ISPs (see Figure 4-4). On this graph, we have considered the problem of
installing end-to-end paths from a source to a destination via a centralized CXP controller / orchestrator.

1. The path may carry some specific amount of bandwidth, and

2. The path has a total latency less than specified by the customer.

Figure 4-4: Inter-IXP network with multiple potential transit ISPs.

Three different graph search algorithms have been considered in a sample-and-select framework. First a set of
feasible paths is sampled from the exponential number of potential paths. According to an arbitrary complex
selection criterion, the best of the found paths is chosen to embed the path.

The above approach is especially useful in the light of the fact that choosing one path optimizing multi-objectives is
generally NP-hard and opting for an optimal path may be prohibitive based on the runtime [Garroppo2010]. We have
devised three graph search algorithms presented in the following sections.

47 Deliverable D3.2 18.06.2015

4.3.1.1 Perturbed Dijkstra Path Sampling
The first algorithm is a simple adaption of the well-known Dijkstra algorithm for finding shortest paths. The
algorithm proceeds as follows:

1. First all edges with an available bandwidth less than the specified bandwidth are pruned from the graph.

2. The resulting multi-graph is projected onto a simple graph by only considering the lowest latency edges and the
classic Dijkstra algorithm is used to determine the lowest latency path in this network.

3. The simple graph is perturbed by removing all utilized edges and replacing them with the next best (latency
wise) edge.

We note that the above algorithm can naturally be used to yield multiple edge-disjoint paths to support resiliency.

4.3.1.2 Guided Random Walk Path Sampling
This algorithm performs a guided random walk to connect one endpoint to another. Beginning in the start of the
path, any neighbouring node is selected with the same probability. However, to guarantee termination only
neighbouring nodes are considered that still allow reaching the target node within the required latency. To this end,
using a reverse Dijkstra iteration (as already proposed in [Korkmaz2001]), first the minimum distances from each
node towards the target is computed. If a suitable neighbour was found, then one of the feasible edges is chosen.

4.3.1.3 Guided Randomized Dijkstra Sampling
This algorithmic variant of Dijkstra combines the classical algorithm with a random edge selection: instead of
projecting the multi-graph onto a simple graph the set of edges is projected onto a single suitable edge in the
exploration of neighbours. Using the information on the minimal distance from each node towards the target, the
algorithm is guaranteed to find suitable paths.

4.3.1.4 Online Evaluation of the Path Sampling Algorithms
The above algorithms were compared on an IXP multi-graph with 28 nodes and approximately 6,500 edges with an
average node degree of 230 and an average edge multiplicity of 12.

47 Deliverable D3.2 18.06.2015

4.3.1.1 Perturbed Dijkstra Path Sampling
The first algorithm is a simple adaption of the well-known Dijkstra algorithm for finding shortest paths. The
algorithm proceeds as follows:

1. First all edges with an available bandwidth less than the specified bandwidth are pruned from the graph.

2. The resulting multi-graph is projected onto a simple graph by only considering the lowest latency edges and the
classic Dijkstra algorithm is used to determine the lowest latency path in this network.

3. The simple graph is perturbed by removing all utilized edges and replacing them with the next best (latency
wise) edge.

We note that the above algorithm can naturally be used to yield multiple edge-disjoint paths to support resiliency.

4.3.1.2 Guided Random Walk Path Sampling
This algorithm performs a guided random walk to connect one endpoint to another. Beginning in the start of the
path, any neighbouring node is selected with the same probability. However, to guarantee termination only
neighbouring nodes are considered that still allow reaching the target node within the required latency. To this end,
using a reverse Dijkstra iteration (as already proposed in [Korkmaz2001]), first the minimum distances from each
node towards the target is computed. If a suitable neighbour was found, then one of the feasible edges is chosen.

4.3.1.3 Guided Randomized Dijkstra Sampling
This algorithmic variant of Dijkstra combines the classical algorithm with a random edge selection: instead of
projecting the multi-graph onto a simple graph the set of edges is projected onto a single suitable edge in the
exploration of neighbours. Using the information on the minimal distance from each node towards the target, the
algorithm is guaranteed to find suitable paths.

4.3.1.4 Online Evaluation of the Path Sampling Algorithms
The above algorithms were compared on an IXP multi-graph with 28 nodes and approximately 6,500 edges with an
average node degree of 230 and an average edge multiplicity of 12.

47 Deliverable D3.2 18.06.2015

4.3.1.1 Perturbed Dijkstra Path Sampling
The first algorithm is a simple adaption of the well-known Dijkstra algorithm for finding shortest paths. The
algorithm proceeds as follows:

1. First all edges with an available bandwidth less than the specified bandwidth are pruned from the graph.

2. The resulting multi-graph is projected onto a simple graph by only considering the lowest latency edges and the
classic Dijkstra algorithm is used to determine the lowest latency path in this network.

3. The simple graph is perturbed by removing all utilized edges and replacing them with the next best (latency
wise) edge.

We note that the above algorithm can naturally be used to yield multiple edge-disjoint paths to support resiliency.

4.3.1.2 Guided Random Walk Path Sampling
This algorithm performs a guided random walk to connect one endpoint to another. Beginning in the start of the
path, any neighbouring node is selected with the same probability. However, to guarantee termination only
neighbouring nodes are considered that still allow reaching the target node within the required latency. To this end,
using a reverse Dijkstra iteration (as already proposed in [Korkmaz2001]), first the minimum distances from each
node towards the target is computed. If a suitable neighbour was found, then one of the feasible edges is chosen.

4.3.1.3 Guided Randomized Dijkstra Sampling
This algorithmic variant of Dijkstra combines the classical algorithm with a random edge selection: instead of
projecting the multi-graph onto a simple graph the set of edges is projected onto a single suitable edge in the
exploration of neighbours. Using the information on the minimal distance from each node towards the target, the
algorithm is guaranteed to find suitable paths.

4.3.1.4 Online Evaluation of the Path Sampling Algorithms
The above algorithms were compared on an IXP multi-graph with 28 nodes and approximately 6,500 edges with an
average node degree of 230 and an average edge multiplicity of 12.

48 Deliverable D3.2 18.06.2015

Figure 4-5: Acceptance ratio and resource utilization of a 28 node IXP multi-graph in the online scenario. On the left
side, the acceptance ratio is plotted over the required latency. On the right side, resource utilization is plotted against

the number of paths generated in the sampling stage. (GW = guided walk, GD = guided Dijkstra, PD = perturbed
Dijkstra)

As can be seen in Figure 4-5 the three different sampling algorithms achieve around the same acceptance ratio (i.e.
the number of requests that can be accepted while respecting the request’s resource requirements) while varying
heavily in the bandwidth utilization. While the perturbed Dijkstra algorithm achieves the best acceptance ratio, the
guided Dijkstra variant achieves the best utilization while the guided random walks algorithm requires up to 20%
more resources as the competing algorithms.

4.3.1.5 Application to Service Chain Embeddings
While the above scenario of embedding end-to-end paths can be considered the simplest service chain embedding,
namely without any network functions, the above discussed algorithms pertain also to the service chain embedding
problem by using a specific graph construction introduced in Merlin [Soulé2013]: given a network function
forwarding graph consisting only of a line, the substrate network can be extended such that any path connecting the
source to the end must traverse all network functions.

4.3.2 Virtual Cluster Embedding Problem
Based on the general NP-hardness of the VNEP (see e.g. [Fischer2013]), in the above setting only heuristics were
used to find solutions within polynomial time. However, the found solutions may be far from optimal. While Integer
Programming approaches can be used (see e.g. Sections 4.4 and 4.5) to compute (near-)optimal solutions in non-
polynomial time, approaches yielding strict performance guarantees were only considered in the works of
[Even2012] and[Bienkowski2014]. Within UNIFY we show that a quite specific topology can actually be embedded
optimally while previous works always considered this to be NP-hard [Rost2015].

Concretely, the virtual cluster network topology is considered (see Figure 4-6). The virtual cluster topology (VC) is a
simple star topology with servers being connected in a star-like topology to a central switch. The virtual cluster
topology is especially used in data centres as the central switch allows for any server-to-server (VM) communication
pattern that does not exceed the specified amount of bandwidth between the servers and the central switch. In

48 Deliverable D3.2 18.06.2015

Figure 4-5: Acceptance ratio and resource utilization of a 28 node IXP multi-graph in the online scenario. On the left
side, the acceptance ratio is plotted over the required latency. On the right side, resource utilization is plotted against

the number of paths generated in the sampling stage. (GW = guided walk, GD = guided Dijkstra, PD = perturbed
Dijkstra)

As can be seen in Figure 4-5 the three different sampling algorithms achieve around the same acceptance ratio (i.e.
the number of requests that can be accepted while respecting the request’s resource requirements) while varying
heavily in the bandwidth utilization. While the perturbed Dijkstra algorithm achieves the best acceptance ratio, the
guided Dijkstra variant achieves the best utilization while the guided random walks algorithm requires up to 20%
more resources as the competing algorithms.

4.3.1.5 Application to Service Chain Embeddings
While the above scenario of embedding end-to-end paths can be considered the simplest service chain embedding,
namely without any network functions, the above discussed algorithms pertain also to the service chain embedding
problem by using a specific graph construction introduced in Merlin [Soulé2013]: given a network function
forwarding graph consisting only of a line, the substrate network can be extended such that any path connecting the
source to the end must traverse all network functions.

4.3.2 Virtual Cluster Embedding Problem
Based on the general NP-hardness of the VNEP (see e.g. [Fischer2013]), in the above setting only heuristics were
used to find solutions within polynomial time. However, the found solutions may be far from optimal. While Integer
Programming approaches can be used (see e.g. Sections 4.4 and 4.5) to compute (near-)optimal solutions in non-
polynomial time, approaches yielding strict performance guarantees were only considered in the works of
[Even2012] and[Bienkowski2014]. Within UNIFY we show that a quite specific topology can actually be embedded
optimally while previous works always considered this to be NP-hard [Rost2015].

Concretely, the virtual cluster network topology is considered (see Figure 4-6). The virtual cluster topology (VC) is a
simple star topology with servers being connected in a star-like topology to a central switch. The virtual cluster
topology is especially used in data centres as the central switch allows for any server-to-server (VM) communication
pattern that does not exceed the specified amount of bandwidth between the servers and the central switch. In

48 Deliverable D3.2 18.06.2015

Figure 4-5: Acceptance ratio and resource utilization of a 28 node IXP multi-graph in the online scenario. On the left
side, the acceptance ratio is plotted over the required latency. On the right side, resource utilization is plotted against

the number of paths generated in the sampling stage. (GW = guided walk, GD = guided Dijkstra, PD = perturbed
Dijkstra)

As can be seen in Figure 4-5 the three different sampling algorithms achieve around the same acceptance ratio (i.e.
the number of requests that can be accepted while respecting the request’s resource requirements) while varying
heavily in the bandwidth utilization. While the perturbed Dijkstra algorithm achieves the best acceptance ratio, the
guided Dijkstra variant achieves the best utilization while the guided random walks algorithm requires up to 20%
more resources as the competing algorithms.

4.3.1.5 Application to Service Chain Embeddings
While the above scenario of embedding end-to-end paths can be considered the simplest service chain embedding,
namely without any network functions, the above discussed algorithms pertain also to the service chain embedding
problem by using a specific graph construction introduced in Merlin [Soulé2013]: given a network function
forwarding graph consisting only of a line, the substrate network can be extended such that any path connecting the
source to the end must traverse all network functions.

4.3.2 Virtual Cluster Embedding Problem
Based on the general NP-hardness of the VNEP (see e.g. [Fischer2013]), in the above setting only heuristics were
used to find solutions within polynomial time. However, the found solutions may be far from optimal. While Integer
Programming approaches can be used (see e.g. Sections 4.4 and 4.5) to compute (near-)optimal solutions in non-
polynomial time, approaches yielding strict performance guarantees were only considered in the works of
[Even2012] and[Bienkowski2014]. Within UNIFY we show that a quite specific topology can actually be embedded
optimally while previous works always considered this to be NP-hard [Rost2015].

Concretely, the virtual cluster network topology is considered (see Figure 4-6). The virtual cluster topology (VC) is a
simple star topology with servers being connected in a star-like topology to a central switch. The virtual cluster
topology is especially used in data centres as the central switch allows for any server-to-server (VM) communication
pattern that does not exceed the specified amount of bandwidth between the servers and the central switch. In

49 Deliverable D3.2 18.06.2015

[Rost2015] we derive a flow algorithm that can be used to solve the embedding of virtual clusters onto arbitrary
substrate topologies in polynomial time, showing that this specific embedding problem is actually in P, i.e. solvable in
polynomial-time (see Section 4.3.3). While the Virtual Cluster topology can be applied to embed services inside data
centres, the direct usage in service chains seems to be rather limited. Nevertheless, our result makes room for the
potential existence of algorithms with strict quality guarantees for other specific VNEP cases, as e.g. embedding a
simple line or embedding trees. Indeed, the ability to optimally solve these subproblems would give rise to novel
algorithms in the service chain context that would first decompose the request and then embed the subgraphs
independently.

Figure 4-6: Virtual Cluster abstraction: a set of servers is connected via a central switch.

4.3.3 Flow Algorithm for Optimally Embedding Virtual Cluster Embeddings
At the heart of the algorithm VC-ACE (see Figure 4-7) lies in the observation that the virtual embedding problem
can be reduced to a series of flow problems on an extended substrate graph. We exploit the following facts:

1. The required bandwidth B and the respective compute resources C of each VM in a virtual cluster is the same.
As connections between the VMs and center are embedded as unsplittable paths, the substrate's edge
capacities (and costs) can be normalized for the unit request case.

2. Assuming that the VM mappings as well as the location of the center are fixed, the cost-optimal link mapping
can be computed in polynomial-time: Concretely, the minimum-cost unsplittable multi-commodity flow
problem can be transformed into an integral minimum-cost single-commodity flow problem in the following
way. We introduce a super source and ask for an integral minimum-cost flow of value equal to the number of
VMs from the super source to the location of the center (which is fixed). The equivalence of these problems
follows from construction, since the bandwidth demands are uniform and edge capacities are integral.

3. Assume that the mapping of center is fixed. The mapping decision for the VMs can be incorporated into the
above described integral minimum-cost flow problem in the following way. The super source is connected to
all substrate nodes via edges whose capacities equal the number of VMs the node may host and appropriate
unit costs for hosting a VM. In the above construction, when considering an integral minimum-cost flow from

49 Deliverable D3.2 18.06.2015

[Rost2015] we derive a flow algorithm that can be used to solve the embedding of virtual clusters onto arbitrary
substrate topologies in polynomial time, showing that this specific embedding problem is actually in P, i.e. solvable in
polynomial-time (see Section 4.3.3). While the Virtual Cluster topology can be applied to embed services inside data
centres, the direct usage in service chains seems to be rather limited. Nevertheless, our result makes room for the
potential existence of algorithms with strict quality guarantees for other specific VNEP cases, as e.g. embedding a
simple line or embedding trees. Indeed, the ability to optimally solve these subproblems would give rise to novel
algorithms in the service chain context that would first decompose the request and then embed the subgraphs
independently.

Figure 4-6: Virtual Cluster abstraction: a set of servers is connected via a central switch.

4.3.3 Flow Algorithm for Optimally Embedding Virtual Cluster Embeddings
At the heart of the algorithm VC-ACE (see Figure 4-7) lies in the observation that the virtual embedding problem
can be reduced to a series of flow problems on an extended substrate graph. We exploit the following facts:

1. The required bandwidth B and the respective compute resources C of each VM in a virtual cluster is the same.
As connections between the VMs and center are embedded as unsplittable paths, the substrate's edge
capacities (and costs) can be normalized for the unit request case.

2. Assuming that the VM mappings as well as the location of the center are fixed, the cost-optimal link mapping
can be computed in polynomial-time: Concretely, the minimum-cost unsplittable multi-commodity flow
problem can be transformed into an integral minimum-cost single-commodity flow problem in the following
way. We introduce a super source and ask for an integral minimum-cost flow of value equal to the number of
VMs from the super source to the location of the center (which is fixed). The equivalence of these problems
follows from construction, since the bandwidth demands are uniform and edge capacities are integral.

3. Assume that the mapping of center is fixed. The mapping decision for the VMs can be incorporated into the
above described integral minimum-cost flow problem in the following way. The super source is connected to
all substrate nodes via edges whose capacities equal the number of VMs the node may host and appropriate
unit costs for hosting a VM. In the above construction, when considering an integral minimum-cost flow from

49 Deliverable D3.2 18.06.2015

[Rost2015] we derive a flow algorithm that can be used to solve the embedding of virtual clusters onto arbitrary
substrate topologies in polynomial time, showing that this specific embedding problem is actually in P, i.e. solvable in
polynomial-time (see Section 4.3.3). While the Virtual Cluster topology can be applied to embed services inside data
centres, the direct usage in service chains seems to be rather limited. Nevertheless, our result makes room for the
potential existence of algorithms with strict quality guarantees for other specific VNEP cases, as e.g. embedding a
simple line or embedding trees. Indeed, the ability to optimally solve these subproblems would give rise to novel
algorithms in the service chain context that would first decompose the request and then embed the subgraphs
independently.

Figure 4-6: Virtual Cluster abstraction: a set of servers is connected via a central switch.

4.3.3 Flow Algorithm for Optimally Embedding Virtual Cluster Embeddings
At the heart of the algorithm VC-ACE (see Figure 4-7) lies in the observation that the virtual embedding problem
can be reduced to a series of flow problems on an extended substrate graph. We exploit the following facts:

1. The required bandwidth B and the respective compute resources C of each VM in a virtual cluster is the same.
As connections between the VMs and center are embedded as unsplittable paths, the substrate's edge
capacities (and costs) can be normalized for the unit request case.

2. Assuming that the VM mappings as well as the location of the center are fixed, the cost-optimal link mapping
can be computed in polynomial-time: Concretely, the minimum-cost unsplittable multi-commodity flow
problem can be transformed into an integral minimum-cost single-commodity flow problem in the following
way. We introduce a super source and ask for an integral minimum-cost flow of value equal to the number of
VMs from the super source to the location of the center (which is fixed). The equivalence of these problems
follows from construction, since the bandwidth demands are uniform and edge capacities are integral.

3. Assume that the mapping of center is fixed. The mapping decision for the VMs can be incorporated into the
above described integral minimum-cost flow problem in the following way. The super source is connected to
all substrate nodes via edges whose capacities equal the number of VMs the node may host and appropriate
unit costs for hosting a VM. In the above construction, when considering an integral minimum-cost flow from

50 Deliverable D3.2 18.06.2015

the super source to the fixed center location, the flow may only originate at the super source and leave the
center's location. Hence, if a feasible flow exists, the flow from the super source to the substrate nodes can be
identified as the number of virtual machines that shall be hosted on the respective substrate node. By
construction, the node capacities cannot be violated and the costs are correctly accounted for. Furthermore,
since all flows must be forwarded to the center, all the VMs are actually connected to it.

The above insights are instrumental for designing VC-ACE and for understanding its correctness. Based on 3., if the
virtual switch's mapping is fixed, then the optimal embedding can be computed by solving a single integral
minimum-cost flow problem (see Line 6).

On a specifically constructed graph (see Lines 3-5). For each possible location of center the optimal flow together
with the mapping of center is stored (see Lines 7,8). Lastly, if a feasible flow was found, it is decomposed into a
mapping as outlined in above by constructing arbitrary paths from the super source to the location of the center.
VC-ACE has a polynomial runtime, which is dominated by solving one flow problem per potential center location. By
employing the Successive Shortest Paths Algorithm, a runtime of (log + ×) can be obtained,

where is the number of virtual nodes, the number of nodes, and the number of edges in the substrate
respectively.

Figure 4-7: Flow algorithm to optimally embed virtual clusters on any topologies.

50 Deliverable D3.2 18.06.2015

the super source to the fixed center location, the flow may only originate at the super source and leave the
center's location. Hence, if a feasible flow exists, the flow from the super source to the substrate nodes can be
identified as the number of virtual machines that shall be hosted on the respective substrate node. By
construction, the node capacities cannot be violated and the costs are correctly accounted for. Furthermore,
since all flows must be forwarded to the center, all the VMs are actually connected to it.

The above insights are instrumental for designing VC-ACE and for understanding its correctness. Based on 3., if the
virtual switch's mapping is fixed, then the optimal embedding can be computed by solving a single integral
minimum-cost flow problem (see Line 6).

On a specifically constructed graph (see Lines 3-5). For each possible location of center the optimal flow together
with the mapping of center is stored (see Lines 7,8). Lastly, if a feasible flow was found, it is decomposed into a
mapping as outlined in above by constructing arbitrary paths from the super source to the location of the center.
VC-ACE has a polynomial runtime, which is dominated by solving one flow problem per potential center location. By
employing the Successive Shortest Paths Algorithm, a runtime of (log + ×) can be obtained,

where is the number of virtual nodes, the number of nodes, and the number of edges in the substrate
respectively.

Figure 4-7: Flow algorithm to optimally embed virtual clusters on any topologies.

50 Deliverable D3.2 18.06.2015

the super source to the fixed center location, the flow may only originate at the super source and leave the
center's location. Hence, if a feasible flow exists, the flow from the super source to the substrate nodes can be
identified as the number of virtual machines that shall be hosted on the respective substrate node. By
construction, the node capacities cannot be violated and the costs are correctly accounted for. Furthermore,
since all flows must be forwarded to the center, all the VMs are actually connected to it.

The above insights are instrumental for designing VC-ACE and for understanding its correctness. Based on 3., if the
virtual switch's mapping is fixed, then the optimal embedding can be computed by solving a single integral
minimum-cost flow problem (see Line 6).

On a specifically constructed graph (see Lines 3-5). For each possible location of center the optimal flow together
with the mapping of center is stored (see Lines 7,8). Lastly, if a feasible flow was found, it is decomposed into a
mapping as outlined in above by constructing arbitrary paths from the super source to the location of the center.
VC-ACE has a polynomial runtime, which is dominated by solving one flow problem per potential center location. By
employing the Successive Shortest Paths Algorithm, a runtime of (log + ×) can be obtained,

where is the number of virtual nodes, the number of nodes, and the number of edges in the substrate
respectively.

Figure 4-7: Flow algorithm to optimally embed virtual clusters on any topologies.

51 Deliverable D3.2 18.06.2015

4.4 Hybrid Online-Offline Cooperation
While the above presented online algorithms can be used to embed requests upon their arrival, changes in the
substrate (e.g. based on requests being terminated) can render the overall embedding sub-optimal. We therefore
propose to couple the online algorithms with appropriate offline algorithms. While for the VNEP many different
optimal offline algorithms on the basis of Integer Programs (IPs) have been proposed, these algorithms generally
have a large runtime, rendering them hard to use for quick reconfigurations.

We have therefore proposed to use the Integer Program (IP) in ∈ {0,1} ∀ ∈ℛ, ∈ (HP − 4)
Figure 4-8 to trade-off computational complexity and runtime by first generating a limited set of paths for each
request first and then choosing one of these paths by the heuristic online methods discussed in Section 4.3.1. In this
IP only two types of variables exist. The binary variable decide which whether request is to be embedded while

determines which path shall be used to embed . As the paths’ latencies are valid by construction, only the

bandwidth resource requirement has to be enforced in Constraint HP-2. The Constraint HP-1 states that if a request
is embedded then exactly one of the pre-computed paths must be chosen to embed the request.max (OBJ)∈ℛ= ∈ ∀ ∈ ℛ (HP − 1)

≥ ∙ ∀ ∈ (HP − 2)∈ℛ, ∈∈ {0,1} ∀ ∈ ℛ (HP − 3)∈ {0,1} ∀ ∈ ℛ, ∈ (HP − 4)
Figure 4-8: Heuristic offline Integer Program to maximize the number of request embedded.

In the realm of the IXP graph, we have performed a large scale computational evaluation on a graph with 14 nodes
and 3.9k edges and 10,000 requests. Using the path sampling algorithms we have computed 20 potential
embeddings for each request and then employed the above Integer Program to obtain a solution. Our results are
shown in Figure 4-9: The coupling of the heuristic Integer Program with the guided walk scheme achieves near
perfect acceptance ratio with respect to the optimum, which is computed using the optimal Integer Program (OPT).
Importantly, obtaining an optimal solution to the Integer Program is much faster than computing the optimal Integer
Program which allows for any embeddings: while the average runtime lies below 5 seconds, the optimal integer
program comes close to the prohibitive runtime of 10,000 seconds.

51 Deliverable D3.2 18.06.2015

4.4 Hybrid Online-Offline Cooperation
While the above presented online algorithms can be used to embed requests upon their arrival, changes in the
substrate (e.g. based on requests being terminated) can render the overall embedding sub-optimal. We therefore
propose to couple the online algorithms with appropriate offline algorithms. While for the VNEP many different
optimal offline algorithms on the basis of Integer Programs (IPs) have been proposed, these algorithms generally
have a large runtime, rendering them hard to use for quick reconfigurations.

We have therefore proposed to use the Integer Program (IP) in ∈ {0,1} ∀ ∈ℛ, ∈ (HP − 4)
Figure 4-8 to trade-off computational complexity and runtime by first generating a limited set of paths for each
request first and then choosing one of these paths by the heuristic online methods discussed in Section 4.3.1. In this
IP only two types of variables exist. The binary variable decide which whether request is to be embedded while

determines which path shall be used to embed . As the paths’ latencies are valid by construction, only the

bandwidth resource requirement has to be enforced in Constraint HP-2. The Constraint HP-1 states that if a request
is embedded then exactly one of the pre-computed paths must be chosen to embed the request.max (OBJ)∈ℛ= ∈ ∀ ∈ ℛ (HP − 1)

≥ ∙ ∀ ∈ (HP − 2)∈ℛ, ∈∈ {0,1} ∀ ∈ ℛ (HP − 3)∈ {0,1} ∀ ∈ ℛ, ∈ (HP − 4)
Figure 4-8: Heuristic offline Integer Program to maximize the number of request embedded.

In the realm of the IXP graph, we have performed a large scale computational evaluation on a graph with 14 nodes
and 3.9k edges and 10,000 requests. Using the path sampling algorithms we have computed 20 potential
embeddings for each request and then employed the above Integer Program to obtain a solution. Our results are
shown in Figure 4-9: The coupling of the heuristic Integer Program with the guided walk scheme achieves near
perfect acceptance ratio with respect to the optimum, which is computed using the optimal Integer Program (OPT).
Importantly, obtaining an optimal solution to the Integer Program is much faster than computing the optimal Integer
Program which allows for any embeddings: while the average runtime lies below 5 seconds, the optimal integer
program comes close to the prohibitive runtime of 10,000 seconds.

51 Deliverable D3.2 18.06.2015

4.4 Hybrid Online-Offline Cooperation
While the above presented online algorithms can be used to embed requests upon their arrival, changes in the
substrate (e.g. based on requests being terminated) can render the overall embedding sub-optimal. We therefore
propose to couple the online algorithms with appropriate offline algorithms. While for the VNEP many different
optimal offline algorithms on the basis of Integer Programs (IPs) have been proposed, these algorithms generally
have a large runtime, rendering them hard to use for quick reconfigurations.

We have therefore proposed to use the Integer Program (IP) in ∈ {0,1} ∀ ∈ℛ, ∈ (HP − 4)
Figure 4-8 to trade-off computational complexity and runtime by first generating a limited set of paths for each
request first and then choosing one of these paths by the heuristic online methods discussed in Section 4.3.1. In this
IP only two types of variables exist. The binary variable decide which whether request is to be embedded while

determines which path shall be used to embed . As the paths’ latencies are valid by construction, only the

bandwidth resource requirement has to be enforced in Constraint HP-2. The Constraint HP-1 states that if a request
is embedded then exactly one of the pre-computed paths must be chosen to embed the request.max (OBJ)∈ℛ= ∈ ∀ ∈ ℛ (HP − 1)

≥ ∙ ∀ ∈ (HP − 2)∈ℛ, ∈∈ {0,1} ∀ ∈ ℛ (HP − 3)∈ {0,1} ∀ ∈ ℛ, ∈ (HP − 4)
Figure 4-8: Heuristic offline Integer Program to maximize the number of request embedded.

In the realm of the IXP graph, we have performed a large scale computational evaluation on a graph with 14 nodes
and 3.9k edges and 10,000 requests. Using the path sampling algorithms we have computed 20 potential
embeddings for each request and then employed the above Integer Program to obtain a solution. Our results are
shown in Figure 4-9: The coupling of the heuristic Integer Program with the guided walk scheme achieves near
perfect acceptance ratio with respect to the optimum, which is computed using the optimal Integer Program (OPT).
Importantly, obtaining an optimal solution to the Integer Program is much faster than computing the optimal Integer
Program which allows for any embeddings: while the average runtime lies below 5 seconds, the optimal integer
program comes close to the prohibitive runtime of 10,000 seconds.

52 Deliverable D3.2 18.06.2015

Figure 4-9: Comparison of optimal solution value with the heuristic approaches which compute first a set of paths
and then applying the heuristic MIP (see ∈ {0,1} ∀ ∈ ℛ, ∈ (HP − 4)

Figure 4-8).

4.5 Pure Offline Algorithm: DiVINE
The Hybrid Offline-Online approach presented in Section 4.4 is appropriate for very quick recomputations, if for each
request already a set of potential embeddings have been (pre-)computed. If service chains with many different
network functions are considered, much more embeddings need to be sampled as the consideration of only a few
combinations of network function instances may yield to bottlenecks at these specific instances. We are therefore
also targeting the offline embedding problem, where more than one service chain is to be orchestrated, in its pure
form, i.e. without the restriction on a specific set of potential embeddings.

As offline computations will be most likely used to reconfigure existing embeddings, we are working on the DiVINE
Algorithm which is characterized by the following properties:

1. DiVINE uses the rather standard Mixed-Integer Programming approach to the general VNEP as a basis, but
extends it with the following two features:

a. DiVINE allows for reconfigurations, i.e. given a previous embedding of a request, the tool may
reconfigure single node or link mappings at a certain reconfiguration cost.

b. DiVINE allows for elasticity, i.e. given a previous request specification, the customer may ask to e.g.
increase the bandwidth on a certain links.

2. DiVINE tries to significantly speed up finding good solutions by sacrificing aiming at optimality: it employs a
large-neighbourhood search procedure similarly to the one proposed in [Fischetti2004] to improve solutions
locally.

As we are still evaluating the impact of different DiVINE parameters on the performance, we only outline our
preliminary results, mainly stressing our methodological approach.

52 Deliverable D3.2 18.06.2015

Figure 4-9: Comparison of optimal solution value with the heuristic approaches which compute first a set of paths
and then applying the heuristic MIP (see ∈ {0,1} ∀ ∈ ℛ, ∈ (HP − 4)

Figure 4-8).

4.5 Pure Offline Algorithm: DiVINE
The Hybrid Offline-Online approach presented in Section 4.4 is appropriate for very quick recomputations, if for each
request already a set of potential embeddings have been (pre-)computed. If service chains with many different
network functions are considered, much more embeddings need to be sampled as the consideration of only a few
combinations of network function instances may yield to bottlenecks at these specific instances. We are therefore
also targeting the offline embedding problem, where more than one service chain is to be orchestrated, in its pure
form, i.e. without the restriction on a specific set of potential embeddings.

As offline computations will be most likely used to reconfigure existing embeddings, we are working on the DiVINE
Algorithm which is characterized by the following properties:

1. DiVINE uses the rather standard Mixed-Integer Programming approach to the general VNEP as a basis, but
extends it with the following two features:

a. DiVINE allows for reconfigurations, i.e. given a previous embedding of a request, the tool may
reconfigure single node or link mappings at a certain reconfiguration cost.

b. DiVINE allows for elasticity, i.e. given a previous request specification, the customer may ask to e.g.
increase the bandwidth on a certain links.

2. DiVINE tries to significantly speed up finding good solutions by sacrificing aiming at optimality: it employs a
large-neighbourhood search procedure similarly to the one proposed in [Fischetti2004] to improve solutions
locally.

As we are still evaluating the impact of different DiVINE parameters on the performance, we only outline our
preliminary results, mainly stressing our methodological approach.

52 Deliverable D3.2 18.06.2015

Figure 4-9: Comparison of optimal solution value with the heuristic approaches which compute first a set of paths
and then applying the heuristic MIP (see ∈ {0,1} ∀ ∈ ℛ, ∈ (HP − 4)

Figure 4-8).

4.5 Pure Offline Algorithm: DiVINE
The Hybrid Offline-Online approach presented in Section 4.4 is appropriate for very quick recomputations, if for each
request already a set of potential embeddings have been (pre-)computed. If service chains with many different
network functions are considered, much more embeddings need to be sampled as the consideration of only a few
combinations of network function instances may yield to bottlenecks at these specific instances. We are therefore
also targeting the offline embedding problem, where more than one service chain is to be orchestrated, in its pure
form, i.e. without the restriction on a specific set of potential embeddings.

As offline computations will be most likely used to reconfigure existing embeddings, we are working on the DiVINE
Algorithm which is characterized by the following properties:

1. DiVINE uses the rather standard Mixed-Integer Programming approach to the general VNEP as a basis, but
extends it with the following two features:

a. DiVINE allows for reconfigurations, i.e. given a previous embedding of a request, the tool may
reconfigure single node or link mappings at a certain reconfiguration cost.

b. DiVINE allows for elasticity, i.e. given a previous request specification, the customer may ask to e.g.
increase the bandwidth on a certain links.

2. DiVINE tries to significantly speed up finding good solutions by sacrificing aiming at optimality: it employs a
large-neighbourhood search procedure similarly to the one proposed in [Fischetti2004] to improve solutions
locally.

As we are still evaluating the impact of different DiVINE parameters on the performance, we only outline our
preliminary results, mainly stressing our methodological approach.

53 Deliverable D3.2 18.06.2015

4.5.1 Outline of the Initial Computational Evaluation
While most of the works in the general VNEP area use purely synthetic substrate graphs and (random) requests, we
are using real-world topologies collected in the Topology Zoo [Topology].

Figure 4-10 gives an overview on the size of most of the Topology Zoo instances. The Topology Zoo contains
approximately 260 different instances that mainly have been reverse-engineered. The types of topologies vary from
small-scale ISPs of a single country, to pan-European research networks and international backbones. As we are
targeting mainly ISPs, the Topology Zoo instances are very well suited for our task.

For our initial evaluation we have chosen four major topologies:

 Bell Canada, Bell’s ISP and corporate network in Canada before 2005.

 China Telecom’s ISP network of China as of 2010.

 UUNET’s ISP topology spanning the United Stated of America in 2011.

 GÉANT’s pan-European research network as of 2012.

Figure 4-10: Overview of the topologies contained in the Topology Zoo.

4.5.2 Understanding the Out-of-the-Box Performance of the Optimal Offline Mixed-Integer Program
Before evaluating the performance of DiVINE, we have conducted a large scale study to understand which of the
VNEP problem instances are hard to solve for today’s optimization frameworks like Gurobi [Gurobi2015].

53 Deliverable D3.2 18.06.2015

4.5.1 Outline of the Initial Computational Evaluation
While most of the works in the general VNEP area use purely synthetic substrate graphs and (random) requests, we
are using real-world topologies collected in the Topology Zoo [Topology].

Figure 4-10 gives an overview on the size of most of the Topology Zoo instances. The Topology Zoo contains
approximately 260 different instances that mainly have been reverse-engineered. The types of topologies vary from
small-scale ISPs of a single country, to pan-European research networks and international backbones. As we are
targeting mainly ISPs, the Topology Zoo instances are very well suited for our task.

For our initial evaluation we have chosen four major topologies:

 Bell Canada, Bell’s ISP and corporate network in Canada before 2005.

 China Telecom’s ISP network of China as of 2010.

 UUNET’s ISP topology spanning the United Stated of America in 2011.

 GÉANT’s pan-European research network as of 2012.

Figure 4-10: Overview of the topologies contained in the Topology Zoo.

4.5.2 Understanding the Out-of-the-Box Performance of the Optimal Offline Mixed-Integer Program
Before evaluating the performance of DiVINE, we have conducted a large scale study to understand which of the
VNEP problem instances are hard to solve for today’s optimization frameworks like Gurobi [Gurobi2015].

53 Deliverable D3.2 18.06.2015

4.5.1 Outline of the Initial Computational Evaluation
While most of the works in the general VNEP area use purely synthetic substrate graphs and (random) requests, we
are using real-world topologies collected in the Topology Zoo [Topology].

Figure 4-10 gives an overview on the size of most of the Topology Zoo instances. The Topology Zoo contains
approximately 260 different instances that mainly have been reverse-engineered. The types of topologies vary from
small-scale ISPs of a single country, to pan-European research networks and international backbones. As we are
targeting mainly ISPs, the Topology Zoo instances are very well suited for our task.

For our initial evaluation we have chosen four major topologies:

 Bell Canada, Bell’s ISP and corporate network in Canada before 2005.

 China Telecom’s ISP network of China as of 2010.

 UUNET’s ISP topology spanning the United Stated of America in 2011.

 GÉANT’s pan-European research network as of 2012.

Figure 4-10: Overview of the topologies contained in the Topology Zoo.

4.5.2 Understanding the Out-of-the-Box Performance of the Optimal Offline Mixed-Integer Program
Before evaluating the performance of DiVINE, we have conducted a large scale study to understand which of the
VNEP problem instances are hard to solve for today’s optimization frameworks like Gurobi [Gurobi2015].

54 Deliverable D3.2 18.06.2015

Our initial evaluation therefore considered the pure Integer Programming formulation using the following
parameter combinations, i.e. the cross-product:

 Substrate

o One of the four above discussed topologies.

o Resources of nodes and edges are set statically to 100.

 Requests

o The number of requests was chosen to be 100 over all experiments.

o For each request the number of nodes was chosen uniformly from the interval [5,10].

 Varying factors for simulation:

o Connection probability: Any two nodes of the virtual networks were connected with a probability of
either 0.2 or 0.3.

o Potential node factor: For each virtual node either 10%, 30%, or 50% of the substrate nodes are chosen
as candidates for embedding. This restriction is very similar to the ones in the service graph embedding,
where only specific nodes in the network may be able to execute a specific function.

o Node resource factor: Requested node resources are chosen uniformly at random, such that – if all
nodes were embedded – the load on all substrate nodes was 75%, 100% or 125%.

o Edge resource factor: Requested edge resources are chosen uniformly at random such that on average
the hop distance between embedding links may be less than 0.5, 1.0, 4.0 or 8.0 to embed all links.

Together with three different settings for the objective that determines the cost to benefit ratio of embeddings and
three different general variability options, we have generated one experiment for all combinations of the above
parameters (2,592 experiments overall). Using our implementation of the offline VNEP, we terminated the
experiments after one hour of single-threaded execution time. While we consider also other metrics as e.g. the
resource utilization, for now the main metric of interest is the so called objective gap. Since Integer Linear Programs
are solved using branch-and-bound techniques which rely on linear relaxations to bound the objective value, such
formulations always allow to estimate the quality of found solutions with regard to this automatically computed
bound (as we consider the maximization of the profit here, this bound is an upper bound). The objective gap is then
defined as the relative quotient | || | , where denotes the (primal) objective value of the best found solution and

denotes the (dual) bound based on the linear relaxations which upper bounds the best possible solution. The
relative objective gap therefore measures how far away from the optimum a solution may lie.

54 Deliverable D3.2 18.06.2015

Our initial evaluation therefore considered the pure Integer Programming formulation using the following
parameter combinations, i.e. the cross-product:

 Substrate

o One of the four above discussed topologies.

o Resources of nodes and edges are set statically to 100.

 Requests

o The number of requests was chosen to be 100 over all experiments.

o For each request the number of nodes was chosen uniformly from the interval [5,10].

 Varying factors for simulation:

o Connection probability: Any two nodes of the virtual networks were connected with a probability of
either 0.2 or 0.3.

o Potential node factor: For each virtual node either 10%, 30%, or 50% of the substrate nodes are chosen
as candidates for embedding. This restriction is very similar to the ones in the service graph embedding,
where only specific nodes in the network may be able to execute a specific function.

o Node resource factor: Requested node resources are chosen uniformly at random, such that – if all
nodes were embedded – the load on all substrate nodes was 75%, 100% or 125%.

o Edge resource factor: Requested edge resources are chosen uniformly at random such that on average
the hop distance between embedding links may be less than 0.5, 1.0, 4.0 or 8.0 to embed all links.

Together with three different settings for the objective that determines the cost to benefit ratio of embeddings and
three different general variability options, we have generated one experiment for all combinations of the above
parameters (2,592 experiments overall). Using our implementation of the offline VNEP, we terminated the
experiments after one hour of single-threaded execution time. While we consider also other metrics as e.g. the
resource utilization, for now the main metric of interest is the so called objective gap. Since Integer Linear Programs
are solved using branch-and-bound techniques which rely on linear relaxations to bound the objective value, such
formulations always allow to estimate the quality of found solutions with regard to this automatically computed
bound (as we consider the maximization of the profit here, this bound is an upper bound). The objective gap is then
defined as the relative quotient | || | , where denotes the (primal) objective value of the best found solution and

denotes the (dual) bound based on the linear relaxations which upper bounds the best possible solution. The
relative objective gap therefore measures how far away from the optimum a solution may lie.

54 Deliverable D3.2 18.06.2015

Our initial evaluation therefore considered the pure Integer Programming formulation using the following
parameter combinations, i.e. the cross-product:

 Substrate

o One of the four above discussed topologies.

o Resources of nodes and edges are set statically to 100.

 Requests

o The number of requests was chosen to be 100 over all experiments.

o For each request the number of nodes was chosen uniformly from the interval [5,10].

 Varying factors for simulation:

o Connection probability: Any two nodes of the virtual networks were connected with a probability of
either 0.2 or 0.3.

o Potential node factor: For each virtual node either 10%, 30%, or 50% of the substrate nodes are chosen
as candidates for embedding. This restriction is very similar to the ones in the service graph embedding,
where only specific nodes in the network may be able to execute a specific function.

o Node resource factor: Requested node resources are chosen uniformly at random, such that – if all
nodes were embedded – the load on all substrate nodes was 75%, 100% or 125%.

o Edge resource factor: Requested edge resources are chosen uniformly at random such that on average
the hop distance between embedding links may be less than 0.5, 1.0, 4.0 or 8.0 to embed all links.

Together with three different settings for the objective that determines the cost to benefit ratio of embeddings and
three different general variability options, we have generated one experiment for all combinations of the above
parameters (2,592 experiments overall). Using our implementation of the offline VNEP, we terminated the
experiments after one hour of single-threaded execution time. While we consider also other metrics as e.g. the
resource utilization, for now the main metric of interest is the so called objective gap. Since Integer Linear Programs
are solved using branch-and-bound techniques which rely on linear relaxations to bound the objective value, such
formulations always allow to estimate the quality of found solutions with regard to this automatically computed
bound (as we consider the maximization of the profit here, this bound is an upper bound). The objective gap is then
defined as the relative quotient | || | , where denotes the (primal) objective value of the best found solution and

denotes the (dual) bound based on the linear relaxations which upper bounds the best possible solution. The
relative objective gap therefore measures how far away from the optimum a solution may lie.

55 Deliverable D3.2 18.06.2015

Figure 4-11: Impact of the different parameters (implicitly enumerated on the x-axis for each topology) on the
objective gap on the different topologies.

Figure 4-11 summaries our initial results with standard R box plots, i.e. 25% – 1.5IQR and 75% + 1.5 IQR quantiles (IQR
here denotes the interquartile spread):

 The objective gap of the Integer Program mainly depends on the node / edge resource factors, i.e. how over-
subscribed the substrate would be if all requests could be embedded.

55 Deliverable D3.2 18.06.2015

Figure 4-11: Impact of the different parameters (implicitly enumerated on the x-axis for each topology) on the
objective gap on the different topologies.

Figure 4-11 summaries our initial results with standard R box plots, i.e. 25% – 1.5IQR and 75% + 1.5 IQR quantiles (IQR
here denotes the interquartile spread):

 The objective gap of the Integer Program mainly depends on the node / edge resource factors, i.e. how over-
subscribed the substrate would be if all requests could be embedded.

55 Deliverable D3.2 18.06.2015

Figure 4-11: Impact of the different parameters (implicitly enumerated on the x-axis for each topology) on the
objective gap on the different topologies.

Figure 4-11 summaries our initial results with standard R box plots, i.e. 25% – 1.5IQR and 75% + 1.5 IQR quantiles (IQR
here denotes the interquartile spread):

 The objective gap of the Integer Program mainly depends on the node / edge resource factors, i.e. how over-
subscribed the substrate would be if all requests could be embedded.

56 Deliverable D3.2 18.06.2015

 The edge-oversubscription factor especially drives the objective gap.

 The number of substrate nodes onto which a virtual node may be embedded however does not clearly
influence the objective gap.

4.5.3 Initial DiVINE Evaluation
Based on our initial assessment of the performance of the standard solution approach, we have selected a set of 27
scenarios per topology for our initial evaluation of DiVINE. We have chosen the three highest edge resource factors
as these scenarios show the largest variance in the objective gap (see Figure 4-11).

Together with a preliminary selection of 24 parameter combinations for DiVINE we have obtained the following
initial results depicted in Figure 4-12 and Figure 4-13. Figure 4-12 shows the ECDF of reaching a objective gap (33%,
66%, 100%) over time. As can be seen, DiVINE finds good solutions much quicker. Especially in the range beneath
33% of optimality, the pure MIP approach struggles in the first 30 minutes, with DiVINE clearly outperforming the
pure MIP approach from approx. 400 to 2800 seconds of execution time.

Figure 4-12: ECDF of reached objective gap over time.

This behaviour is not singular to the choice of the 33% barrier, as Figure 4-13 illustrates: the figure shows the
difference of the ECDFs to reach a certain objective gap over time. Beginning at around 200 seconds, a hill between
20% and 50% objective gap with a maximal height of 40% indicates that DiVINE clearly outperforms the pure MIP.

56 Deliverable D3.2 18.06.2015

 The edge-oversubscription factor especially drives the objective gap.

 The number of substrate nodes onto which a virtual node may be embedded however does not clearly
influence the objective gap.

4.5.3 Initial DiVINE Evaluation
Based on our initial assessment of the performance of the standard solution approach, we have selected a set of 27
scenarios per topology for our initial evaluation of DiVINE. We have chosen the three highest edge resource factors
as these scenarios show the largest variance in the objective gap (see Figure 4-11).

Together with a preliminary selection of 24 parameter combinations for DiVINE we have obtained the following
initial results depicted in Figure 4-12 and Figure 4-13. Figure 4-12 shows the ECDF of reaching a objective gap (33%,
66%, 100%) over time. As can be seen, DiVINE finds good solutions much quicker. Especially in the range beneath
33% of optimality, the pure MIP approach struggles in the first 30 minutes, with DiVINE clearly outperforming the
pure MIP approach from approx. 400 to 2800 seconds of execution time.

Figure 4-12: ECDF of reached objective gap over time.

This behaviour is not singular to the choice of the 33% barrier, as Figure 4-13 illustrates: the figure shows the
difference of the ECDFs to reach a certain objective gap over time. Beginning at around 200 seconds, a hill between
20% and 50% objective gap with a maximal height of 40% indicates that DiVINE clearly outperforms the pure MIP.

56 Deliverable D3.2 18.06.2015

 The edge-oversubscription factor especially drives the objective gap.

 The number of substrate nodes onto which a virtual node may be embedded however does not clearly
influence the objective gap.

4.5.3 Initial DiVINE Evaluation
Based on our initial assessment of the performance of the standard solution approach, we have selected a set of 27
scenarios per topology for our initial evaluation of DiVINE. We have chosen the three highest edge resource factors
as these scenarios show the largest variance in the objective gap (see Figure 4-11).

Together with a preliminary selection of 24 parameter combinations for DiVINE we have obtained the following
initial results depicted in Figure 4-12 and Figure 4-13. Figure 4-12 shows the ECDF of reaching a objective gap (33%,
66%, 100%) over time. As can be seen, DiVINE finds good solutions much quicker. Especially in the range beneath
33% of optimality, the pure MIP approach struggles in the first 30 minutes, with DiVINE clearly outperforming the
pure MIP approach from approx. 400 to 2800 seconds of execution time.

Figure 4-12: ECDF of reached objective gap over time.

This behaviour is not singular to the choice of the 33% barrier, as Figure 4-13 illustrates: the figure shows the
difference of the ECDFs to reach a certain objective gap over time. Beginning at around 200 seconds, a hill between
20% and 50% objective gap with a maximal height of 40% indicates that DiVINE clearly outperforms the pure MIP.

57 Deliverable D3.2 18.06.2015

It must be noted that within this first initial evaluation the ECDF of DiVINE is computed over the 24 different
parameter settings used in our evaluation. The next step will therefore be to analyse the impact of the different
parameters and determine the parameter set yielding reliably the best results.

Figure 4-13: 3D representation of the difference of ECDFs of DiVINE vs. the pure MIP on the Geant topology. The
standard MIP approach is outperformed by DiVINE, especially in the area of 20-40% of optimality.

4.6 Service chain embedding supporting service decomposition
UNIFY allows for decomposing compound network functions into several compound / atomic network functions.
Service decomposition and related challenges were already explained in detail in Section 3. The decomposition
chosen may / should highly depend on the actual resources available in the substrate (i.e. which hardware / VNFs
are used, what are the different compute, storage, network requirements etc.).

4.6.1 Problem description
Service requests arrive over time and the embedding algorithm should decide whether the NFs within the
requested SG and their corresponding connections can be mapped to the components of the physical network or

57 Deliverable D3.2 18.06.2015

It must be noted that within this first initial evaluation the ECDF of DiVINE is computed over the 24 different
parameter settings used in our evaluation. The next step will therefore be to analyse the impact of the different
parameters and determine the parameter set yielding reliably the best results.

Figure 4-13: 3D representation of the difference of ECDFs of DiVINE vs. the pure MIP on the Geant topology. The
standard MIP approach is outperformed by DiVINE, especially in the area of 20-40% of optimality.

4.6 Service chain embedding supporting service decomposition
UNIFY allows for decomposing compound network functions into several compound / atomic network functions.
Service decomposition and related challenges were already explained in detail in Section 3. The decomposition
chosen may / should highly depend on the actual resources available in the substrate (i.e. which hardware / VNFs
are used, what are the different compute, storage, network requirements etc.).

4.6.1 Problem description
Service requests arrive over time and the embedding algorithm should decide whether the NFs within the
requested SG and their corresponding connections can be mapped to the components of the physical network or

57 Deliverable D3.2 18.06.2015

It must be noted that within this first initial evaluation the ECDF of DiVINE is computed over the 24 different
parameter settings used in our evaluation. The next step will therefore be to analyse the impact of the different
parameters and determine the parameter set yielding reliably the best results.

Figure 4-13: 3D representation of the difference of ECDFs of DiVINE vs. the pure MIP on the Geant topology. The
standard MIP approach is outperformed by DiVINE, especially in the area of 20-40% of optimality.

4.6 Service chain embedding supporting service decomposition
UNIFY allows for decomposing compound network functions into several compound / atomic network functions.
Service decomposition and related challenges were already explained in detail in Section 3. The decomposition
chosen may / should highly depend on the actual resources available in the substrate (i.e. which hardware / VNFs
are used, what are the different compute, storage, network requirements etc.).

4.6.1 Problem description
Service requests arrive over time and the embedding algorithm should decide whether the NFs within the
requested SG and their corresponding connections can be mapped to the components of the physical network or

58 Deliverable D3.2 18.06.2015

not. Once requests are accepted, the required resources (physical links and nodes) are assigned and they are
released once the requests expire.

Atomic NFs within an SG can be of different types which mean that they can be implemented in different ways
using different techniques such as Hardware-defined NFs, Software-defined NFs, Virtual Machine-based NFs, and
Container-based NFs. Having several types of NFs imposes additional constraints on the embedding problem
because not all physical components of the network support all types. In this work, we prioritize an SG
decomposition in which the number of same-type NFs which are directly interconnected is larger. The reason is
twofold, first to reduce the amount of required compute and network resources, and second to improve NF
performance by reduce communication overhead and latency. Prioritizing NFs of the same type likely lead to less
compute resource consumption as more NFs can be mapped to the same physical node; this also leads to less
network resource consumption as no physical links are used for the mapping. Interconnecting NFs over physical
links implies additional communication and/or computational overhead due to e.g. additional tunnelling
requirements, which is not as high if NFs are located in the same physical node.

In order to enable this prioritization, we define a parameter referred to as Cluster-Factor (CF) which is calculated as
follows for each decomposition: the NFs with similar types which are connected directly (without intermediate
nodes with other types) are grouped in the same cluster. The number of clusters in the decomposition determines
the CF of that decomposition.

Our objective is to minimize the embedding cost which is achieved by minimizing the resources consumed in the
infrastructure to map a request. This allows accepting more requests over time and increases the acceptance ratio.
As service decompositions are known from the design time, we can make a resource-aware decomposition
selection taking decompositions CFs into account at the time of the embedding.

4.6.2 Optimal solution for service decomposition w.r.t. resources footprint
We developed a Mixed-Integer Program which finds the best decomposition and the respective best embedding.

In the model, the physical infrastructure is represented as an undirected graph, = (,). The infrastructure
consists of nodes () connected via links (). Each node has certain capacity in terms of computation, memory

and disk/storage, and links have delay and capacity in terms of bandwidth. These resources are actually the residual
capacities which are calculated based on the resources assigned to the NFs included in previous mappings. Each
physical node can support different types of NFs (Hardware-defined NFs, Software-defined NFs, Virtual Machine-
based NFs, and Container-based NFs).

An SG can be realized through multiple decompositions. Therefore, for each SG there exists a decomposition set,
. Note that this set contains all possible decompositions such that hierarchical decompositions are

already "fully" resolved.

58 Deliverable D3.2 18.06.2015

not. Once requests are accepted, the required resources (physical links and nodes) are assigned and they are
released once the requests expire.

Atomic NFs within an SG can be of different types which mean that they can be implemented in different ways
using different techniques such as Hardware-defined NFs, Software-defined NFs, Virtual Machine-based NFs, and
Container-based NFs. Having several types of NFs imposes additional constraints on the embedding problem
because not all physical components of the network support all types. In this work, we prioritize an SG
decomposition in which the number of same-type NFs which are directly interconnected is larger. The reason is
twofold, first to reduce the amount of required compute and network resources, and second to improve NF
performance by reduce communication overhead and latency. Prioritizing NFs of the same type likely lead to less
compute resource consumption as more NFs can be mapped to the same physical node; this also leads to less
network resource consumption as no physical links are used for the mapping. Interconnecting NFs over physical
links implies additional communication and/or computational overhead due to e.g. additional tunnelling
requirements, which is not as high if NFs are located in the same physical node.

In order to enable this prioritization, we define a parameter referred to as Cluster-Factor (CF) which is calculated as
follows for each decomposition: the NFs with similar types which are connected directly (without intermediate
nodes with other types) are grouped in the same cluster. The number of clusters in the decomposition determines
the CF of that decomposition.

Our objective is to minimize the embedding cost which is achieved by minimizing the resources consumed in the
infrastructure to map a request. This allows accepting more requests over time and increases the acceptance ratio.
As service decompositions are known from the design time, we can make a resource-aware decomposition
selection taking decompositions CFs into account at the time of the embedding.

4.6.2 Optimal solution for service decomposition w.r.t. resources footprint
We developed a Mixed-Integer Program which finds the best decomposition and the respective best embedding.

In the model, the physical infrastructure is represented as an undirected graph, = (,). The infrastructure
consists of nodes () connected via links (). Each node has certain capacity in terms of computation, memory

and disk/storage, and links have delay and capacity in terms of bandwidth. These resources are actually the residual
capacities which are calculated based on the resources assigned to the NFs included in previous mappings. Each
physical node can support different types of NFs (Hardware-defined NFs, Software-defined NFs, Virtual Machine-
based NFs, and Container-based NFs).

An SG can be realized through multiple decompositions. Therefore, for each SG there exists a decomposition set,
. Note that this set contains all possible decompositions such that hierarchical decompositions are

already "fully" resolved.

58 Deliverable D3.2 18.06.2015

not. Once requests are accepted, the required resources (physical links and nodes) are assigned and they are
released once the requests expire.

Atomic NFs within an SG can be of different types which mean that they can be implemented in different ways
using different techniques such as Hardware-defined NFs, Software-defined NFs, Virtual Machine-based NFs, and
Container-based NFs. Having several types of NFs imposes additional constraints on the embedding problem
because not all physical components of the network support all types. In this work, we prioritize an SG
decomposition in which the number of same-type NFs which are directly interconnected is larger. The reason is
twofold, first to reduce the amount of required compute and network resources, and second to improve NF
performance by reduce communication overhead and latency. Prioritizing NFs of the same type likely lead to less
compute resource consumption as more NFs can be mapped to the same physical node; this also leads to less
network resource consumption as no physical links are used for the mapping. Interconnecting NFs over physical
links implies additional communication and/or computational overhead due to e.g. additional tunnelling
requirements, which is not as high if NFs are located in the same physical node.

In order to enable this prioritization, we define a parameter referred to as Cluster-Factor (CF) which is calculated as
follows for each decomposition: the NFs with similar types which are connected directly (without intermediate
nodes with other types) are grouped in the same cluster. The number of clusters in the decomposition determines
the CF of that decomposition.

Our objective is to minimize the embedding cost which is achieved by minimizing the resources consumed in the
infrastructure to map a request. This allows accepting more requests over time and increases the acceptance ratio.
As service decompositions are known from the design time, we can make a resource-aware decomposition
selection taking decompositions CFs into account at the time of the embedding.

4.6.2 Optimal solution for service decomposition w.r.t. resources footprint
We developed a Mixed-Integer Program which finds the best decomposition and the respective best embedding.

In the model, the physical infrastructure is represented as an undirected graph, = (,). The infrastructure
consists of nodes () connected via links (). Each node has certain capacity in terms of computation, memory

and disk/storage, and links have delay and capacity in terms of bandwidth. These resources are actually the residual
capacities which are calculated based on the resources assigned to the NFs included in previous mappings. Each
physical node can support different types of NFs (Hardware-defined NFs, Software-defined NFs, Virtual Machine-
based NFs, and Container-based NFs).

An SG can be realized through multiple decompositions. Therefore, for each SG there exists a decomposition set,
. Note that this set contains all possible decompositions such that hierarchical decompositions are

already "fully" resolved.

59 Deliverable D3.2 18.06.2015

Each decomposition is represented as a directed graph, = (,), to support the dependency between
different NFs. Therefore, the NFs in the decomposition are represented as nodes () connected via the directed
links in the graph. Each NF has some requirements in terms of computation, memory and storage and links
connecting different NFs have requirements in terms of delay and bandwidth. Each NF can be implemented
differently and thus can be of different type. Finally, each decomposition is assigned a Cluster Factor, , which is
the number of clusters in the decomposition.

The objective is to minimize the total cost of the mapping while prioritizing the decomposition with lower .
Minimize:

∈ ∈ (,) + ∈ ∈ (,)∈∈
In the above formula, refers to the decomposition set for a given SG. and are the sets of physical

nodes and links in the infrastructure. and represent the sets of NFs and links within decomposition .

Note that in this objective function, the cost is considered as the cost of the mapping multiplied by the . This way
the decompositions with lower are prioritized. The complete ILP formulation is detailed in [Sahhaf2015b].

4.6.3 Heuristic solution for service decomposition w.r.t. resource footprint
We propose a heuristic-based approach to overcome the scalability limitation of the optimal solution. Similar to any
heuristic approach, the proposed scheme compromises optimality for shorter execution time. We use the proposed
optimal solution as a benchmarking reference. The proposed scheme is referred to as DSBM (Decomposition
Selection-Backtracking Mapping algorithm), this algorithm comprises two phases: i) decomposition selection and ii)
mapping.

4.6.3.1 Decomposition selection
Given the physical network, the Service Graph and its decompositions, the of each service decomposition is
calculated. Additionally, for each NF in each , the number of candidate physical nodes with sufficient capacities
which can potentially host that NF is counted. We define parameter to be the minimum number of candidate
physical nodes for NFs of a . This parameter is defined to enable a resource-aware selection. We select a
decomposition which is less restricting (has more mapping options). Finally, we define a cost function which
combines , and (is the number of NFs in a decomposition).() = + × + ×
In the decomposition selection phase, we select a decomposition with minimum cost (). The , and
coefficients are introduced to allow the impact of the different factors to be tuned.

59 Deliverable D3.2 18.06.2015

Each decomposition is represented as a directed graph, = (,), to support the dependency between
different NFs. Therefore, the NFs in the decomposition are represented as nodes () connected via the directed
links in the graph. Each NF has some requirements in terms of computation, memory and storage and links
connecting different NFs have requirements in terms of delay and bandwidth. Each NF can be implemented
differently and thus can be of different type. Finally, each decomposition is assigned a Cluster Factor, , which is
the number of clusters in the decomposition.

The objective is to minimize the total cost of the mapping while prioritizing the decomposition with lower .
Minimize:

∈ ∈ (,) + ∈ ∈ (,)∈∈
In the above formula, refers to the decomposition set for a given SG. and are the sets of physical

nodes and links in the infrastructure. and represent the sets of NFs and links within decomposition .

Note that in this objective function, the cost is considered as the cost of the mapping multiplied by the . This way
the decompositions with lower are prioritized. The complete ILP formulation is detailed in [Sahhaf2015b].

4.6.3 Heuristic solution for service decomposition w.r.t. resource footprint
We propose a heuristic-based approach to overcome the scalability limitation of the optimal solution. Similar to any
heuristic approach, the proposed scheme compromises optimality for shorter execution time. We use the proposed
optimal solution as a benchmarking reference. The proposed scheme is referred to as DSBM (Decomposition
Selection-Backtracking Mapping algorithm), this algorithm comprises two phases: i) decomposition selection and ii)
mapping.

4.6.3.1 Decomposition selection
Given the physical network, the Service Graph and its decompositions, the of each service decomposition is
calculated. Additionally, for each NF in each , the number of candidate physical nodes with sufficient capacities
which can potentially host that NF is counted. We define parameter to be the minimum number of candidate
physical nodes for NFs of a . This parameter is defined to enable a resource-aware selection. We select a
decomposition which is less restricting (has more mapping options). Finally, we define a cost function which
combines , and (is the number of NFs in a decomposition).() = + × + ×
In the decomposition selection phase, we select a decomposition with minimum cost (). The , and
coefficients are introduced to allow the impact of the different factors to be tuned.

59 Deliverable D3.2 18.06.2015

Each decomposition is represented as a directed graph, = (,), to support the dependency between
different NFs. Therefore, the NFs in the decomposition are represented as nodes () connected via the directed
links in the graph. Each NF has some requirements in terms of computation, memory and storage and links
connecting different NFs have requirements in terms of delay and bandwidth. Each NF can be implemented
differently and thus can be of different type. Finally, each decomposition is assigned a Cluster Factor, , which is
the number of clusters in the decomposition.

The objective is to minimize the total cost of the mapping while prioritizing the decomposition with lower .
Minimize:

∈ ∈ (,) + ∈ ∈ (,)∈∈
In the above formula, refers to the decomposition set for a given SG. and are the sets of physical

nodes and links in the infrastructure. and represent the sets of NFs and links within decomposition .

Note that in this objective function, the cost is considered as the cost of the mapping multiplied by the . This way
the decompositions with lower are prioritized. The complete ILP formulation is detailed in [Sahhaf2015b].

4.6.3 Heuristic solution for service decomposition w.r.t. resource footprint
We propose a heuristic-based approach to overcome the scalability limitation of the optimal solution. Similar to any
heuristic approach, the proposed scheme compromises optimality for shorter execution time. We use the proposed
optimal solution as a benchmarking reference. The proposed scheme is referred to as DSBM (Decomposition
Selection-Backtracking Mapping algorithm), this algorithm comprises two phases: i) decomposition selection and ii)
mapping.

4.6.3.1 Decomposition selection
Given the physical network, the Service Graph and its decompositions, the of each service decomposition is
calculated. Additionally, for each NF in each , the number of candidate physical nodes with sufficient capacities
which can potentially host that NF is counted. We define parameter to be the minimum number of candidate
physical nodes for NFs of a . This parameter is defined to enable a resource-aware selection. We select a
decomposition which is less restricting (has more mapping options). Finally, we define a cost function which
combines , and (is the number of NFs in a decomposition).() = + × + ×
In the decomposition selection phase, we select a decomposition with minimum cost (). The , and
coefficients are introduced to allow the impact of the different factors to be tuned.

60 Deliverable D3.2 18.06.2015

4.6.3.2 Mapping
We cluster the NFs of the selected decomposition based on their types and connections (see explanation for CF
calculation) and sort the clusters and their NFs based on their requirements in descending order. We start mapping
the NFs of the cluster with maximum requirement.

For each of the unmapped NFs in the sorted list, we sort its corresponding candidate physical nodes based on their
distance (hop count) to the used physical nodes in ascending order. We select the physical node from this sorted list
by which the links connected to the NF can also be mapped in the physical network. If such a physical node does not
exist, the algorithm backtracks to the previous mapped node and checks the next candidate and repeats the same
procedure. The details of the heuristic algorithm with corresponding pseudo codes are available in [Sahhaf2015a].

4.6.4 Evaluation of heuristic solution versus optimal solution
The focus of the experiments is on quantifying the added value of considering service decompositions at the time of
the embedding in terms of cost and acceptance ratio. In the simulations, we compare the heuristic-based approach
with the ILP-based algorithm in network scenarios where ILP can be executed in reasonable time scale5. We
evaluate the effect of employing service decompositions in both schemes. As there is no other approach which
considers service decompositions in the embedding problem, we compared both ILP-based and DSBM algorithms
with approaches in which decomposition is selected randomly. Table 4-2 presents the notations used for the
compared approaches. In DSBM, we also evaluate the effect of different factors in () on the performance of the
embedding by tuning the , and coefficients.

Table 4-2: List of compared algorithms

Notation Algorithm description

ILP Proposed optimal solution

DSBM Proposed heuristic solution

ILP-5, ILP-10 ILP on SGs with 5 and 10 NFs respectively

DSBM-5, DSBM-10 DSBM on SGs with 5 and 10 NFs respectively

ILP-random Optimal solution with random decomposition selection,

mapped based on the ILP model

DSBM-random DSBM with random decomposition selection in the selection phase

5This ruled out network scenarios with over 50 nodes.
60 Deliverable D3.2 18.06.2015

4.6.3.2 Mapping
We cluster the NFs of the selected decomposition based on their types and connections (see explanation for CF
calculation) and sort the clusters and their NFs based on their requirements in descending order. We start mapping
the NFs of the cluster with maximum requirement.

For each of the unmapped NFs in the sorted list, we sort its corresponding candidate physical nodes based on their
distance (hop count) to the used physical nodes in ascending order. We select the physical node from this sorted list
by which the links connected to the NF can also be mapped in the physical network. If such a physical node does not
exist, the algorithm backtracks to the previous mapped node and checks the next candidate and repeats the same
procedure. The details of the heuristic algorithm with corresponding pseudo codes are available in [Sahhaf2015a].

4.6.4 Evaluation of heuristic solution versus optimal solution
The focus of the experiments is on quantifying the added value of considering service decompositions at the time of
the embedding in terms of cost and acceptance ratio. In the simulations, we compare the heuristic-based approach
with the ILP-based algorithm in network scenarios where ILP can be executed in reasonable time scale5. We
evaluate the effect of employing service decompositions in both schemes. As there is no other approach which
considers service decompositions in the embedding problem, we compared both ILP-based and DSBM algorithms
with approaches in which decomposition is selected randomly. Table 4-2 presents the notations used for the
compared approaches. In DSBM, we also evaluate the effect of different factors in () on the performance of the
embedding by tuning the , and coefficients.

Table 4-2: List of compared algorithms

Notation Algorithm description

ILP Proposed optimal solution

DSBM Proposed heuristic solution

ILP-5, ILP-10 ILP on SGs with 5 and 10 NFs respectively

DSBM-5, DSBM-10 DSBM on SGs with 5 and 10 NFs respectively

ILP-random Optimal solution with random decomposition selection,

mapped based on the ILP model

DSBM-random DSBM with random decomposition selection in the selection phase

5This ruled out network scenarios with over 50 nodes.
60 Deliverable D3.2 18.06.2015

4.6.3.2 Mapping
We cluster the NFs of the selected decomposition based on their types and connections (see explanation for CF
calculation) and sort the clusters and their NFs based on their requirements in descending order. We start mapping
the NFs of the cluster with maximum requirement.

For each of the unmapped NFs in the sorted list, we sort its corresponding candidate physical nodes based on their
distance (hop count) to the used physical nodes in ascending order. We select the physical node from this sorted list
by which the links connected to the NF can also be mapped in the physical network. If such a physical node does not
exist, the algorithm backtracks to the previous mapped node and checks the next candidate and repeats the same
procedure. The details of the heuristic algorithm with corresponding pseudo codes are available in [Sahhaf2015a].

4.6.4 Evaluation of heuristic solution versus optimal solution
The focus of the experiments is on quantifying the added value of considering service decompositions at the time of
the embedding in terms of cost and acceptance ratio. In the simulations, we compare the heuristic-based approach
with the ILP-based algorithm in network scenarios where ILP can be executed in reasonable time scale5. We
evaluate the effect of employing service decompositions in both schemes. As there is no other approach which
considers service decompositions in the embedding problem, we compared both ILP-based and DSBM algorithms
with approaches in which decomposition is selected randomly. Table 4-2 presents the notations used for the
compared approaches. In DSBM, we also evaluate the effect of different factors in () on the performance of the
embedding by tuning the , and coefficients.

Table 4-2: List of compared algorithms

Notation Algorithm description

ILP Proposed optimal solution

DSBM Proposed heuristic solution

ILP-5, ILP-10 ILP on SGs with 5 and 10 NFs respectively

DSBM-5, DSBM-10 DSBM on SGs with 5 and 10 NFs respectively

ILP-random Optimal solution with random decomposition selection,

mapped based on the ILP model

DSBM-random DSBM with random decomposition selection in the selection phase

5This ruled out network scenarios with over 50 nodes.

61 Deliverable D3.2 18.06.2015

4.6.4.1 Simulation setup
For the physical network we considered two scenarios: i) small network scenario and ii) large network scenario. We
used topologies from the Internet Topology Zoo[Topology]. For the small network, we considered the "BT Europe"
topology with 24 nodes and 37 edges. In the large network scenario, the "Interoute" topology is used. This network is
composed of 110 nodes and 148 edges. For both scenarios, it is assumed that some of the nodes have general
purpose servers supporting different virtualization technologies, and some of them have specific hardware
appliances such as Firewall, this is set randomly for the nodes. The CPU, memory and storage capacity of the nodes
and bandwidth of the links are numbers uniformly distributed between 100 and 150 in both network scenarios. The
cost of each unit of capacity is 1. Finally, the delay of each physical link is randomly set to a number with uniform
distribution between 10 and 50 time units.

The service requests arrive over time in a Poisson process with average rate of 4 requests per 100 time units. Each of
which has a lifetime, exponentially distributed with an average of µ = 1000 time units. Each request can be realized
with a few decompositions which is a number between 2 and 5 with uniform distribution. The number of NFs within
each of the decompositions is a number uniformly distributed between 2 and 10. The CPU, memory and storage
demands of each NF are a number with uniform distribution between 1 and 20. The NF types are assigned randomly.
The bandwidth requirement of each link is a number between 1 and 50, uniformly distributed. The maximum
allowed delay of each link is set to 1000 time units. Each pair of NFs within a decomposition is connected with
probability 0.5. The hardware used to run the simulation is Intel Xeon quad-core CPU at 2.40 GHz with 12 GB RAM.
Each simulation scenario is iterated 10 times and the average over all the iterations is reported.

4.6.4.2 Performance metrics
We measure the following performance metrics to evaluate and compare the proposed schemes:

 Execution time: This metric measures the time used by a scheme to find an embedding for a service request.

 Acceptance ratio: It measures the ratio of the accepted service requests which refer to services that are
successfully mapped to the physical network.

 Embedding cost: The embedding cost is equivalent to the amount of physical resources used for mapping a
service request. In our evaluations, this cost is equal to the total CPU, memory, storage capacity of nodes and
bandwidth capacity of the links which are reserved for a service request.

4.6.4.3 Evaluation results
Before detailing the evaluation results on the two network scenarios explained earlier, we report the results related
to the execution time of the proposed algorithms on different size physical networks ranging from 10 to 50 nodes to
observe the scalability behaviour of the schemes. The topologies were randomly generated and the service requests
of two sizes, 5 and 10 were considered.

61 Deliverable D3.2 18.06.2015

4.6.4.1 Simulation setup
For the physical network we considered two scenarios: i) small network scenario and ii) large network scenario. We
used topologies from the Internet Topology Zoo[Topology]. For the small network, we considered the "BT Europe"
topology with 24 nodes and 37 edges. In the large network scenario, the "Interoute" topology is used. This network is
composed of 110 nodes and 148 edges. For both scenarios, it is assumed that some of the nodes have general
purpose servers supporting different virtualization technologies, and some of them have specific hardware
appliances such as Firewall, this is set randomly for the nodes. The CPU, memory and storage capacity of the nodes
and bandwidth of the links are numbers uniformly distributed between 100 and 150 in both network scenarios. The
cost of each unit of capacity is 1. Finally, the delay of each physical link is randomly set to a number with uniform
distribution between 10 and 50 time units.

The service requests arrive over time in a Poisson process with average rate of 4 requests per 100 time units. Each of
which has a lifetime, exponentially distributed with an average of µ = 1000 time units. Each request can be realized
with a few decompositions which is a number between 2 and 5 with uniform distribution. The number of NFs within
each of the decompositions is a number uniformly distributed between 2 and 10. The CPU, memory and storage
demands of each NF are a number with uniform distribution between 1 and 20. The NF types are assigned randomly.
The bandwidth requirement of each link is a number between 1 and 50, uniformly distributed. The maximum
allowed delay of each link is set to 1000 time units. Each pair of NFs within a decomposition is connected with
probability 0.5. The hardware used to run the simulation is Intel Xeon quad-core CPU at 2.40 GHz with 12 GB RAM.
Each simulation scenario is iterated 10 times and the average over all the iterations is reported.

4.6.4.2 Performance metrics
We measure the following performance metrics to evaluate and compare the proposed schemes:

 Execution time: This metric measures the time used by a scheme to find an embedding for a service request.

 Acceptance ratio: It measures the ratio of the accepted service requests which refer to services that are
successfully mapped to the physical network.

 Embedding cost: The embedding cost is equivalent to the amount of physical resources used for mapping a
service request. In our evaluations, this cost is equal to the total CPU, memory, storage capacity of nodes and
bandwidth capacity of the links which are reserved for a service request.

4.6.4.3 Evaluation results
Before detailing the evaluation results on the two network scenarios explained earlier, we report the results related
to the execution time of the proposed algorithms on different size physical networks ranging from 10 to 50 nodes to
observe the scalability behaviour of the schemes. The topologies were randomly generated and the service requests
of two sizes, 5 and 10 were considered.

61 Deliverable D3.2 18.06.2015

4.6.4.1 Simulation setup
For the physical network we considered two scenarios: i) small network scenario and ii) large network scenario. We
used topologies from the Internet Topology Zoo[Topology]. For the small network, we considered the "BT Europe"
topology with 24 nodes and 37 edges. In the large network scenario, the "Interoute" topology is used. This network is
composed of 110 nodes and 148 edges. For both scenarios, it is assumed that some of the nodes have general
purpose servers supporting different virtualization technologies, and some of them have specific hardware
appliances such as Firewall, this is set randomly for the nodes. The CPU, memory and storage capacity of the nodes
and bandwidth of the links are numbers uniformly distributed between 100 and 150 in both network scenarios. The
cost of each unit of capacity is 1. Finally, the delay of each physical link is randomly set to a number with uniform
distribution between 10 and 50 time units.

The service requests arrive over time in a Poisson process with average rate of 4 requests per 100 time units. Each of
which has a lifetime, exponentially distributed with an average of µ = 1000 time units. Each request can be realized
with a few decompositions which is a number between 2 and 5 with uniform distribution. The number of NFs within
each of the decompositions is a number uniformly distributed between 2 and 10. The CPU, memory and storage
demands of each NF are a number with uniform distribution between 1 and 20. The NF types are assigned randomly.
The bandwidth requirement of each link is a number between 1 and 50, uniformly distributed. The maximum
allowed delay of each link is set to 1000 time units. Each pair of NFs within a decomposition is connected with
probability 0.5. The hardware used to run the simulation is Intel Xeon quad-core CPU at 2.40 GHz with 12 GB RAM.
Each simulation scenario is iterated 10 times and the average over all the iterations is reported.

4.6.4.2 Performance metrics
We measure the following performance metrics to evaluate and compare the proposed schemes:

 Execution time: This metric measures the time used by a scheme to find an embedding for a service request.

 Acceptance ratio: It measures the ratio of the accepted service requests which refer to services that are
successfully mapped to the physical network.

 Embedding cost: The embedding cost is equivalent to the amount of physical resources used for mapping a
service request. In our evaluations, this cost is equal to the total CPU, memory, storage capacity of nodes and
bandwidth capacity of the links which are reserved for a service request.

4.6.4.3 Evaluation results
Before detailing the evaluation results on the two network scenarios explained earlier, we report the results related
to the execution time of the proposed algorithms on different size physical networks ranging from 10 to 50 nodes to
observe the scalability behaviour of the schemes. The topologies were randomly generated and the service requests
of two sizes, 5 and 10 were considered.

62 Deliverable D3.2 18.06.2015

Figure 4-14: Execution time of ILP and DSBM for SGs with 5 and 10 NFs

Figure 4-14 depicts the execution time of different schemes. As expected, execution time of the ILP-based algorithm
increases almost exponentially with the increase in the network size. This increase is more if the number of NFs in
the service requests increases as well (see ILP-5 compared to ILP-10 in Figure 4-14). The heuristic-based approach
scales significantly better and the execution time in DSBM-10 does not exceed a few hundreds of milliseconds.

We measured the average acceptance ratio and the corresponding embedding cost for service requests over time.
We report these performance metrics against time to indicate how different schemes perform in the long run.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-15: Service request acceptance ratio over time

Figure 4-15a depicts the service acceptance ratio in the two network scenarios for four different approaches: i) ILP,
ii) DSBM, iii) ILP-random and iv) DSBM-random. In both network scenarios, the results indicate significant
improvements in terms of acceptance ratio in the proposed ILP-based and heuristic-based algorithms compared to
approaches in which a random decomposition is selected. The acceptance ratio of DSBM is higher in the Interoute
network compared to the results in BT Europe which is the result of having more resources in the network. In DSBM
the parameters in the () function are set as follows: = 0.25, = 0.25 and = 0.5. These parameters are tuned

62 Deliverable D3.2 18.06.2015

Figure 4-14: Execution time of ILP and DSBM for SGs with 5 and 10 NFs

Figure 4-14 depicts the execution time of different schemes. As expected, execution time of the ILP-based algorithm
increases almost exponentially with the increase in the network size. This increase is more if the number of NFs in
the service requests increases as well (see ILP-5 compared to ILP-10 in Figure 4-14). The heuristic-based approach
scales significantly better and the execution time in DSBM-10 does not exceed a few hundreds of milliseconds.

We measured the average acceptance ratio and the corresponding embedding cost for service requests over time.
We report these performance metrics against time to indicate how different schemes perform in the long run.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-15: Service request acceptance ratio over time

Figure 4-15a depicts the service acceptance ratio in the two network scenarios for four different approaches: i) ILP,
ii) DSBM, iii) ILP-random and iv) DSBM-random. In both network scenarios, the results indicate significant
improvements in terms of acceptance ratio in the proposed ILP-based and heuristic-based algorithms compared to
approaches in which a random decomposition is selected. The acceptance ratio of DSBM is higher in the Interoute
network compared to the results in BT Europe which is the result of having more resources in the network. In DSBM
the parameters in the () function are set as follows: = 0.25, = 0.25 and = 0.5. These parameters are tuned

62 Deliverable D3.2 18.06.2015

Figure 4-14: Execution time of ILP and DSBM for SGs with 5 and 10 NFs

Figure 4-14 depicts the execution time of different schemes. As expected, execution time of the ILP-based algorithm
increases almost exponentially with the increase in the network size. This increase is more if the number of NFs in
the service requests increases as well (see ILP-5 compared to ILP-10 in Figure 4-14). The heuristic-based approach
scales significantly better and the execution time in DSBM-10 does not exceed a few hundreds of milliseconds.

We measured the average acceptance ratio and the corresponding embedding cost for service requests over time.
We report these performance metrics against time to indicate how different schemes perform in the long run.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-15: Service request acceptance ratio over time

Figure 4-15a depicts the service acceptance ratio in the two network scenarios for four different approaches: i) ILP,
ii) DSBM, iii) ILP-random and iv) DSBM-random. In both network scenarios, the results indicate significant
improvements in terms of acceptance ratio in the proposed ILP-based and heuristic-based algorithms compared to
approaches in which a random decomposition is selected. The acceptance ratio of DSBM is higher in the Interoute
network compared to the results in BT Europe which is the result of having more resources in the network. In DSBM
the parameters in the () function are set as follows: = 0.25, = 0.25 and = 0.5. These parameters are tuned

63 Deliverable D3.2 18.06.2015

experimentally to achieve a reasonable performance. The effect of each factor in () function on the embedding
performance is evaluated and reported later in this section.

The average embedding cost in the four explained approaches are presented in Figure 4-16. Comparing the
proposed schemes and the ones with random decomposition selection, we observe a significant difference in the
average cost of the embedding. Both ILP-random and DSBM-random consume more resources compared to ILP
and DSBM respectively. Additionally, the results indicate that the ILP-based solutions lead to almost constant
average costs while the heuristic solutions result in decrease of the embedding cost in the long run. The reason for
this behaviour is explained by the optimality of the embedding solution. In DSBM, due to sub-optimal placement of
the service requests, less requests can be accepted in the long run (presented in Figure 4-15). Furthermore, as there
are less available resources in the network compared to when an optimal placement is found, the service requests
with less NFs can be accepted. This leads to a decrease in the average embedding cost over time. This behaviour is
also visible in the Interoute network for DSBM-random approach which is less efficient than DSBM.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-16: Average cost of accepting requests over time

Considering the average cost alone without taking the acceptance ratio of the schemes into account might lead to
incorrect conclusions regarding the performance of the different schemes (as mentioned above, the sub-optimality
of the schemes might also lead to decreased cost). Therefore, in order to have a better view on the performance of
different schemes, we report the value of the cost normalized by the acceptance ratio of the schemes. With these
values we can have a better view on the performance/success of the algorithms. The results in Figure 4-17 indicate
that both ILP and DSBM, in both networks, have very low normalized cost while the schemes with random
decompositions lead to large increase in this value.

63 Deliverable D3.2 18.06.2015

experimentally to achieve a reasonable performance. The effect of each factor in () function on the embedding
performance is evaluated and reported later in this section.

The average embedding cost in the four explained approaches are presented in Figure 4-16. Comparing the
proposed schemes and the ones with random decomposition selection, we observe a significant difference in the
average cost of the embedding. Both ILP-random and DSBM-random consume more resources compared to ILP
and DSBM respectively. Additionally, the results indicate that the ILP-based solutions lead to almost constant
average costs while the heuristic solutions result in decrease of the embedding cost in the long run. The reason for
this behaviour is explained by the optimality of the embedding solution. In DSBM, due to sub-optimal placement of
the service requests, less requests can be accepted in the long run (presented in Figure 4-15). Furthermore, as there
are less available resources in the network compared to when an optimal placement is found, the service requests
with less NFs can be accepted. This leads to a decrease in the average embedding cost over time. This behaviour is
also visible in the Interoute network for DSBM-random approach which is less efficient than DSBM.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-16: Average cost of accepting requests over time

Considering the average cost alone without taking the acceptance ratio of the schemes into account might lead to
incorrect conclusions regarding the performance of the different schemes (as mentioned above, the sub-optimality
of the schemes might also lead to decreased cost). Therefore, in order to have a better view on the performance of
different schemes, we report the value of the cost normalized by the acceptance ratio of the schemes. With these
values we can have a better view on the performance/success of the algorithms. The results in Figure 4-17 indicate
that both ILP and DSBM, in both networks, have very low normalized cost while the schemes with random
decompositions lead to large increase in this value.

63 Deliverable D3.2 18.06.2015

experimentally to achieve a reasonable performance. The effect of each factor in () function on the embedding
performance is evaluated and reported later in this section.

The average embedding cost in the four explained approaches are presented in Figure 4-16. Comparing the
proposed schemes and the ones with random decomposition selection, we observe a significant difference in the
average cost of the embedding. Both ILP-random and DSBM-random consume more resources compared to ILP
and DSBM respectively. Additionally, the results indicate that the ILP-based solutions lead to almost constant
average costs while the heuristic solutions result in decrease of the embedding cost in the long run. The reason for
this behaviour is explained by the optimality of the embedding solution. In DSBM, due to sub-optimal placement of
the service requests, less requests can be accepted in the long run (presented in Figure 4-15). Furthermore, as there
are less available resources in the network compared to when an optimal placement is found, the service requests
with less NFs can be accepted. This leads to a decrease in the average embedding cost over time. This behaviour is
also visible in the Interoute network for DSBM-random approach which is less efficient than DSBM.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-16: Average cost of accepting requests over time

Considering the average cost alone without taking the acceptance ratio of the schemes into account might lead to
incorrect conclusions regarding the performance of the different schemes (as mentioned above, the sub-optimality
of the schemes might also lead to decreased cost). Therefore, in order to have a better view on the performance of
different schemes, we report the value of the cost normalized by the acceptance ratio of the schemes. With these
values we can have a better view on the performance/success of the algorithms. The results in Figure 4-17 indicate
that both ILP and DSBM, in both networks, have very low normalized cost while the schemes with random
decompositions lead to large increase in this value.

64 Deliverable D3.2 18.06.2015

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-17: Average cost normalized by acceptance ratio

Next, we report the effect of different coefficients in the () function of DSBM on the embedding performance.
Figure 4-18 illustrates the service request acceptance ratio when only one of the three coefficients in () is
considered for decomposition selection, this evaluation identifies the main factor in (). Based on the results,
considering the number of NFs in a request (=1) leads to higher acceptance ratio compared to cases when only
(= 1) or (= 1) are considered. The last two cases result in very similar performance. The related average
embedding cost is presented in Figure 4-19 and as expected, selection of decompositions with less number of NFs
leads to lower cost compared to the other two cases. Similar to previous evaluation, in order to have a better view on
the performance of the scheme, we report the normalized cost with acceptance ratio to have a fair comparison of
the algorithm success in Figure 4-20.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-18: Service request acceptance ratio over time in DSBM

64 Deliverable D3.2 18.06.2015

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-17: Average cost normalized by acceptance ratio

Next, we report the effect of different coefficients in the () function of DSBM on the embedding performance.
Figure 4-18 illustrates the service request acceptance ratio when only one of the three coefficients in () is
considered for decomposition selection, this evaluation identifies the main factor in (). Based on the results,
considering the number of NFs in a request (=1) leads to higher acceptance ratio compared to cases when only
(= 1) or (= 1) are considered. The last two cases result in very similar performance. The related average
embedding cost is presented in Figure 4-19 and as expected, selection of decompositions with less number of NFs
leads to lower cost compared to the other two cases. Similar to previous evaluation, in order to have a better view on
the performance of the scheme, we report the normalized cost with acceptance ratio to have a fair comparison of
the algorithm success in Figure 4-20.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-18: Service request acceptance ratio over time in DSBM

64 Deliverable D3.2 18.06.2015

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-17: Average cost normalized by acceptance ratio

Next, we report the effect of different coefficients in the () function of DSBM on the embedding performance.
Figure 4-18 illustrates the service request acceptance ratio when only one of the three coefficients in () is
considered for decomposition selection, this evaluation identifies the main factor in (). Based on the results,
considering the number of NFs in a request (=1) leads to higher acceptance ratio compared to cases when only
(= 1) or (= 1) are considered. The last two cases result in very similar performance. The related average
embedding cost is presented in Figure 4-19 and as expected, selection of decompositions with less number of NFs
leads to lower cost compared to the other two cases. Similar to previous evaluation, in order to have a better view on
the performance of the scheme, we report the normalized cost with acceptance ratio to have a fair comparison of
the algorithm success in Figure 4-20.

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-18: Service request acceptance ratio over time in DSBM

65 Deliverable D3.2 18.06.2015

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-19: Average cost of accepting requests over time in DSBM

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-20: Average cost normalized by acceptance ratio in DSBM

4.6.5 Evaluation of embedding time in heuristic solution
The goal of experiments in this section is to identify the major blocks in embedding time in an implemented proof of
concept prototype. These blocks include: i) retrieving/reading of all decompositions from a Network Function
Information Base (read dcmp), ii) decomposition selection (select dcmp) which includes the cost calculation for all
the decompositions and selecting the minimum cost decomposition and iii) mapping of the selected decomposition
(map). We have implemented the heuristic-based solution to use a Network Function Information Base (NF-IB)
based on Neo4j graph database containing information on NFs and decomposition rules [Neo4j]. We evaluate the
effect of increase in the topology size, SG size and number of service decompositions on the performance of the
embedding.

As our intention is to evaluate the embedding execution time on physical topologies with different sizes, we have
generated random regular networks with 100-1000 nodes with degree 3. Other parameters of these topologies (e.g.,
capacity) are similar to simulation setup explained in Section 4.6.4.1.

65 Deliverable D3.2 18.06.2015

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-19: Average cost of accepting requests over time in DSBM

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-20: Average cost normalized by acceptance ratio in DSBM

4.6.5 Evaluation of embedding time in heuristic solution
The goal of experiments in this section is to identify the major blocks in embedding time in an implemented proof of
concept prototype. These blocks include: i) retrieving/reading of all decompositions from a Network Function
Information Base (read dcmp), ii) decomposition selection (select dcmp) which includes the cost calculation for all
the decompositions and selecting the minimum cost decomposition and iii) mapping of the selected decomposition
(map). We have implemented the heuristic-based solution to use a Network Function Information Base (NF-IB)
based on Neo4j graph database containing information on NFs and decomposition rules [Neo4j]. We evaluate the
effect of increase in the topology size, SG size and number of service decompositions on the performance of the
embedding.

As our intention is to evaluate the embedding execution time on physical topologies with different sizes, we have
generated random regular networks with 100-1000 nodes with degree 3. Other parameters of these topologies (e.g.,
capacity) are similar to simulation setup explained in Section 4.6.4.1.

65 Deliverable D3.2 18.06.2015

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-19: Average cost of accepting requests over time in DSBM

(a) BT Europe network (24 nodes) (b) Interoute network (110 nodes)

Figure 4-20: Average cost normalized by acceptance ratio in DSBM

4.6.5 Evaluation of embedding time in heuristic solution
The goal of experiments in this section is to identify the major blocks in embedding time in an implemented proof of
concept prototype. These blocks include: i) retrieving/reading of all decompositions from a Network Function
Information Base (read dcmp), ii) decomposition selection (select dcmp) which includes the cost calculation for all
the decompositions and selecting the minimum cost decomposition and iii) mapping of the selected decomposition
(map). We have implemented the heuristic-based solution to use a Network Function Information Base (NF-IB)
based on Neo4j graph database containing information on NFs and decomposition rules [Neo4j]. We evaluate the
effect of increase in the topology size, SG size and number of service decompositions on the performance of the
embedding.

As our intention is to evaluate the embedding execution time on physical topologies with different sizes, we have
generated random regular networks with 100-1000 nodes with degree 3. Other parameters of these topologies (e.g.,
capacity) are similar to simulation setup explained in Section 4.6.4.1.

66 Deliverable D3.2 18.06.2015

Figure 4-21: Embedding execution time for SGs with one decomposition

In the first experiment, we have evaluated the execution time of the embedding of an SG into physical networks of
different sizes for two scenarios: i) SGs with 5 NFs and ii) SGs with 10 NFs. Each SG has only one decomposition.
Figure 4-21 reports the execution time of different blocks (i.e. read dcmp, select dcmp and map) in the embedding. .
Based on the results, the mapping is the dominant block and it increases significantly with the increase in the
number of NFs, when only one decomposition exists for an SG.

Figure 4-22: Embedding execution time for SGs with 5 NFs

The next experiment evaluates the effect of increase in the number of decompositions for an SG. Figure 4-22
reports the execution times for 3 scenarios in which the number of decompositions per NF in an SG changes from 2
to 4. As there are 5 NFs in each SG, the number of decompositions in each scenario is: 52, 53 and 54. As we see “map”
and “read dcmp” blocks seem to scales quite well, whereas “select dcmp” is the block which scales poorly with
increasing number of nodes in the network. For small topologies with few nodes, reading the decompositions is the
dominant block while for larger topologies (1000 nodes and more) “select dcmp” seems to be the main concern. It is
worth mentioning that the time spent for reading the decompositions from the NF-IB includes the time needed for
calculating the service decompositions as well. This is because only NFs decompositions are stored in the NF-IB and
possible service decompositions should be calculated based on them upon request.

66 Deliverable D3.2 18.06.2015

Figure 4-21: Embedding execution time for SGs with one decomposition

In the first experiment, we have evaluated the execution time of the embedding of an SG into physical networks of
different sizes for two scenarios: i) SGs with 5 NFs and ii) SGs with 10 NFs. Each SG has only one decomposition.
Figure 4-21 reports the execution time of different blocks (i.e. read dcmp, select dcmp and map) in the embedding. .
Based on the results, the mapping is the dominant block and it increases significantly with the increase in the
number of NFs, when only one decomposition exists for an SG.

Figure 4-22: Embedding execution time for SGs with 5 NFs

The next experiment evaluates the effect of increase in the number of decompositions for an SG. Figure 4-22
reports the execution times for 3 scenarios in which the number of decompositions per NF in an SG changes from 2
to 4. As there are 5 NFs in each SG, the number of decompositions in each scenario is: 52, 53 and 54. As we see “map”
and “read dcmp” blocks seem to scales quite well, whereas “select dcmp” is the block which scales poorly with
increasing number of nodes in the network. For small topologies with few nodes, reading the decompositions is the
dominant block while for larger topologies (1000 nodes and more) “select dcmp” seems to be the main concern. It is
worth mentioning that the time spent for reading the decompositions from the NF-IB includes the time needed for
calculating the service decompositions as well. This is because only NFs decompositions are stored in the NF-IB and
possible service decompositions should be calculated based on them upon request.

66 Deliverable D3.2 18.06.2015

Figure 4-21: Embedding execution time for SGs with one decomposition

In the first experiment, we have evaluated the execution time of the embedding of an SG into physical networks of
different sizes for two scenarios: i) SGs with 5 NFs and ii) SGs with 10 NFs. Each SG has only one decomposition.
Figure 4-21 reports the execution time of different blocks (i.e. read dcmp, select dcmp and map) in the embedding. .
Based on the results, the mapping is the dominant block and it increases significantly with the increase in the
number of NFs, when only one decomposition exists for an SG.

Figure 4-22: Embedding execution time for SGs with 5 NFs

The next experiment evaluates the effect of increase in the number of decompositions for an SG. Figure 4-22
reports the execution times for 3 scenarios in which the number of decompositions per NF in an SG changes from 2
to 4. As there are 5 NFs in each SG, the number of decompositions in each scenario is: 52, 53 and 54. As we see “map”
and “read dcmp” blocks seem to scales quite well, whereas “select dcmp” is the block which scales poorly with
increasing number of nodes in the network. For small topologies with few nodes, reading the decompositions is the
dominant block while for larger topologies (1000 nodes and more) “select dcmp” seems to be the main concern. It is
worth mentioning that the time spent for reading the decompositions from the NF-IB includes the time needed for
calculating the service decompositions as well. This is because only NFs decompositions are stored in the NF-IB and
possible service decompositions should be calculated based on them upon request.

67 Deliverable D3.2 18.06.2015

Compared to the orchestration requirement mentioned in section 4.1 the performance of the proposed scheme
might seem quite low (inefficient for orchestration of thousands of devices). The main goal of the experiments in
this section was to identify the most time consuming blocks in the proposed embedding approach so that we can
find solutions towards a more scalable orchestrator. Therefore, based on these identified blocks, in the next section,
we propose several architectural enhancements to improve the scalability of the orchestrator.

4.6.6 Potential improvements
In this section, we propose several architectural enhancements and explain existing challenges in order to
implement a highly scalable embedding.

4.6.6.1 Parallel/distributed embedding
Based on the results, we identified the "read dcmp" block to be the most time consuming block in the embedding in
smaller topologies while “select dcmp” block seems to be a major issue in larger topologies. Changing the
embedding algorithm to a distributed approach in which costly calculations are done in parallel can improve the
performance of the embedding significantly. A possibility to parallelize the "read dcmp" block of the algorithm is to
use Neo4j which supports High-Availability (HA) which is explained in more detail in Section 4.7. Using the Neo4j HA
the "select dcmp " block can simply be computed in parallel as the cost calculation of each decomposition is
independent of others. However, parallelizing the "mapping" block is a challenging task. This phase is equivalent to
the typical VNEP as service graphs composed of atomic NFs are similar to virtual networks which should be mapped
to a physical infrastructure and thus similar solutions to VNEP can be considered for the mapping phase.

The options for mapping parallelization are: i) considering all possible combination of NFs mapping to the physical
nodes and selecting the minimum cost mapping. The feasibility/cost of each mapping can be checked in parallel.
This approach is feasible only in small topologies (in the order of hundreds of nodes) as the number of combination
increases drastically with a small increase in the topology size. ii) selecting the first-fit physical node for mapping of
NFs and finding the shortest path between nodes. NFs mapping/path calculation can be done in parallel. If the first-
fit mapping is not successful, the next one is selected. A challenge is to avoid different threads reserving the same
resource. Batch scheduling is a solution in which each job gets dedicated access to the resources.

Section 4.7 explains a basic proof of concept framework for performing distributed embedding calculations.

4.6.6.2 Hierarchical embedding
The other alternative to achieve a scalable embedding is to have a hierarchical embedding process. In this process,
SG can be divided into different subgraphs using service decompositions available in the NF-IB and each subgraph
can be given to a different domain to be orchestrated locally.

The main challenge in such distributed embedding relates to the amount of resource and infrastructure information
that needs to be advertised to the upper layer orchestrators to facilitate an efficient embedding process. Each
domain may expose to upper layers only high-level and aggregated information such as total available capacities

67 Deliverable D3.2 18.06.2015

Compared to the orchestration requirement mentioned in section 4.1 the performance of the proposed scheme
might seem quite low (inefficient for orchestration of thousands of devices). The main goal of the experiments in
this section was to identify the most time consuming blocks in the proposed embedding approach so that we can
find solutions towards a more scalable orchestrator. Therefore, based on these identified blocks, in the next section,
we propose several architectural enhancements to improve the scalability of the orchestrator.

4.6.6 Potential improvements
In this section, we propose several architectural enhancements and explain existing challenges in order to
implement a highly scalable embedding.

4.6.6.1 Parallel/distributed embedding
Based on the results, we identified the "read dcmp" block to be the most time consuming block in the embedding in
smaller topologies while “select dcmp” block seems to be a major issue in larger topologies. Changing the
embedding algorithm to a distributed approach in which costly calculations are done in parallel can improve the
performance of the embedding significantly. A possibility to parallelize the "read dcmp" block of the algorithm is to
use Neo4j which supports High-Availability (HA) which is explained in more detail in Section 4.7. Using the Neo4j HA
the "select dcmp " block can simply be computed in parallel as the cost calculation of each decomposition is
independent of others. However, parallelizing the "mapping" block is a challenging task. This phase is equivalent to
the typical VNEP as service graphs composed of atomic NFs are similar to virtual networks which should be mapped
to a physical infrastructure and thus similar solutions to VNEP can be considered for the mapping phase.

The options for mapping parallelization are: i) considering all possible combination of NFs mapping to the physical
nodes and selecting the minimum cost mapping. The feasibility/cost of each mapping can be checked in parallel.
This approach is feasible only in small topologies (in the order of hundreds of nodes) as the number of combination
increases drastically with a small increase in the topology size. ii) selecting the first-fit physical node for mapping of
NFs and finding the shortest path between nodes. NFs mapping/path calculation can be done in parallel. If the first-
fit mapping is not successful, the next one is selected. A challenge is to avoid different threads reserving the same
resource. Batch scheduling is a solution in which each job gets dedicated access to the resources.

Section 4.7 explains a basic proof of concept framework for performing distributed embedding calculations.

4.6.6.2 Hierarchical embedding
The other alternative to achieve a scalable embedding is to have a hierarchical embedding process. In this process,
SG can be divided into different subgraphs using service decompositions available in the NF-IB and each subgraph
can be given to a different domain to be orchestrated locally.

The main challenge in such distributed embedding relates to the amount of resource and infrastructure information
that needs to be advertised to the upper layer orchestrators to facilitate an efficient embedding process. Each
domain may expose to upper layers only high-level and aggregated information such as total available capacities

67 Deliverable D3.2 18.06.2015

Compared to the orchestration requirement mentioned in section 4.1 the performance of the proposed scheme
might seem quite low (inefficient for orchestration of thousands of devices). The main goal of the experiments in
this section was to identify the most time consuming blocks in the proposed embedding approach so that we can
find solutions towards a more scalable orchestrator. Therefore, based on these identified blocks, in the next section,
we propose several architectural enhancements to improve the scalability of the orchestrator.

4.6.6 Potential improvements
In this section, we propose several architectural enhancements and explain existing challenges in order to
implement a highly scalable embedding.

4.6.6.1 Parallel/distributed embedding
Based on the results, we identified the "read dcmp" block to be the most time consuming block in the embedding in
smaller topologies while “select dcmp” block seems to be a major issue in larger topologies. Changing the
embedding algorithm to a distributed approach in which costly calculations are done in parallel can improve the
performance of the embedding significantly. A possibility to parallelize the "read dcmp" block of the algorithm is to
use Neo4j which supports High-Availability (HA) which is explained in more detail in Section 4.7. Using the Neo4j HA
the "select dcmp " block can simply be computed in parallel as the cost calculation of each decomposition is
independent of others. However, parallelizing the "mapping" block is a challenging task. This phase is equivalent to
the typical VNEP as service graphs composed of atomic NFs are similar to virtual networks which should be mapped
to a physical infrastructure and thus similar solutions to VNEP can be considered for the mapping phase.

The options for mapping parallelization are: i) considering all possible combination of NFs mapping to the physical
nodes and selecting the minimum cost mapping. The feasibility/cost of each mapping can be checked in parallel.
This approach is feasible only in small topologies (in the order of hundreds of nodes) as the number of combination
increases drastically with a small increase in the topology size. ii) selecting the first-fit physical node for mapping of
NFs and finding the shortest path between nodes. NFs mapping/path calculation can be done in parallel. If the first-
fit mapping is not successful, the next one is selected. A challenge is to avoid different threads reserving the same
resource. Batch scheduling is a solution in which each job gets dedicated access to the resources.

Section 4.7 explains a basic proof of concept framework for performing distributed embedding calculations.

4.6.6.2 Hierarchical embedding
The other alternative to achieve a scalable embedding is to have a hierarchical embedding process. In this process,
SG can be divided into different subgraphs using service decompositions available in the NF-IB and each subgraph
can be given to a different domain to be orchestrated locally.

The main challenge in such distributed embedding relates to the amount of resource and infrastructure information
that needs to be advertised to the upper layer orchestrators to facilitate an efficient embedding process. Each
domain may expose to upper layers only high-level and aggregated information such as total available capacities

68 Deliverable D3.2 18.06.2015

and capabilities or aggregated PoP-level information instead of detailed router-level topologies. Such incomplete
information in the higher layer orchestrator might lead to inefficient embeddings with performance far from the
optimal solution. It is a challenging task to identify the trade-off between the efficiency of the embedding and the
amount of infrastructure information exposed by each domain.

4.6.6.3 Pre-defined service chains
Another enhancement option, independent of the embedding approach, is to have pre-defined service chains with
pre-defined decomposition templates. With such templates different parts of the embedding can be done
proactively, before the request arrives.

4.7 Distributed orchestration
To see if a distributed orchestration framework could be implemented using open-source components, and what its
performance would be, we investigated several methods of distributing both the substrate topology and calculation
requests. For the topology there are many candidates among graph databases that can be deployed in a distributed
fashion, for example Neo4j, OrientDB, and Titan [Neo4j, OrientDB,Titan]. These have different characteristics in
implementation and performance with Neo4j and OrientDB both providing low read/write latency and good
throughput compared to Titan, which in turn can store very large graphs (billions of nodes and edges). As we favour
speed over extremely large graphs we decided to use Neo4j, although OrientDB and others appear to have similar
performance [Kolomicenko2013,Salim2013, McColl2014]. To distribute orchestration tasks we decided to use
Hazelcast [Hazelcast], which in addition to task distribution also provides distributed data structures that can be
used by the VNE algorithms to for example temporary store shared data such as intermediate results. There are
many alternatives to parts of Hazelcast, for example we could use Java RMI to invoke commands on other nodes,
but the simplicity of using Hazelcast with e.g. automatically node discovery make it a good initial candidate.

Each node in the framework runs Neo4j in embedded, high-availability mode (Master-slave replication) coupled with
Hazelcast. In embedded mode the database is started and accessed through its Java API, providing a low-latency
interface to the data. High-availability mode automatically distributes the database to all nodes, allowing database
reads to scale linearly, however writing to the database scales less well as writes has to pass through the current
Master node. There appears to be mechanisms for improving write throughput if necessary, through upgraded
hardware or by reducing the consistency requirements. To distribute commands we use Hazelcast’s distributed
drop-in replacement of Java’s ExecutorService which allows tasks to execute asynchronously tasks in available
threads on nodes in the cluster, rather than in threads on the local node.

4.7.1 Implemented algorithms
To evaluate if the framework worked as expected (and if it could be used for the more complex algorithms
described above), we implemented two simple algorithms using it. The first algorithm performs distributed
embedding of a Service Function Chain defined in a Service graph on already running, sharable, NFs. The second

68 Deliverable D3.2 18.06.2015

and capabilities or aggregated PoP-level information instead of detailed router-level topologies. Such incomplete
information in the higher layer orchestrator might lead to inefficient embeddings with performance far from the
optimal solution. It is a challenging task to identify the trade-off between the efficiency of the embedding and the
amount of infrastructure information exposed by each domain.

4.6.6.3 Pre-defined service chains
Another enhancement option, independent of the embedding approach, is to have pre-defined service chains with
pre-defined decomposition templates. With such templates different parts of the embedding can be done
proactively, before the request arrives.

4.7 Distributed orchestration
To see if a distributed orchestration framework could be implemented using open-source components, and what its
performance would be, we investigated several methods of distributing both the substrate topology and calculation
requests. For the topology there are many candidates among graph databases that can be deployed in a distributed
fashion, for example Neo4j, OrientDB, and Titan [Neo4j, OrientDB,Titan]. These have different characteristics in
implementation and performance with Neo4j and OrientDB both providing low read/write latency and good
throughput compared to Titan, which in turn can store very large graphs (billions of nodes and edges). As we favour
speed over extremely large graphs we decided to use Neo4j, although OrientDB and others appear to have similar
performance [Kolomicenko2013,Salim2013, McColl2014]. To distribute orchestration tasks we decided to use
Hazelcast [Hazelcast], which in addition to task distribution also provides distributed data structures that can be
used by the VNE algorithms to for example temporary store shared data such as intermediate results. There are
many alternatives to parts of Hazelcast, for example we could use Java RMI to invoke commands on other nodes,
but the simplicity of using Hazelcast with e.g. automatically node discovery make it a good initial candidate.

Each node in the framework runs Neo4j in embedded, high-availability mode (Master-slave replication) coupled with
Hazelcast. In embedded mode the database is started and accessed through its Java API, providing a low-latency
interface to the data. High-availability mode automatically distributes the database to all nodes, allowing database
reads to scale linearly, however writing to the database scales less well as writes has to pass through the current
Master node. There appears to be mechanisms for improving write throughput if necessary, through upgraded
hardware or by reducing the consistency requirements. To distribute commands we use Hazelcast’s distributed
drop-in replacement of Java’s ExecutorService which allows tasks to execute asynchronously tasks in available
threads on nodes in the cluster, rather than in threads on the local node.

4.7.1 Implemented algorithms
To evaluate if the framework worked as expected (and if it could be used for the more complex algorithms
described above), we implemented two simple algorithms using it. The first algorithm performs distributed
embedding of a Service Function Chain defined in a Service graph on already running, sharable, NFs. The second

68 Deliverable D3.2 18.06.2015

and capabilities or aggregated PoP-level information instead of detailed router-level topologies. Such incomplete
information in the higher layer orchestrator might lead to inefficient embeddings with performance far from the
optimal solution. It is a challenging task to identify the trade-off between the efficiency of the embedding and the
amount of infrastructure information exposed by each domain.

4.6.6.3 Pre-defined service chains
Another enhancement option, independent of the embedding approach, is to have pre-defined service chains with
pre-defined decomposition templates. With such templates different parts of the embedding can be done
proactively, before the request arrives.

4.7 Distributed orchestration
To see if a distributed orchestration framework could be implemented using open-source components, and what its
performance would be, we investigated several methods of distributing both the substrate topology and calculation
requests. For the topology there are many candidates among graph databases that can be deployed in a distributed
fashion, for example Neo4j, OrientDB, and Titan [Neo4j, OrientDB,Titan]. These have different characteristics in
implementation and performance with Neo4j and OrientDB both providing low read/write latency and good
throughput compared to Titan, which in turn can store very large graphs (billions of nodes and edges). As we favour
speed over extremely large graphs we decided to use Neo4j, although OrientDB and others appear to have similar
performance [Kolomicenko2013,Salim2013, McColl2014]. To distribute orchestration tasks we decided to use
Hazelcast [Hazelcast], which in addition to task distribution also provides distributed data structures that can be
used by the VNE algorithms to for example temporary store shared data such as intermediate results. There are
many alternatives to parts of Hazelcast, for example we could use Java RMI to invoke commands on other nodes,
but the simplicity of using Hazelcast with e.g. automatically node discovery make it a good initial candidate.

Each node in the framework runs Neo4j in embedded, high-availability mode (Master-slave replication) coupled with
Hazelcast. In embedded mode the database is started and accessed through its Java API, providing a low-latency
interface to the data. High-availability mode automatically distributes the database to all nodes, allowing database
reads to scale linearly, however writing to the database scales less well as writes has to pass through the current
Master node. There appears to be mechanisms for improving write throughput if necessary, through upgraded
hardware or by reducing the consistency requirements. To distribute commands we use Hazelcast’s distributed
drop-in replacement of Java’s ExecutorService which allows tasks to execute asynchronously tasks in available
threads on nodes in the cluster, rather than in threads on the local node.

4.7.1 Implemented algorithms
To evaluate if the framework worked as expected (and if it could be used for the more complex algorithms
described above), we implemented two simple algorithms using it. The first algorithm performs distributed
embedding of a Service Function Chain defined in a Service graph on already running, sharable, NFs. The second

69 Deliverable D3.2 18.06.2015

algorithm is a previously existing heuristic VNE algorithm called VF2x, this algorithm was chosen to test the
framework as the algorithms presented above were still being developed [Yin2012].

Figure 4-23: Example Service Graph, topology and potential paths, with shortest combined path in bold

The SFC algorithm takes as input an undirected graph with NFs connected as pearls on a string between two SAPs
forming a basic Service Function Chain, and a topology with node and link capacity. From this input we calculate all
potential paths between SAP-A and FWs fulfilling the requirements, we then continue with all paths from FWs to
IDSs, from IDSs to NATs, and so on. This results in a graph of potential paths with aggregate costs on links, we use
this graph to calculate the best end-to-end path from SAP-A to SAP-B that fulfils the requirements on the NF-FG.
This algorithm is easily parallelized as all the path calculations are independent. We tried two ways of distributing
these calculations; first by constructing a task as all pair-wise path calculations between NF types e.g. all paths
between FWs and IDSs (called “chunk”), and secondly seeing each individual path as a task.

We tested these strategies using a topology of 19200 CPEs distributed on 300 DSLAMS connected to 20 MSANs that
finally are linked by 4 Metro nodes in a tree with some meshing links between MSANs and Metro nodes. In this
topology 10 FWs, 8 IDSs, 7 NATs, and 5 vCPEs are connected, mostly at MSAN and Metro levels. All nodes and links
are randomly assigned costs. The NF-FG we test with connects SAP-vCPE-FW-NAT-IDS-SAP with link and node
requirements, leading to a maximum of 239 + 1 path calculations necessary (SAP-vCPE is 8 paths; vCPE-FW is 50
paths, and so on). We tested this scenario in a distributed way with two orchestration nodes and locally on one node
for the two strategies, results can be seen in Figure 4-24. Clearly the distributed individual calculation is the fastest
with a median calculation time of 50 ms compared to over 100 ms for the other strategies. The reason why
distributed chunk is not faster than the local chunk is that there are only five chunks in the tested NF-FG (as it has
only six NF nodes), these chunks are in both the distributed and the local case assigned to local threads and thus not
utilizing the second node in the cluster.

69 Deliverable D3.2 18.06.2015

algorithm is a previously existing heuristic VNE algorithm called VF2x, this algorithm was chosen to test the
framework as the algorithms presented above were still being developed [Yin2012].

Figure 4-23: Example Service Graph, topology and potential paths, with shortest combined path in bold

The SFC algorithm takes as input an undirected graph with NFs connected as pearls on a string between two SAPs
forming a basic Service Function Chain, and a topology with node and link capacity. From this input we calculate all
potential paths between SAP-A and FWs fulfilling the requirements, we then continue with all paths from FWs to
IDSs, from IDSs to NATs, and so on. This results in a graph of potential paths with aggregate costs on links, we use
this graph to calculate the best end-to-end path from SAP-A to SAP-B that fulfils the requirements on the NF-FG.
This algorithm is easily parallelized as all the path calculations are independent. We tried two ways of distributing
these calculations; first by constructing a task as all pair-wise path calculations between NF types e.g. all paths
between FWs and IDSs (called “chunk”), and secondly seeing each individual path as a task.

We tested these strategies using a topology of 19200 CPEs distributed on 300 DSLAMS connected to 20 MSANs that
finally are linked by 4 Metro nodes in a tree with some meshing links between MSANs and Metro nodes. In this
topology 10 FWs, 8 IDSs, 7 NATs, and 5 vCPEs are connected, mostly at MSAN and Metro levels. All nodes and links
are randomly assigned costs. The NF-FG we test with connects SAP-vCPE-FW-NAT-IDS-SAP with link and node
requirements, leading to a maximum of 239 + 1 path calculations necessary (SAP-vCPE is 8 paths; vCPE-FW is 50
paths, and so on). We tested this scenario in a distributed way with two orchestration nodes and locally on one node
for the two strategies, results can be seen in Figure 4-24. Clearly the distributed individual calculation is the fastest
with a median calculation time of 50 ms compared to over 100 ms for the other strategies. The reason why
distributed chunk is not faster than the local chunk is that there are only five chunks in the tested NF-FG (as it has
only six NF nodes), these chunks are in both the distributed and the local case assigned to local threads and thus not
utilizing the second node in the cluster.

69 Deliverable D3.2 18.06.2015

algorithm is a previously existing heuristic VNE algorithm called VF2x, this algorithm was chosen to test the
framework as the algorithms presented above were still being developed [Yin2012].

Figure 4-23: Example Service Graph, topology and potential paths, with shortest combined path in bold

The SFC algorithm takes as input an undirected graph with NFs connected as pearls on a string between two SAPs
forming a basic Service Function Chain, and a topology with node and link capacity. From this input we calculate all
potential paths between SAP-A and FWs fulfilling the requirements, we then continue with all paths from FWs to
IDSs, from IDSs to NATs, and so on. This results in a graph of potential paths with aggregate costs on links, we use
this graph to calculate the best end-to-end path from SAP-A to SAP-B that fulfils the requirements on the NF-FG.
This algorithm is easily parallelized as all the path calculations are independent. We tried two ways of distributing
these calculations; first by constructing a task as all pair-wise path calculations between NF types e.g. all paths
between FWs and IDSs (called “chunk”), and secondly seeing each individual path as a task.

We tested these strategies using a topology of 19200 CPEs distributed on 300 DSLAMS connected to 20 MSANs that
finally are linked by 4 Metro nodes in a tree with some meshing links between MSANs and Metro nodes. In this
topology 10 FWs, 8 IDSs, 7 NATs, and 5 vCPEs are connected, mostly at MSAN and Metro levels. All nodes and links
are randomly assigned costs. The NF-FG we test with connects SAP-vCPE-FW-NAT-IDS-SAP with link and node
requirements, leading to a maximum of 239 + 1 path calculations necessary (SAP-vCPE is 8 paths; vCPE-FW is 50
paths, and so on). We tested this scenario in a distributed way with two orchestration nodes and locally on one node
for the two strategies, results can be seen in Figure 4-24. Clearly the distributed individual calculation is the fastest
with a median calculation time of 50 ms compared to over 100 ms for the other strategies. The reason why
distributed chunk is not faster than the local chunk is that there are only five chunks in the tested NF-FG (as it has
only six NF nodes), these chunks are in both the distributed and the local case assigned to local threads and thus not
utilizing the second node in the cluster.

70 Deliverable D3.2 18.06.2015

Figure 4-24: Boxplot of initial results for distributed and local SFC calculations. Each algorithm was executed 20
times.

The implemented VNE algorithm, VF2x, is currently not utilizing the distributed capabilities but is able to map more
complex Service Graphs onto the topology described above. As this implementation is only operating on a single
orchestration node as of writing, no elaborate evaluation has been made. However initial results for Service Graphs
with tens of node components gives a calculation time in the order of tens of milliseconds using the above described
topology. As this topology was developed to test the SFC algorithm it only has a few nodes that can be mapped, so
these results should not be taken as indicative of performance in more realistic scenarios but rather to indicate that
the algorithm is working and is able to find mappings.

Testing of the simple SFC algorithm shows that the distribution framework is working and provides expected
benefits when enough tasks are executed in parallel. However more work is needed to try the setup with more
nodes, investigate ways of utilizing the distributed capabilities for VNE algorithms such as VF2x and the heuristic
algorithms discussed in section 4.6. It would also be interesting to see how performance is affected by a write load,
for example by adding and modifying resources during calculations.

70 Deliverable D3.2 18.06.2015

Figure 4-24: Boxplot of initial results for distributed and local SFC calculations. Each algorithm was executed 20
times.

The implemented VNE algorithm, VF2x, is currently not utilizing the distributed capabilities but is able to map more
complex Service Graphs onto the topology described above. As this implementation is only operating on a single
orchestration node as of writing, no elaborate evaluation has been made. However initial results for Service Graphs
with tens of node components gives a calculation time in the order of tens of milliseconds using the above described
topology. As this topology was developed to test the SFC algorithm it only has a few nodes that can be mapped, so
these results should not be taken as indicative of performance in more realistic scenarios but rather to indicate that
the algorithm is working and is able to find mappings.

Testing of the simple SFC algorithm shows that the distribution framework is working and provides expected
benefits when enough tasks are executed in parallel. However more work is needed to try the setup with more
nodes, investigate ways of utilizing the distributed capabilities for VNE algorithms such as VF2x and the heuristic
algorithms discussed in section 4.6. It would also be interesting to see how performance is affected by a write load,
for example by adding and modifying resources during calculations.

70 Deliverable D3.2 18.06.2015

Figure 4-24: Boxplot of initial results for distributed and local SFC calculations. Each algorithm was executed 20
times.

The implemented VNE algorithm, VF2x, is currently not utilizing the distributed capabilities but is able to map more
complex Service Graphs onto the topology described above. As this implementation is only operating on a single
orchestration node as of writing, no elaborate evaluation has been made. However initial results for Service Graphs
with tens of node components gives a calculation time in the order of tens of milliseconds using the above described
topology. As this topology was developed to test the SFC algorithm it only has a few nodes that can be mapped, so
these results should not be taken as indicative of performance in more realistic scenarios but rather to indicate that
the algorithm is working and is able to find mappings.

Testing of the simple SFC algorithm shows that the distribution framework is working and provides expected
benefits when enough tasks are executed in parallel. However more work is needed to try the setup with more
nodes, investigate ways of utilizing the distributed capabilities for VNE algorithms such as VF2x and the heuristic
algorithms discussed in section 4.6. It would also be interesting to see how performance is affected by a write load,
for example by adding and modifying resources during calculations.

71 Deliverable D3.2 18.06.2015

5 Scalable and resilient services

One of the merits of NFV is the ability to enable scalable telecom services without losing the reliability associated
with hardware implementations of NFs. Service scalability shall be interpreted as the ability of a service to scale up
or down, while service reliability refers to the ability of a service to remain operable over the considered time period.
This section documents a set of techniques in order to enable service elasticity and increase service reliability. The
core of both aspects is the ability to maintain service- or NF-related state under changing conditions. Changing
conditions might involve an increase of demand in terms of throughput or number of requests, or might refer to
failures of components of the deployed service such as failures in network connectivity, VNFs or the infrastructure
which is hosting VNFs. Enabling elasticity or providing service reliability therefore involves the support of state
migration between VNFs hosted on different infrastructure components.

This section follows a bottom-up approach by approaching the problem of scalability in a Border Network Gateway
use case. This use case is central to UNIFY and has been documented in use-case UC5 (see D2.1), and as well it is in
focus for the UN assessment in WP5. Additional reason for selecting this platform for the stateful scaling analysis is
the fundamental role it plays in any service provider network scenario, along with the challenge that its state
management poses on the scaling and resiliency requirements. The BNG performs the functions of an IP edge
router that provides aggregation capabilities (e.g. IP, PPP) between the access network and the transport network
which also includes functionality for subscriber management, advanced IP processing, including QoS, and enhanced
traffic management capabilities. As such it is a complex and expensive node which often forms a bottleneck in
provider networks which makes it a good target for a VNF implementation, both to reduce cost and improve
scalability. Our study of the BNG internal state concludes that while state management is indeed needed for the
BNG, the requirements are fairly lax.

While the BNG requirements on state management likely do not require complex mechanisms to meet, this is not
the case for all VNFs. Several mechanisms for state-management in VNFs with higher consistency and quality
requirements have been proposed, however they all fall short of fulfilling all requirements. One of the more
complete systems proposed is OpenNF which is able to perform state migration synchronized with the traffic
migration, with guarantees on packet loss and packet reordering [Gember-Jacobson2014]. In section 5.2 we
investigate the OpenNF approach to state management and identify a number of bottlenecks that would make it
unlikely to properly operate in a scalable fashion in full scale production environments. We then attempt to solve
improve the performance of OpenNF in order to move the approach closer to a production environment. We do this
by removing one of the bottlenecks, the reliance on a central controller on the critical path for both state and user
traffic during a migration or scaling event.

71 Deliverable D3.2 18.06.2015

5 Scalable and resilient services

One of the merits of NFV is the ability to enable scalable telecom services without losing the reliability associated
with hardware implementations of NFs. Service scalability shall be interpreted as the ability of a service to scale up
or down, while service reliability refers to the ability of a service to remain operable over the considered time period.
This section documents a set of techniques in order to enable service elasticity and increase service reliability. The
core of both aspects is the ability to maintain service- or NF-related state under changing conditions. Changing
conditions might involve an increase of demand in terms of throughput or number of requests, or might refer to
failures of components of the deployed service such as failures in network connectivity, VNFs or the infrastructure
which is hosting VNFs. Enabling elasticity or providing service reliability therefore involves the support of state
migration between VNFs hosted on different infrastructure components.

This section follows a bottom-up approach by approaching the problem of scalability in a Border Network Gateway
use case. This use case is central to UNIFY and has been documented in use-case UC5 (see D2.1), and as well it is in
focus for the UN assessment in WP5. Additional reason for selecting this platform for the stateful scaling analysis is
the fundamental role it plays in any service provider network scenario, along with the challenge that its state
management poses on the scaling and resiliency requirements. The BNG performs the functions of an IP edge
router that provides aggregation capabilities (e.g. IP, PPP) between the access network and the transport network
which also includes functionality for subscriber management, advanced IP processing, including QoS, and enhanced
traffic management capabilities. As such it is a complex and expensive node which often forms a bottleneck in
provider networks which makes it a good target for a VNF implementation, both to reduce cost and improve
scalability. Our study of the BNG internal state concludes that while state management is indeed needed for the
BNG, the requirements are fairly lax.

While the BNG requirements on state management likely do not require complex mechanisms to meet, this is not
the case for all VNFs. Several mechanisms for state-management in VNFs with higher consistency and quality
requirements have been proposed, however they all fall short of fulfilling all requirements. One of the more
complete systems proposed is OpenNF which is able to perform state migration synchronized with the traffic
migration, with guarantees on packet loss and packet reordering [Gember-Jacobson2014]. In section 5.2 we
investigate the OpenNF approach to state management and identify a number of bottlenecks that would make it
unlikely to properly operate in a scalable fashion in full scale production environments. We then attempt to solve
improve the performance of OpenNF in order to move the approach closer to a production environment. We do this
by removing one of the bottlenecks, the reliance on a central controller on the critical path for both state and user
traffic during a migration or scaling event.

71 Deliverable D3.2 18.06.2015

5 Scalable and resilient services

One of the merits of NFV is the ability to enable scalable telecom services without losing the reliability associated
with hardware implementations of NFs. Service scalability shall be interpreted as the ability of a service to scale up
or down, while service reliability refers to the ability of a service to remain operable over the considered time period.
This section documents a set of techniques in order to enable service elasticity and increase service reliability. The
core of both aspects is the ability to maintain service- or NF-related state under changing conditions. Changing
conditions might involve an increase of demand in terms of throughput or number of requests, or might refer to
failures of components of the deployed service such as failures in network connectivity, VNFs or the infrastructure
which is hosting VNFs. Enabling elasticity or providing service reliability therefore involves the support of state
migration between VNFs hosted on different infrastructure components.

This section follows a bottom-up approach by approaching the problem of scalability in a Border Network Gateway
use case. This use case is central to UNIFY and has been documented in use-case UC5 (see D2.1), and as well it is in
focus for the UN assessment in WP5. Additional reason for selecting this platform for the stateful scaling analysis is
the fundamental role it plays in any service provider network scenario, along with the challenge that its state
management poses on the scaling and resiliency requirements. The BNG performs the functions of an IP edge
router that provides aggregation capabilities (e.g. IP, PPP) between the access network and the transport network
which also includes functionality for subscriber management, advanced IP processing, including QoS, and enhanced
traffic management capabilities. As such it is a complex and expensive node which often forms a bottleneck in
provider networks which makes it a good target for a VNF implementation, both to reduce cost and improve
scalability. Our study of the BNG internal state concludes that while state management is indeed needed for the
BNG, the requirements are fairly lax.

While the BNG requirements on state management likely do not require complex mechanisms to meet, this is not
the case for all VNFs. Several mechanisms for state-management in VNFs with higher consistency and quality
requirements have been proposed, however they all fall short of fulfilling all requirements. One of the more
complete systems proposed is OpenNF which is able to perform state migration synchronized with the traffic
migration, with guarantees on packet loss and packet reordering [Gember-Jacobson2014]. In section 5.2 we
investigate the OpenNF approach to state management and identify a number of bottlenecks that would make it
unlikely to properly operate in a scalable fashion in full scale production environments. We then attempt to solve
improve the performance of OpenNF in order to move the approach closer to a production environment. We do this
by removing one of the bottlenecks, the reliance on a central controller on the critical path for both state and user
traffic during a migration or scaling event.

72 Deliverable D3.2 18.06.2015

Section 5.3 then discusses how protection and recovery mechanisms apply to VNFs and how for VNFs these differ
from traditional server applications. Section 5.3.5 discusses and provides an example of how VNF management
mechanisms like the one discussed in section 5.2 can be used to provide service resiliency.

5.1 Requirements on scalability mechanisms on BNG use-case
The Broadband Network Gateway (BNG) plays a crucial role in a Service Provider environment. BNG is an IP edge
router that provides aggregation capabilities (e.g. IP, PPP) between the access network and the transport network.
Beyond aggregation, it also supports policy management and IP QoS, being the edge device where service features,
bandwidth, and QoS policies may be applied to subscribers. Therefore, its functionality is enhanced to include
subscriber management, advanced IP processing, including QoS, and enhanced traffic management capabilities (e.g.
hierarchical queuing/shaping).

Figure 5-1: The BNG function at the edge of a Service Provider network

The BNG is hosting IP subscriber sessions, logical constructs intended to represent a network connectivity service
instance at a node. The session is basically an abstraction of connections and resources associated with a subscriber
IP end-point; it represents a subscriber’s traffic, or a portion thereof, and is associated with an IP address or prefix.
The notion of a session is essential, as data and control plane policies are associated with subscriber sessions. These
may be initiated and configured dynamically or statically and do have associated state. Therefore scaling and
migration mechanism need to properly deal with this stateful properties.

A subscriber session can typically be either a PPP Session or an IP Session (e.g. DHCP based), although in many
environments the PPP is still the most commonly adopted. Subscriber sessions are used to represent all traffic that
is associated with a particular subscriber by a given Service Provider in order to provide a context for policy
enforcement.

72 Deliverable D3.2 18.06.2015

Section 5.3 then discusses how protection and recovery mechanisms apply to VNFs and how for VNFs these differ
from traditional server applications. Section 5.3.5 discusses and provides an example of how VNF management
mechanisms like the one discussed in section 5.2 can be used to provide service resiliency.

5.1 Requirements on scalability mechanisms on BNG use-case
The Broadband Network Gateway (BNG) plays a crucial role in a Service Provider environment. BNG is an IP edge
router that provides aggregation capabilities (e.g. IP, PPP) between the access network and the transport network.
Beyond aggregation, it also supports policy management and IP QoS, being the edge device where service features,
bandwidth, and QoS policies may be applied to subscribers. Therefore, its functionality is enhanced to include
subscriber management, advanced IP processing, including QoS, and enhanced traffic management capabilities (e.g.
hierarchical queuing/shaping).

Figure 5-1: The BNG function at the edge of a Service Provider network

The BNG is hosting IP subscriber sessions, logical constructs intended to represent a network connectivity service
instance at a node. The session is basically an abstraction of connections and resources associated with a subscriber
IP end-point; it represents a subscriber’s traffic, or a portion thereof, and is associated with an IP address or prefix.
The notion of a session is essential, as data and control plane policies are associated with subscriber sessions. These
may be initiated and configured dynamically or statically and do have associated state. Therefore scaling and
migration mechanism need to properly deal with this stateful properties.

A subscriber session can typically be either a PPP Session or an IP Session (e.g. DHCP based), although in many
environments the PPP is still the most commonly adopted. Subscriber sessions are used to represent all traffic that
is associated with a particular subscriber by a given Service Provider in order to provide a context for policy
enforcement.

72 Deliverable D3.2 18.06.2015

Section 5.3 then discusses how protection and recovery mechanisms apply to VNFs and how for VNFs these differ
from traditional server applications. Section 5.3.5 discusses and provides an example of how VNF management
mechanisms like the one discussed in section 5.2 can be used to provide service resiliency.

5.1 Requirements on scalability mechanisms on BNG use-case
The Broadband Network Gateway (BNG) plays a crucial role in a Service Provider environment. BNG is an IP edge
router that provides aggregation capabilities (e.g. IP, PPP) between the access network and the transport network.
Beyond aggregation, it also supports policy management and IP QoS, being the edge device where service features,
bandwidth, and QoS policies may be applied to subscribers. Therefore, its functionality is enhanced to include
subscriber management, advanced IP processing, including QoS, and enhanced traffic management capabilities (e.g.
hierarchical queuing/shaping).

Figure 5-1: The BNG function at the edge of a Service Provider network

The BNG is hosting IP subscriber sessions, logical constructs intended to represent a network connectivity service
instance at a node. The session is basically an abstraction of connections and resources associated with a subscriber
IP end-point; it represents a subscriber’s traffic, or a portion thereof, and is associated with an IP address or prefix.
The notion of a session is essential, as data and control plane policies are associated with subscriber sessions. These
may be initiated and configured dynamically or statically and do have associated state. Therefore scaling and
migration mechanism need to properly deal with this stateful properties.

A subscriber session can typically be either a PPP Session or an IP Session (e.g. DHCP based), although in many
environments the PPP is still the most commonly adopted. Subscriber sessions are used to represent all traffic that
is associated with a particular subscriber by a given Service Provider in order to provide a context for policy
enforcement.

73 Deliverable D3.2 18.06.2015

5.1.1 Reasons for BNG scaling
The ability to support graceful and efficient stateful BNG scaling and session live migration mechanism can find
useful application in various scenarios. Some of the possible reasons for supporting such scaling features are
depicted in the following Figure 5-2.

Figure 5-2: Possible scenarios for BNG stateful scaling/resiliency mechanisms

The scenarios identified so far have to do with both possible dynamic scaling and resiliency requirements of the BNG
network function.

A first rather straightforward use-case is shown in Figure 5-2 a); this scenario corresponds to a classical scale-out
use-case, i.e. when a high load on BNG1 causes performance issues, compromising the ability to continue meet the
SLAs for subscribers, a number of active session needs to be migrated to a different BNG instance (BNG2), thus
offloading the original network element.

A different and exactly opposite scaling situation, corresponds to the scenario depicted in Figure 5-2 c); here the
focus is on consolidating the workload in order to enable cost savings. This scale-in capability may be triggered on a
low load condition on the/some BNGs, for instance during off-peak conditions, when active sessions can be
migrated and consolidated on a fewer devices in order to be able to switch-off some of the BNGs in order to reduce
energy consumption and increase the resource utilization level.

73 Deliverable D3.2 18.06.2015

5.1.1 Reasons for BNG scaling
The ability to support graceful and efficient stateful BNG scaling and session live migration mechanism can find
useful application in various scenarios. Some of the possible reasons for supporting such scaling features are
depicted in the following Figure 5-2.

Figure 5-2: Possible scenarios for BNG stateful scaling/resiliency mechanisms

The scenarios identified so far have to do with both possible dynamic scaling and resiliency requirements of the BNG
network function.

A first rather straightforward use-case is shown in Figure 5-2 a); this scenario corresponds to a classical scale-out
use-case, i.e. when a high load on BNG1 causes performance issues, compromising the ability to continue meet the
SLAs for subscribers, a number of active session needs to be migrated to a different BNG instance (BNG2), thus
offloading the original network element.

A different and exactly opposite scaling situation, corresponds to the scenario depicted in Figure 5-2 c); here the
focus is on consolidating the workload in order to enable cost savings. This scale-in capability may be triggered on a
low load condition on the/some BNGs, for instance during off-peak conditions, when active sessions can be
migrated and consolidated on a fewer devices in order to be able to switch-off some of the BNGs in order to reduce
energy consumption and increase the resource utilization level.

73 Deliverable D3.2 18.06.2015

5.1.1 Reasons for BNG scaling
The ability to support graceful and efficient stateful BNG scaling and session live migration mechanism can find
useful application in various scenarios. Some of the possible reasons for supporting such scaling features are
depicted in the following Figure 5-2.

Figure 5-2: Possible scenarios for BNG stateful scaling/resiliency mechanisms

The scenarios identified so far have to do with both possible dynamic scaling and resiliency requirements of the BNG
network function.

A first rather straightforward use-case is shown in Figure 5-2 a); this scenario corresponds to a classical scale-out
use-case, i.e. when a high load on BNG1 causes performance issues, compromising the ability to continue meet the
SLAs for subscribers, a number of active session needs to be migrated to a different BNG instance (BNG2), thus
offloading the original network element.

A different and exactly opposite scaling situation, corresponds to the scenario depicted in Figure 5-2 c); here the
focus is on consolidating the workload in order to enable cost savings. This scale-in capability may be triggered on a
low load condition on the/some BNGs, for instance during off-peak conditions, when active sessions can be
migrated and consolidated on a fewer devices in order to be able to switch-off some of the BNGs in order to reduce
energy consumption and increase the resource utilization level.

74 Deliverable D3.2 18.06.2015

A couple of use-cases are illustrated in Figure 5-2 b), these are related to live subscriber session migration for
resiliency or network element maintenance reasons. The need for supporting such a switchover scenario may occur
in different situations, e.g. a BNG needs to be taken out-of-service for a while in order to perform scheduled
maintenance; on the other hand, a BNG may become partly unavailable or unreachable due to a fault, requiring a
redundancy failover of the subscriber sessions. Both use-cases involve a stateful migration of the affected sessions
to a different network element instance.

Finally, Figure 5-2 d) deals with the case of providing on-demand high-availability mode for active sessions. In this
scenario, some sessions require dynamically to switch to high-availability redundant (dual-homing) configuration
during their lifetime. Should this scenario be addressed, it would require the ability to duplicate the concerned
subscriber sessions to another BNG, thus sharing the related state between the dual-homing BNGs.

5.1.2 State classification and performance requirements
The typical subscriber session life cycle comprises the stages of: a) session creation, b) subscriber authentication
with determination and execution of applicable subscriber policies/profiles (triggered by the control plane on the
BNG), and c) session termination.

Once a subscriber session is created, it is also necessary to monitor the subscriber session state via control or data
plane events to be able to detect a number of possible conditions such as: explicit disconnect by the subscriber, the
expiration of an inactivity timeout, or the excess of a volume quota. In addition, while the session is active, it may be
necessary to change its state or some associated parameters.

The actions taken following session creation constitute the subscriber session policy. The policy is applied to a
subscriber session either at session activation or dynamically following a subscriber or operator request. A traffic
policy is typically built using the concept of IP Flow and an associated set of actions. IP Flow is a classification
mechanism that allows specifying the portion of subscriber traffic to which policies need to be applied. Therefore,
the BNG has to support configurable IP Flow classifiers. The IP Flow definitions are usually predefined or can be
downloaded from a central repository at start up or periodically, and subscriber sessions are associated to them
depending on their profile. IP Flow traffic classifiers, in their basic form, typically use the 5-tuple definition (i.e.,
destination IP address, source IP address, transport protocol, destination port, and source port).

The BNG function also has to deal with accounting records, representing a summary of information collected for the
subscriber session. The BNG then needs to create and maintain an accounting record, according to its accounting
policy, this is exported to the AAA (e.g. Radius) Server at subscriber session start, stop, and optionally at interim
intervals during the session. The exported record at session start is mainly required to update the Radius server
about the relevant information about the session, for instance by providing the IP address assigned to the
subscriber, providing a relationship between Session ID and the IP address.

74 Deliverable D3.2 18.06.2015

A couple of use-cases are illustrated in Figure 5-2 b), these are related to live subscriber session migration for
resiliency or network element maintenance reasons. The need for supporting such a switchover scenario may occur
in different situations, e.g. a BNG needs to be taken out-of-service for a while in order to perform scheduled
maintenance; on the other hand, a BNG may become partly unavailable or unreachable due to a fault, requiring a
redundancy failover of the subscriber sessions. Both use-cases involve a stateful migration of the affected sessions
to a different network element instance.

Finally, Figure 5-2 d) deals with the case of providing on-demand high-availability mode for active sessions. In this
scenario, some sessions require dynamically to switch to high-availability redundant (dual-homing) configuration
during their lifetime. Should this scenario be addressed, it would require the ability to duplicate the concerned
subscriber sessions to another BNG, thus sharing the related state between the dual-homing BNGs.

5.1.2 State classification and performance requirements
The typical subscriber session life cycle comprises the stages of: a) session creation, b) subscriber authentication
with determination and execution of applicable subscriber policies/profiles (triggered by the control plane on the
BNG), and c) session termination.

Once a subscriber session is created, it is also necessary to monitor the subscriber session state via control or data
plane events to be able to detect a number of possible conditions such as: explicit disconnect by the subscriber, the
expiration of an inactivity timeout, or the excess of a volume quota. In addition, while the session is active, it may be
necessary to change its state or some associated parameters.

The actions taken following session creation constitute the subscriber session policy. The policy is applied to a
subscriber session either at session activation or dynamically following a subscriber or operator request. A traffic
policy is typically built using the concept of IP Flow and an associated set of actions. IP Flow is a classification
mechanism that allows specifying the portion of subscriber traffic to which policies need to be applied. Therefore,
the BNG has to support configurable IP Flow classifiers. The IP Flow definitions are usually predefined or can be
downloaded from a central repository at start up or periodically, and subscriber sessions are associated to them
depending on their profile. IP Flow traffic classifiers, in their basic form, typically use the 5-tuple definition (i.e.,
destination IP address, source IP address, transport protocol, destination port, and source port).

The BNG function also has to deal with accounting records, representing a summary of information collected for the
subscriber session. The BNG then needs to create and maintain an accounting record, according to its accounting
policy, this is exported to the AAA (e.g. Radius) Server at subscriber session start, stop, and optionally at interim
intervals during the session. The exported record at session start is mainly required to update the Radius server
about the relevant information about the session, for instance by providing the IP address assigned to the
subscriber, providing a relationship between Session ID and the IP address.

74 Deliverable D3.2 18.06.2015

A couple of use-cases are illustrated in Figure 5-2 b), these are related to live subscriber session migration for
resiliency or network element maintenance reasons. The need for supporting such a switchover scenario may occur
in different situations, e.g. a BNG needs to be taken out-of-service for a while in order to perform scheduled
maintenance; on the other hand, a BNG may become partly unavailable or unreachable due to a fault, requiring a
redundancy failover of the subscriber sessions. Both use-cases involve a stateful migration of the affected sessions
to a different network element instance.

Finally, Figure 5-2 d) deals with the case of providing on-demand high-availability mode for active sessions. In this
scenario, some sessions require dynamically to switch to high-availability redundant (dual-homing) configuration
during their lifetime. Should this scenario be addressed, it would require the ability to duplicate the concerned
subscriber sessions to another BNG, thus sharing the related state between the dual-homing BNGs.

5.1.2 State classification and performance requirements
The typical subscriber session life cycle comprises the stages of: a) session creation, b) subscriber authentication
with determination and execution of applicable subscriber policies/profiles (triggered by the control plane on the
BNG), and c) session termination.

Once a subscriber session is created, it is also necessary to monitor the subscriber session state via control or data
plane events to be able to detect a number of possible conditions such as: explicit disconnect by the subscriber, the
expiration of an inactivity timeout, or the excess of a volume quota. In addition, while the session is active, it may be
necessary to change its state or some associated parameters.

The actions taken following session creation constitute the subscriber session policy. The policy is applied to a
subscriber session either at session activation or dynamically following a subscriber or operator request. A traffic
policy is typically built using the concept of IP Flow and an associated set of actions. IP Flow is a classification
mechanism that allows specifying the portion of subscriber traffic to which policies need to be applied. Therefore,
the BNG has to support configurable IP Flow classifiers. The IP Flow definitions are usually predefined or can be
downloaded from a central repository at start up or periodically, and subscriber sessions are associated to them
depending on their profile. IP Flow traffic classifiers, in their basic form, typically use the 5-tuple definition (i.e.,
destination IP address, source IP address, transport protocol, destination port, and source port).

The BNG function also has to deal with accounting records, representing a summary of information collected for the
subscriber session. The BNG then needs to create and maintain an accounting record, according to its accounting
policy, this is exported to the AAA (e.g. Radius) Server at subscriber session start, stop, and optionally at interim
intervals during the session. The exported record at session start is mainly required to update the Radius server
about the relevant information about the session, for instance by providing the IP address assigned to the
subscriber, providing a relationship between Session ID and the IP address.

75 Deliverable D3.2 18.06.2015

Session termination requires monitoring the possible failure of a “keep-alive” protocol, this is for instance the case
for PPP based connections, or alternatively the session state derived from a control protocol (e.g. DHCP for IP
sessions).

Most of the state associated with subscriber sessions consists of policy configuration state. These policy
configurations templates are defined for a class of subscribers or profile, rather than for each individual subscriber,
and usually they are already resident on the BNG. After the authentication the new session created is simply set to
use the proper configuration template, depending on the profile information. However, sometime, when recalling
the policy in the subscriber configuration, the BNG may also allow specifying a set of parameters that are specific to
that subscriber. Therefore, once the session needs to be migrated to a different BNG, only a reference to the proper
policy configuration template, already predefined and available on the new BNG, along with possible specific
parameters associated with the session have to be moved.

Transient state, on the other hand, can be represented by state information dynamically created or updated during
session lifetime. This dynamic state may typically consist of:

 State associated to keepalive timers (e.g. PPP, BFD) used to monitor session continuity; the PPP Echo
Request messages, for instance, are typically sent every 10 s as a default value.

 Counters used by the policer(s) used to enforce traffic contract (e.g. bandwidth) parameters for the session;
these counters are typically updated on a packet-by-packet basis for each session.

 Accounting records, possibly storing counters to track the session activity, these may be used for collection
of statistical information or to enforce quota based profiles; the accounting record is typically updated on
packet basis, to monitor traffic generated by the subscriber.

When trying to identify the actual state information that needs to be migrated when moving a session across
different instances, we can consider separately the configuration and the transient/dynamic portions of state.

We can start observing that much of the actual basic policy definition/configuration information already pre-exist
on the target BNG when subscriber sessions are moved.

In the discussion of the management of the transient portion of the state, and for the subsequent evaluation of
performance requirements, we will focus mostly on residential customers, as they represent the vast majority of
customers on the BNG and typically may tolerate less stringent requirements than business customers. Moreover,
for many of the use-cases introduced before, some temporary limited impact on the session may be in any case a
better compromise than a session disconnect. The latter would in fact imply a worse quality of experience from the
customer point of view, especially if we consider that many concurrent attempts to re-establish a new session will
create a bottleneck on the system, particularly on the authentication, resulting in significant delays to reconnect.

75 Deliverable D3.2 18.06.2015

Session termination requires monitoring the possible failure of a “keep-alive” protocol, this is for instance the case
for PPP based connections, or alternatively the session state derived from a control protocol (e.g. DHCP for IP
sessions).

Most of the state associated with subscriber sessions consists of policy configuration state. These policy
configurations templates are defined for a class of subscribers or profile, rather than for each individual subscriber,
and usually they are already resident on the BNG. After the authentication the new session created is simply set to
use the proper configuration template, depending on the profile information. However, sometime, when recalling
the policy in the subscriber configuration, the BNG may also allow specifying a set of parameters that are specific to
that subscriber. Therefore, once the session needs to be migrated to a different BNG, only a reference to the proper
policy configuration template, already predefined and available on the new BNG, along with possible specific
parameters associated with the session have to be moved.

Transient state, on the other hand, can be represented by state information dynamically created or updated during
session lifetime. This dynamic state may typically consist of:

 State associated to keepalive timers (e.g. PPP, BFD) used to monitor session continuity; the PPP Echo
Request messages, for instance, are typically sent every 10 s as a default value.

 Counters used by the policer(s) used to enforce traffic contract (e.g. bandwidth) parameters for the session;
these counters are typically updated on a packet-by-packet basis for each session.

 Accounting records, possibly storing counters to track the session activity, these may be used for collection
of statistical information or to enforce quota based profiles; the accounting record is typically updated on
packet basis, to monitor traffic generated by the subscriber.

When trying to identify the actual state information that needs to be migrated when moving a session across
different instances, we can consider separately the configuration and the transient/dynamic portions of state.

We can start observing that much of the actual basic policy definition/configuration information already pre-exist
on the target BNG when subscriber sessions are moved.

In the discussion of the management of the transient portion of the state, and for the subsequent evaluation of
performance requirements, we will focus mostly on residential customers, as they represent the vast majority of
customers on the BNG and typically may tolerate less stringent requirements than business customers. Moreover,
for many of the use-cases introduced before, some temporary limited impact on the session may be in any case a
better compromise than a session disconnect. The latter would in fact imply a worse quality of experience from the
customer point of view, especially if we consider that many concurrent attempts to re-establish a new session will
create a bottleneck on the system, particularly on the authentication, resulting in significant delays to reconnect.

75 Deliverable D3.2 18.06.2015

Session termination requires monitoring the possible failure of a “keep-alive” protocol, this is for instance the case
for PPP based connections, or alternatively the session state derived from a control protocol (e.g. DHCP for IP
sessions).

Most of the state associated with subscriber sessions consists of policy configuration state. These policy
configurations templates are defined for a class of subscribers or profile, rather than for each individual subscriber,
and usually they are already resident on the BNG. After the authentication the new session created is simply set to
use the proper configuration template, depending on the profile information. However, sometime, when recalling
the policy in the subscriber configuration, the BNG may also allow specifying a set of parameters that are specific to
that subscriber. Therefore, once the session needs to be migrated to a different BNG, only a reference to the proper
policy configuration template, already predefined and available on the new BNG, along with possible specific
parameters associated with the session have to be moved.

Transient state, on the other hand, can be represented by state information dynamically created or updated during
session lifetime. This dynamic state may typically consist of:

 State associated to keepalive timers (e.g. PPP, BFD) used to monitor session continuity; the PPP Echo
Request messages, for instance, are typically sent every 10 s as a default value.

 Counters used by the policer(s) used to enforce traffic contract (e.g. bandwidth) parameters for the session;
these counters are typically updated on a packet-by-packet basis for each session.

 Accounting records, possibly storing counters to track the session activity, these may be used for collection
of statistical information or to enforce quota based profiles; the accounting record is typically updated on
packet basis, to monitor traffic generated by the subscriber.

When trying to identify the actual state information that needs to be migrated when moving a session across
different instances, we can consider separately the configuration and the transient/dynamic portions of state.

We can start observing that much of the actual basic policy definition/configuration information already pre-exist
on the target BNG when subscriber sessions are moved.

In the discussion of the management of the transient portion of the state, and for the subsequent evaluation of
performance requirements, we will focus mostly on residential customers, as they represent the vast majority of
customers on the BNG and typically may tolerate less stringent requirements than business customers. Moreover,
for many of the use-cases introduced before, some temporary limited impact on the session may be in any case a
better compromise than a session disconnect. The latter would in fact imply a worse quality of experience from the
customer point of view, especially if we consider that many concurrent attempts to re-establish a new session will
create a bottleneck on the system, particularly on the authentication, resulting in significant delays to reconnect.

76 Deliverable D3.2 18.06.2015

For the dynamic component of the state, the following considerations may apply to policer’s counters, keepalives,
and accounting records. The current values of the counters used by the policer’s should in principle be maintained
and therefore moved along with the session packets. However, should this transfer of policer’s state not be
performed but the bandwidth configuration parameters maintained the impact would be limited to a transient
inaccuracy in the bandwidth enforcement, which could be acceptable, especially if the inaccuracy period is limited.

Similarly, the state associated with the management of keepalives and related counters could also tolerate some
transient inaccuracy, without disrupting the session continuity. For instance PPP keepalives (i.e. Echo Request/Reply
messages) are sent periodically every 10 s, and the missing of 5 consecutive reply packets determines the closing of
the session, assuming the remote peer is down. Therefore, provided that the time consumed by migration of a
subscriber session does not exceed the above condition, the session should be able to continue on the destination
BNG, without the need to manage the keepalive events during the stateful switchover phase.

The accounting records stored in the BNG also needs to be moved to the destination BNG. This is of course more
critical information to preserve in the case of time based billing profiles (albeit less common in favour of flat-rate
profiles nowadays); in case of volume quota based profiles, the loss of some accounting information would cause
some inaccuracy in determining the crossing of the threshold. For all other profiles, typically the accounting records
have mostly only statistical relevance.

Of course, it would be also possible, in principle, to support a complete storing and migration of the above mentioned
state information, e.g. PPP keepalives and counters could be continuously tracked and stored/replicated for the
session migration purposes, but the actual cost of such a full state management would be high in front of the lack of
any additional benefit from the end customer point of view. That option would therefore represent a rather
academic speculation and would not constitute a realistic choice from an actual service provider perspective.

Looking at different possible strategies for migrating sessions to a different BNG instance, one could consider in
principle the option of starting to create only the new sessions in the target BNG, while waiting for active sessions on
the origin BNG to spontaneously terminate. To be able to evaluate the actual applicability and effectiveness of such a
strategy, it is worthwhile to have a look at how long sessions stay alive in a typical production network environment.
Looking at the statistical measured data, it comes out that the typical duration of subscriber sessions is about 300
min, when averaged on the overall subscriber base. This value is also the average lifetime of typical broadband
subscribers (ADSL, flat rate), while it almost doubles (500-600 min) for fibre subscribers (FTTC, FTTH) and reaches
about 1500 min for business customers. The above data clearly show that a natural strategy for migration, based on
redirection of the new session setups to a new machine, is not viable as it cannot satisfy the requirements or be
efficient enough for any of the use-cases addressed (see Figure 5-2). Just considering the average session duration,
it would take hours to migrate the workload, even more so considering the possible amount of long-living sessions.

76 Deliverable D3.2 18.06.2015

For the dynamic component of the state, the following considerations may apply to policer’s counters, keepalives,
and accounting records. The current values of the counters used by the policer’s should in principle be maintained
and therefore moved along with the session packets. However, should this transfer of policer’s state not be
performed but the bandwidth configuration parameters maintained the impact would be limited to a transient
inaccuracy in the bandwidth enforcement, which could be acceptable, especially if the inaccuracy period is limited.

Similarly, the state associated with the management of keepalives and related counters could also tolerate some
transient inaccuracy, without disrupting the session continuity. For instance PPP keepalives (i.e. Echo Request/Reply
messages) are sent periodically every 10 s, and the missing of 5 consecutive reply packets determines the closing of
the session, assuming the remote peer is down. Therefore, provided that the time consumed by migration of a
subscriber session does not exceed the above condition, the session should be able to continue on the destination
BNG, without the need to manage the keepalive events during the stateful switchover phase.

The accounting records stored in the BNG also needs to be moved to the destination BNG. This is of course more
critical information to preserve in the case of time based billing profiles (albeit less common in favour of flat-rate
profiles nowadays); in case of volume quota based profiles, the loss of some accounting information would cause
some inaccuracy in determining the crossing of the threshold. For all other profiles, typically the accounting records
have mostly only statistical relevance.

Of course, it would be also possible, in principle, to support a complete storing and migration of the above mentioned
state information, e.g. PPP keepalives and counters could be continuously tracked and stored/replicated for the
session migration purposes, but the actual cost of such a full state management would be high in front of the lack of
any additional benefit from the end customer point of view. That option would therefore represent a rather
academic speculation and would not constitute a realistic choice from an actual service provider perspective.

Looking at different possible strategies for migrating sessions to a different BNG instance, one could consider in
principle the option of starting to create only the new sessions in the target BNG, while waiting for active sessions on
the origin BNG to spontaneously terminate. To be able to evaluate the actual applicability and effectiveness of such a
strategy, it is worthwhile to have a look at how long sessions stay alive in a typical production network environment.
Looking at the statistical measured data, it comes out that the typical duration of subscriber sessions is about 300
min, when averaged on the overall subscriber base. This value is also the average lifetime of typical broadband
subscribers (ADSL, flat rate), while it almost doubles (500-600 min) for fibre subscribers (FTTC, FTTH) and reaches
about 1500 min for business customers. The above data clearly show that a natural strategy for migration, based on
redirection of the new session setups to a new machine, is not viable as it cannot satisfy the requirements or be
efficient enough for any of the use-cases addressed (see Figure 5-2). Just considering the average session duration,
it would take hours to migrate the workload, even more so considering the possible amount of long-living sessions.

76 Deliverable D3.2 18.06.2015

For the dynamic component of the state, the following considerations may apply to policer’s counters, keepalives,
and accounting records. The current values of the counters used by the policer’s should in principle be maintained
and therefore moved along with the session packets. However, should this transfer of policer’s state not be
performed but the bandwidth configuration parameters maintained the impact would be limited to a transient
inaccuracy in the bandwidth enforcement, which could be acceptable, especially if the inaccuracy period is limited.

Similarly, the state associated with the management of keepalives and related counters could also tolerate some
transient inaccuracy, without disrupting the session continuity. For instance PPP keepalives (i.e. Echo Request/Reply
messages) are sent periodically every 10 s, and the missing of 5 consecutive reply packets determines the closing of
the session, assuming the remote peer is down. Therefore, provided that the time consumed by migration of a
subscriber session does not exceed the above condition, the session should be able to continue on the destination
BNG, without the need to manage the keepalive events during the stateful switchover phase.

The accounting records stored in the BNG also needs to be moved to the destination BNG. This is of course more
critical information to preserve in the case of time based billing profiles (albeit less common in favour of flat-rate
profiles nowadays); in case of volume quota based profiles, the loss of some accounting information would cause
some inaccuracy in determining the crossing of the threshold. For all other profiles, typically the accounting records
have mostly only statistical relevance.

Of course, it would be also possible, in principle, to support a complete storing and migration of the above mentioned
state information, e.g. PPP keepalives and counters could be continuously tracked and stored/replicated for the
session migration purposes, but the actual cost of such a full state management would be high in front of the lack of
any additional benefit from the end customer point of view. That option would therefore represent a rather
academic speculation and would not constitute a realistic choice from an actual service provider perspective.

Looking at different possible strategies for migrating sessions to a different BNG instance, one could consider in
principle the option of starting to create only the new sessions in the target BNG, while waiting for active sessions on
the origin BNG to spontaneously terminate. To be able to evaluate the actual applicability and effectiveness of such a
strategy, it is worthwhile to have a look at how long sessions stay alive in a typical production network environment.
Looking at the statistical measured data, it comes out that the typical duration of subscriber sessions is about 300
min, when averaged on the overall subscriber base. This value is also the average lifetime of typical broadband
subscribers (ADSL, flat rate), while it almost doubles (500-600 min) for fibre subscribers (FTTC, FTTH) and reaches
about 1500 min for business customers. The above data clearly show that a natural strategy for migration, based on
redirection of the new session setups to a new machine, is not viable as it cannot satisfy the requirements or be
efficient enough for any of the use-cases addressed (see Figure 5-2). Just considering the average session duration,
it would take hours to migrate the workload, even more so considering the possible amount of long-living sessions.

77 Deliverable D3.2 18.06.2015

When trying to identify performance requirements for the BNG stateful session migration, one can say that a limited
transient packet loss can be mostly tolerated, especially when residential customers are concerned, to the extent
this can be managed by the transport/application protocols and has not impact on the overall quality of experience.
Therefore, loss-free migration seems not to be a strong requirement in general. Similar considerations can also be
applied for the packet out-of-sequence performance; some limited impairment on packet ordering can therefore
be tolerated, as far as it can be managed by the transport/application protocols without disrupting the service.

To give some example of more quantitative values for possible performance objectives, we can for instance refer to
the study published by the MEF (Metro Ethernet Forum) for a carrier Ethernet service [MEF23.1]. The performance
requirements reported in the above document are application specific and referred to the end-to-end network
configuration, therefore allocation or budgeting of the overall objective is generally required.

Moreover, it is important to notice that the above performance objectives, for the different classes of service, are
mostly referred to the measurement over a long time interval, typically in the order of a month. It is therefore quite
difficult to actually specify a target for a short period of time. However, a perceivable albeit limited impact on some
services, seems anyway more tolerable than a total session disconnect.

As an example, according to the above MEF specification, that in turn sometime refers to other sources like e.g. the
ITU-T Recommendations G.1010 and Y.1541, possible objective values for VoIP and Interactive Video services are: <
400 ms for the one-way delay, 1-3 10-2 for the packet loss ratio, and < 40 ms for the packet jitter (IFDV); for
Standard/High Definition Video the target values are: < 200 ms for the one-way delay, 1 10-3 for the packet loss ratio,
and < 40 ms for the packet jitter (IFDV); for the Internet Streaming Audio/Video the target values are: < 10 s for the
one-way delay, < 1% for the packet loss ratio, and < 1,5 s for the packet jitter (IFDV); for Interactive Transaction data
the target values are: < 250 ms for the one-way delay, 1 10-3 for the packet loss ratio (assuming TCP loss recovery);
finally, Best Effort services targets looks to be only specified in terms of Web browsing response time, that ranges
from < 2 s (preferred) to < 4 s (acceptable).

Finally, subscriber sessions that are in the creation or termination phase during the migration can be quite easily
managed. Session setup may typically fail during a BNG switchover, however in this case the subscriber will simply
reattempt to setup the session on the new BNG. Moreover a proactive management strategy could, when possible,
start redirecting all new session setup to the new BNG beforehand, when a session migration is planned. Session
termination also does not seem to pose any particular additional requirement or criticality on the session migration
mechanisms.

5.2 VNF Scaling and management of internal state
Various options for scaling individual NFs and whole NF-FGs were discussed in [D3.1] together with which events
might trigger the scaling actions. Different scaling alternatives discussed in D3.1 were for example:

77 Deliverable D3.2 18.06.2015

When trying to identify performance requirements for the BNG stateful session migration, one can say that a limited
transient packet loss can be mostly tolerated, especially when residential customers are concerned, to the extent
this can be managed by the transport/application protocols and has not impact on the overall quality of experience.
Therefore, loss-free migration seems not to be a strong requirement in general. Similar considerations can also be
applied for the packet out-of-sequence performance; some limited impairment on packet ordering can therefore
be tolerated, as far as it can be managed by the transport/application protocols without disrupting the service.

To give some example of more quantitative values for possible performance objectives, we can for instance refer to
the study published by the MEF (Metro Ethernet Forum) for a carrier Ethernet service [MEF23.1]. The performance
requirements reported in the above document are application specific and referred to the end-to-end network
configuration, therefore allocation or budgeting of the overall objective is generally required.

Moreover, it is important to notice that the above performance objectives, for the different classes of service, are
mostly referred to the measurement over a long time interval, typically in the order of a month. It is therefore quite
difficult to actually specify a target for a short period of time. However, a perceivable albeit limited impact on some
services, seems anyway more tolerable than a total session disconnect.

As an example, according to the above MEF specification, that in turn sometime refers to other sources like e.g. the
ITU-T Recommendations G.1010 and Y.1541, possible objective values for VoIP and Interactive Video services are: <
400 ms for the one-way delay, 1-3 10-2 for the packet loss ratio, and < 40 ms for the packet jitter (IFDV); for
Standard/High Definition Video the target values are: < 200 ms for the one-way delay, 1 10-3 for the packet loss ratio,
and < 40 ms for the packet jitter (IFDV); for the Internet Streaming Audio/Video the target values are: < 10 s for the
one-way delay, < 1% for the packet loss ratio, and < 1,5 s for the packet jitter (IFDV); for Interactive Transaction data
the target values are: < 250 ms for the one-way delay, 1 10-3 for the packet loss ratio (assuming TCP loss recovery);
finally, Best Effort services targets looks to be only specified in terms of Web browsing response time, that ranges
from < 2 s (preferred) to < 4 s (acceptable).

Finally, subscriber sessions that are in the creation or termination phase during the migration can be quite easily
managed. Session setup may typically fail during a BNG switchover, however in this case the subscriber will simply
reattempt to setup the session on the new BNG. Moreover a proactive management strategy could, when possible,
start redirecting all new session setup to the new BNG beforehand, when a session migration is planned. Session
termination also does not seem to pose any particular additional requirement or criticality on the session migration
mechanisms.

5.2 VNF Scaling and management of internal state
Various options for scaling individual NFs and whole NF-FGs were discussed in [D3.1] together with which events
might trigger the scaling actions. Different scaling alternatives discussed in D3.1 were for example:

77 Deliverable D3.2 18.06.2015

When trying to identify performance requirements for the BNG stateful session migration, one can say that a limited
transient packet loss can be mostly tolerated, especially when residential customers are concerned, to the extent
this can be managed by the transport/application protocols and has not impact on the overall quality of experience.
Therefore, loss-free migration seems not to be a strong requirement in general. Similar considerations can also be
applied for the packet out-of-sequence performance; some limited impairment on packet ordering can therefore
be tolerated, as far as it can be managed by the transport/application protocols without disrupting the service.

To give some example of more quantitative values for possible performance objectives, we can for instance refer to
the study published by the MEF (Metro Ethernet Forum) for a carrier Ethernet service [MEF23.1]. The performance
requirements reported in the above document are application specific and referred to the end-to-end network
configuration, therefore allocation or budgeting of the overall objective is generally required.

Moreover, it is important to notice that the above performance objectives, for the different classes of service, are
mostly referred to the measurement over a long time interval, typically in the order of a month. It is therefore quite
difficult to actually specify a target for a short period of time. However, a perceivable albeit limited impact on some
services, seems anyway more tolerable than a total session disconnect.

As an example, according to the above MEF specification, that in turn sometime refers to other sources like e.g. the
ITU-T Recommendations G.1010 and Y.1541, possible objective values for VoIP and Interactive Video services are: <
400 ms for the one-way delay, 1-3 10-2 for the packet loss ratio, and < 40 ms for the packet jitter (IFDV); for
Standard/High Definition Video the target values are: < 200 ms for the one-way delay, 1 10-3 for the packet loss ratio,
and < 40 ms for the packet jitter (IFDV); for the Internet Streaming Audio/Video the target values are: < 10 s for the
one-way delay, < 1% for the packet loss ratio, and < 1,5 s for the packet jitter (IFDV); for Interactive Transaction data
the target values are: < 250 ms for the one-way delay, 1 10-3 for the packet loss ratio (assuming TCP loss recovery);
finally, Best Effort services targets looks to be only specified in terms of Web browsing response time, that ranges
from < 2 s (preferred) to < 4 s (acceptable).

Finally, subscriber sessions that are in the creation or termination phase during the migration can be quite easily
managed. Session setup may typically fail during a BNG switchover, however in this case the subscriber will simply
reattempt to setup the session on the new BNG. Moreover a proactive management strategy could, when possible,
start redirecting all new session setup to the new BNG beforehand, when a session migration is planned. Session
termination also does not seem to pose any particular additional requirement or criticality on the session migration
mechanisms.

5.2 VNF Scaling and management of internal state
Various options for scaling individual NFs and whole NF-FGs were discussed in [D3.1] together with which events
might trigger the scaling actions. Different scaling alternatives discussed in D3.1 were for example:

78 Deliverable D3.2 18.06.2015

 Scaling up an individual NF by dynamically giving it more resources, or migrating to an execution environment
with more resources.

 Scaling out by adding new resources and dividing traffic load depending on traffic type, where some traffic can
be divided based on e.g. Layer 2 or 3 addresses while other cases requires dedicated load balancers able to
interpret higher layer protocols

Triggers for scaling and migration that were considered in D3.1 may come from higher layers, lower layers or from
parts of the VNF control systems:

 From higher layers a trigger can be e.g. a client or higher layer orchestrator requesting more resources.

 From lower layers migration may be triggered by topology and resource changes, such as new resources being
introduced, resources taken down for administrative purposes, or failures.

 Scaling and migration may also be triggered by auto-scaling mechanisms in e.g. the VNF Control application due
to increased traffic load.

Here we go deeper into how to manage the internal state within the VNFs during these events, in order to ensure
appropriate synchronization between the VNFs and the traffic they are processing. Without proper state
management services may stop functioning completely during scale-out/in events or in other ways degrade due to
packet losses, increased latency and jitter, or simply being misconfigured. The internal VNF state can be managed by
different components of the UNIFY architecture with different models elaborated in the amendment to D2.1, [D2.1a].

Here we focus on the challenge of coordinated network and VNF state management during a scale-in or -out event.
As others have pointed out these two types of states have to be synchronized to avoid service degradation. For
certain VNFs, e.g. stateless NATs, only the configuration state has to be taken into account, e.g. by configuring
appropriate address mapping rules before directing user traffic to the new instance. In a stateful NAT the transient
state created by the traffic itself has to be transferred before user traffic reaches the VNF to avoid that e.g. existing
connections over the NAT are disconnected. As we saw in the previous section analysing the state and state
requirements of a BNG, requirements on the consistency of state or accurate transfer of state is not always high.
However, other VNFs may be sensitive to packet loss or reordering during the transfer process. As shown in
[Gember-Jacobson2014], packet reordering and loss in an IDS VNF may trigger false positives or fail to trigger on
real positives.

While there are several methods for dealing with network state or VNF state separately [Gember-Jacobson2013,
Dilip2008, Qazi2013], there are only a few that handle them in a coordinated manner [Gember-Jacobson2014,
Rajagopalan2013a, Rajagopalan2013b]. Here our focus was on improving OpenNF as it is the most feature rich of the
methods and is able to provide loss-free and order preserving state transfers. Our improvements reduce the

78 Deliverable D3.2 18.06.2015

 Scaling up an individual NF by dynamically giving it more resources, or migrating to an execution environment
with more resources.

 Scaling out by adding new resources and dividing traffic load depending on traffic type, where some traffic can
be divided based on e.g. Layer 2 or 3 addresses while other cases requires dedicated load balancers able to
interpret higher layer protocols

Triggers for scaling and migration that were considered in D3.1 may come from higher layers, lower layers or from
parts of the VNF control systems:

 From higher layers a trigger can be e.g. a client or higher layer orchestrator requesting more resources.

 From lower layers migration may be triggered by topology and resource changes, such as new resources being
introduced, resources taken down for administrative purposes, or failures.

 Scaling and migration may also be triggered by auto-scaling mechanisms in e.g. the VNF Control application due
to increased traffic load.

Here we go deeper into how to manage the internal state within the VNFs during these events, in order to ensure
appropriate synchronization between the VNFs and the traffic they are processing. Without proper state
management services may stop functioning completely during scale-out/in events or in other ways degrade due to
packet losses, increased latency and jitter, or simply being misconfigured. The internal VNF state can be managed by
different components of the UNIFY architecture with different models elaborated in the amendment to D2.1, [D2.1a].

Here we focus on the challenge of coordinated network and VNF state management during a scale-in or -out event.
As others have pointed out these two types of states have to be synchronized to avoid service degradation. For
certain VNFs, e.g. stateless NATs, only the configuration state has to be taken into account, e.g. by configuring
appropriate address mapping rules before directing user traffic to the new instance. In a stateful NAT the transient
state created by the traffic itself has to be transferred before user traffic reaches the VNF to avoid that e.g. existing
connections over the NAT are disconnected. As we saw in the previous section analysing the state and state
requirements of a BNG, requirements on the consistency of state or accurate transfer of state is not always high.
However, other VNFs may be sensitive to packet loss or reordering during the transfer process. As shown in
[Gember-Jacobson2014], packet reordering and loss in an IDS VNF may trigger false positives or fail to trigger on
real positives.

While there are several methods for dealing with network state or VNF state separately [Gember-Jacobson2013,
Dilip2008, Qazi2013], there are only a few that handle them in a coordinated manner [Gember-Jacobson2014,
Rajagopalan2013a, Rajagopalan2013b]. Here our focus was on improving OpenNF as it is the most feature rich of the
methods and is able to provide loss-free and order preserving state transfers. Our improvements reduce the

78 Deliverable D3.2 18.06.2015

 Scaling up an individual NF by dynamically giving it more resources, or migrating to an execution environment
with more resources.

 Scaling out by adding new resources and dividing traffic load depending on traffic type, where some traffic can
be divided based on e.g. Layer 2 or 3 addresses while other cases requires dedicated load balancers able to
interpret higher layer protocols

Triggers for scaling and migration that were considered in D3.1 may come from higher layers, lower layers or from
parts of the VNF control systems:

 From higher layers a trigger can be e.g. a client or higher layer orchestrator requesting more resources.

 From lower layers migration may be triggered by topology and resource changes, such as new resources being
introduced, resources taken down for administrative purposes, or failures.

 Scaling and migration may also be triggered by auto-scaling mechanisms in e.g. the VNF Control application due
to increased traffic load.

Here we go deeper into how to manage the internal state within the VNFs during these events, in order to ensure
appropriate synchronization between the VNFs and the traffic they are processing. Without proper state
management services may stop functioning completely during scale-out/in events or in other ways degrade due to
packet losses, increased latency and jitter, or simply being misconfigured. The internal VNF state can be managed by
different components of the UNIFY architecture with different models elaborated in the amendment to D2.1, [D2.1a].

Here we focus on the challenge of coordinated network and VNF state management during a scale-in or -out event.
As others have pointed out these two types of states have to be synchronized to avoid service degradation. For
certain VNFs, e.g. stateless NATs, only the configuration state has to be taken into account, e.g. by configuring
appropriate address mapping rules before directing user traffic to the new instance. In a stateful NAT the transient
state created by the traffic itself has to be transferred before user traffic reaches the VNF to avoid that e.g. existing
connections over the NAT are disconnected. As we saw in the previous section analysing the state and state
requirements of a BNG, requirements on the consistency of state or accurate transfer of state is not always high.
However, other VNFs may be sensitive to packet loss or reordering during the transfer process. As shown in
[Gember-Jacobson2014], packet reordering and loss in an IDS VNF may trigger false positives or fail to trigger on
real positives.

While there are several methods for dealing with network state or VNF state separately [Gember-Jacobson2013,
Dilip2008, Qazi2013], there are only a few that handle them in a coordinated manner [Gember-Jacobson2014,
Rajagopalan2013a, Rajagopalan2013b]. Here our focus was on improving OpenNF as it is the most feature rich of the
methods and is able to provide loss-free and order preserving state transfers. Our improvements reduce the

79 Deliverable D3.2 18.06.2015

amount of messages over the control plane by distributing the state transfer mechanism. The next section gives a
brief introduction to OpenNF works, for more details see [Gember-Jacobson2014].

5.2.1 OpenNF architecture
The OpenNF architecture consists of two main parts, 1) a shared library that is linked with the VNF application on the
data plane and 2) a control application running on a controller. The shared library provides an API with methods for
exporting and importing different types of state from a VNF instance and to enable generation of various events
(Southbound API in Figure 5-3). The control application runs on an SDN controller and is responsible for
coordinating the transfer of both network and VNF state using the OpenFlow protocol and OpenNF protocol
respectively, in Figure 5-3 the Control Application can be seen interfacing with the NF State Manager and Flow
Manager in order to do this. In OpenNF all VNF state is associated with the flow(s) that updates a particular chunk of
state, either as a one-to-one mapping for an individual flow, a group of flows or for all flows, these could e.g. be a
packet counter for an individual IP address, for an IP subnet, and for all IP packets respectively. Grouping the state
into these categories and associating the state with the flow(s) allows OpenNF to easily export the appropriate state
when a certain set of traffic flows are to be moved to another instance.

Figure 5-3: OpenNF architecture, taken from [Gember-Jacobson2014]

5.2.1.1 Southbound API to data plane VNFs
The southbound API is implemented using JSON over TCP, relevant commands are shortly summarized below. Here
SrcVNF refers to the source of the state being transferred and DstVNF where it should be placed.

State export/import To export state the command getPerFlow(filter) is sent to SrcVNF, the filter defines which
flow(s) the command is referring to, and by extension which state should be exported. State chunks are returned to
the controller in statePerFlow messages. To import state the message putPerFlow(map<flowid, chunk>) is sent to
DstVNF, containing a map of flow identifiers and their state chunks. Similar commands exist for handling state
associated with multiple or all flows, and to delete state.

Events are enabled and disabled by the controller to handle data traffic during the VNF state transfer. At the SrcVNF
enableEvents(filter, drop) is used to encapsulate and redirect packets to the controller without further processing.
At DstVNF enableEvents(filter, buffer) is used to redirect and buffer packets.

79 Deliverable D3.2 18.06.2015

amount of messages over the control plane by distributing the state transfer mechanism. The next section gives a
brief introduction to OpenNF works, for more details see [Gember-Jacobson2014].

5.2.1 OpenNF architecture
The OpenNF architecture consists of two main parts, 1) a shared library that is linked with the VNF application on the
data plane and 2) a control application running on a controller. The shared library provides an API with methods for
exporting and importing different types of state from a VNF instance and to enable generation of various events
(Southbound API in Figure 5-3). The control application runs on an SDN controller and is responsible for
coordinating the transfer of both network and VNF state using the OpenFlow protocol and OpenNF protocol
respectively, in Figure 5-3 the Control Application can be seen interfacing with the NF State Manager and Flow
Manager in order to do this. In OpenNF all VNF state is associated with the flow(s) that updates a particular chunk of
state, either as a one-to-one mapping for an individual flow, a group of flows or for all flows, these could e.g. be a
packet counter for an individual IP address, for an IP subnet, and for all IP packets respectively. Grouping the state
into these categories and associating the state with the flow(s) allows OpenNF to easily export the appropriate state
when a certain set of traffic flows are to be moved to another instance.

Figure 5-3: OpenNF architecture, taken from [Gember-Jacobson2014]

5.2.1.1 Southbound API to data plane VNFs
The southbound API is implemented using JSON over TCP, relevant commands are shortly summarized below. Here
SrcVNF refers to the source of the state being transferred and DstVNF where it should be placed.

State export/import To export state the command getPerFlow(filter) is sent to SrcVNF, the filter defines which
flow(s) the command is referring to, and by extension which state should be exported. State chunks are returned to
the controller in statePerFlow messages. To import state the message putPerFlow(map<flowid, chunk>) is sent to
DstVNF, containing a map of flow identifiers and their state chunks. Similar commands exist for handling state
associated with multiple or all flows, and to delete state.

Events are enabled and disabled by the controller to handle data traffic during the VNF state transfer. At the SrcVNF
enableEvents(filter, drop) is used to encapsulate and redirect packets to the controller without further processing.
At DstVNF enableEvents(filter, buffer) is used to redirect and buffer packets.

79 Deliverable D3.2 18.06.2015

amount of messages over the control plane by distributing the state transfer mechanism. The next section gives a
brief introduction to OpenNF works, for more details see [Gember-Jacobson2014].

5.2.1 OpenNF architecture
The OpenNF architecture consists of two main parts, 1) a shared library that is linked with the VNF application on the
data plane and 2) a control application running on a controller. The shared library provides an API with methods for
exporting and importing different types of state from a VNF instance and to enable generation of various events
(Southbound API in Figure 5-3). The control application runs on an SDN controller and is responsible for
coordinating the transfer of both network and VNF state using the OpenFlow protocol and OpenNF protocol
respectively, in Figure 5-3 the Control Application can be seen interfacing with the NF State Manager and Flow
Manager in order to do this. In OpenNF all VNF state is associated with the flow(s) that updates a particular chunk of
state, either as a one-to-one mapping for an individual flow, a group of flows or for all flows, these could e.g. be a
packet counter for an individual IP address, for an IP subnet, and for all IP packets respectively. Grouping the state
into these categories and associating the state with the flow(s) allows OpenNF to easily export the appropriate state
when a certain set of traffic flows are to be moved to another instance.

Figure 5-3: OpenNF architecture, taken from [Gember-Jacobson2014]

5.2.1.1 Southbound API to data plane VNFs
The southbound API is implemented using JSON over TCP, relevant commands are shortly summarized below. Here
SrcVNF refers to the source of the state being transferred and DstVNF where it should be placed.

State export/import To export state the command getPerFlow(filter) is sent to SrcVNF, the filter defines which
flow(s) the command is referring to, and by extension which state should be exported. State chunks are returned to
the controller in statePerFlow messages. To import state the message putPerFlow(map<flowid, chunk>) is sent to
DstVNF, containing a map of flow identifiers and their state chunks. Similar commands exist for handling state
associated with multiple or all flows, and to delete state.

Events are enabled and disabled by the controller to handle data traffic during the VNF state transfer. At the SrcVNF
enableEvents(filter, drop) is used to encapsulate and redirect packets to the controller without further processing.
At DstVNF enableEvents(filter, buffer) is used to redirect and buffer packets.

80 Deliverable D3.2 18.06.2015

5.2.1.2 Controller functionality and API
The controller in turn uses the data plane API to provide three different operations that control applications can
utilize to manage VNF and network state, Move(src, dst, filter, scope, prop), Copy(src, dst, filter, scope), and
Share(instances, filter, scope, consistency).

The filter parameter defines which network flows (and which state) the operation refers to, prop is used to select
guarantees. The Move operation transfers both VNF state and traffic to a new instance whereas the Copy operation
only transfers VNF state (e.g. for periodic backups or loose synchronization). The Share operation provides strict
consistency update for VNF state that has to be strictly synchronized between instances. While the use-cases for
both Copy and Share are interesting here we focus on the Move operation. The three guarantees provided by Move
are:

No guarantees (NG) All packets arriving during the state transfer are processed by the SrcVNF, state may be
unsynchronized after the operation. The message sequence for this operation is depicted in Figure 5-4.

Figure 5-4: OpenNF NG Move operation

Loss-free (LF) Packets belonging to flow(s) currently being moved are redirected using events(filter,drop) to the
controller where they buffered until the VNF state transfer finishes. When completed buffered packets are sent to
DstVNF via the switch using Packet-Out. Finally the switch is updated to send traffic to DstVNF.

Order preserving (OP) Extends LF with packet stream synchronization and a two phase forwarding update that
ensures that all redirected packets are processed at DstVNF before packets arriving from the switch. When VNF
state transfer is completed the event(filter,buffer) is enabled on the DstVNF, causing it to buffer packets coming
directly from the switch and also redirect them to the controller. Redirected packets (from SrcVNF) buffered at the
controller are sent via switch but this time with a special flag, causing them to bypass the buffering at DstVNF. Phase
one update duplicates traffic to both controller and DstVNF. When the first packet from the switch arrives at the
controller, phase two update is triggered to only send packets to DstVNF. Packets synchronization is achieved at the
controller by trying to match the packets arriving directly from the switch with the ones arriving from the DstVNF,

80 Deliverable D3.2 18.06.2015

5.2.1.2 Controller functionality and API
The controller in turn uses the data plane API to provide three different operations that control applications can
utilize to manage VNF and network state, Move(src, dst, filter, scope, prop), Copy(src, dst, filter, scope), and
Share(instances, filter, scope, consistency).

The filter parameter defines which network flows (and which state) the operation refers to, prop is used to select
guarantees. The Move operation transfers both VNF state and traffic to a new instance whereas the Copy operation
only transfers VNF state (e.g. for periodic backups or loose synchronization). The Share operation provides strict
consistency update for VNF state that has to be strictly synchronized between instances. While the use-cases for
both Copy and Share are interesting here we focus on the Move operation. The three guarantees provided by Move
are:

No guarantees (NG) All packets arriving during the state transfer are processed by the SrcVNF, state may be
unsynchronized after the operation. The message sequence for this operation is depicted in Figure 5-4.

Figure 5-4: OpenNF NG Move operation

Loss-free (LF) Packets belonging to flow(s) currently being moved are redirected using events(filter,drop) to the
controller where they buffered until the VNF state transfer finishes. When completed buffered packets are sent to
DstVNF via the switch using Packet-Out. Finally the switch is updated to send traffic to DstVNF.

Order preserving (OP) Extends LF with packet stream synchronization and a two phase forwarding update that
ensures that all redirected packets are processed at DstVNF before packets arriving from the switch. When VNF
state transfer is completed the event(filter,buffer) is enabled on the DstVNF, causing it to buffer packets coming
directly from the switch and also redirect them to the controller. Redirected packets (from SrcVNF) buffered at the
controller are sent via switch but this time with a special flag, causing them to bypass the buffering at DstVNF. Phase
one update duplicates traffic to both controller and DstVNF. When the first packet from the switch arrives at the
controller, phase two update is triggered to only send packets to DstVNF. Packets synchronization is achieved at the
controller by trying to match the packets arriving directly from the switch with the ones arriving from the DstVNF,

80 Deliverable D3.2 18.06.2015

5.2.1.2 Controller functionality and API
The controller in turn uses the data plane API to provide three different operations that control applications can
utilize to manage VNF and network state, Move(src, dst, filter, scope, prop), Copy(src, dst, filter, scope), and
Share(instances, filter, scope, consistency).

The filter parameter defines which network flows (and which state) the operation refers to, prop is used to select
guarantees. The Move operation transfers both VNF state and traffic to a new instance whereas the Copy operation
only transfers VNF state (e.g. for periodic backups or loose synchronization). The Share operation provides strict
consistency update for VNF state that has to be strictly synchronized between instances. While the use-cases for
both Copy and Share are interesting here we focus on the Move operation. The three guarantees provided by Move
are:

No guarantees (NG) All packets arriving during the state transfer are processed by the SrcVNF, state may be
unsynchronized after the operation. The message sequence for this operation is depicted in Figure 5-4.

Figure 5-4: OpenNF NG Move operation

Loss-free (LF) Packets belonging to flow(s) currently being moved are redirected using events(filter,drop) to the
controller where they buffered until the VNF state transfer finishes. When completed buffered packets are sent to
DstVNF via the switch using Packet-Out. Finally the switch is updated to send traffic to DstVNF.

Order preserving (OP) Extends LF with packet stream synchronization and a two phase forwarding update that
ensures that all redirected packets are processed at DstVNF before packets arriving from the switch. When VNF
state transfer is completed the event(filter,buffer) is enabled on the DstVNF, causing it to buffer packets coming
directly from the switch and also redirect them to the controller. Redirected packets (from SrcVNF) buffered at the
controller are sent via switch but this time with a special flag, causing them to bypass the buffering at DstVNF. Phase
one update duplicates traffic to both controller and DstVNF. When the first packet from the switch arrives at the
controller, phase two update is triggered to only send packets to DstVNF. Packets synchronization is achieved at the
controller by trying to match the packets arriving directly from the switch with the ones arriving from the DstVNF,

81 Deliverable D3.2 18.06.2015

When the packet stream synchronization has been observed the controller disables event(filter,buffer) and triggers
the release of buffered packets at the DstVNF.

The LF and OP versions of the Move operation achieves state transfer without packet loss or re-ordered packets
which e.g. Split/Merge [Rajagopalan2013a] could not. However, these guarantees come at a cost in packet latency
and control plane overhead as data plane packets are redirected and buffered at the controller.

5.2.1.3 Optimizations
OpenNF implements three optimizations of the basic Move operation, these optimizations are:

Parallelize (PZ) Immediately send received state to DstVNF without waiting for GetPerFlow to finish.

Late Locking (LL) Packets arriving at SrcVNF are redirected to the controller on a per-state basis; redirection only
happens if the associated state has been sent to the controller

Early release (ER) Packet redirection from the controller to DstVNF is performed on a per-connection basis.
Instead of waiting for the full state transfer to complete, packets are sent to the DstVNF if corresponding state has
been sent and acknowledged by DstVNF6. LF Move with all optimizations can be seen in Figure 5-5.

Figure 5-5: OpenNF LF with PZLLER

6 Both LL and ER optimizations will change the order of packets between flows, while maintaining the order within flows. This
reduces the order preserving guarantee to be order preserving only within flows, which may be significant for some VNFs.

81 Deliverable D3.2 18.06.2015

When the packet stream synchronization has been observed the controller disables event(filter,buffer) and triggers
the release of buffered packets at the DstVNF.

The LF and OP versions of the Move operation achieves state transfer without packet loss or re-ordered packets
which e.g. Split/Merge [Rajagopalan2013a] could not. However, these guarantees come at a cost in packet latency
and control plane overhead as data plane packets are redirected and buffered at the controller.

5.2.1.3 Optimizations
OpenNF implements three optimizations of the basic Move operation, these optimizations are:

Parallelize (PZ) Immediately send received state to DstVNF without waiting for GetPerFlow to finish.

Late Locking (LL) Packets arriving at SrcVNF are redirected to the controller on a per-state basis; redirection only
happens if the associated state has been sent to the controller

Early release (ER) Packet redirection from the controller to DstVNF is performed on a per-connection basis.
Instead of waiting for the full state transfer to complete, packets are sent to the DstVNF if corresponding state has
been sent and acknowledged by DstVNF6. LF Move with all optimizations can be seen in Figure 5-5.

Figure 5-5: OpenNF LF with PZLLER

6 Both LL and ER optimizations will change the order of packets between flows, while maintaining the order within flows. This
reduces the order preserving guarantee to be order preserving only within flows, which may be significant for some VNFs.

81 Deliverable D3.2 18.06.2015

When the packet stream synchronization has been observed the controller disables event(filter,buffer) and triggers
the release of buffered packets at the DstVNF.

The LF and OP versions of the Move operation achieves state transfer without packet loss or re-ordered packets
which e.g. Split/Merge [Rajagopalan2013a] could not. However, these guarantees come at a cost in packet latency
and control plane overhead as data plane packets are redirected and buffered at the controller.

5.2.1.3 Optimizations
OpenNF implements three optimizations of the basic Move operation, these optimizations are:

Parallelize (PZ) Immediately send received state to DstVNF without waiting for GetPerFlow to finish.

Late Locking (LL) Packets arriving at SrcVNF are redirected to the controller on a per-state basis; redirection only
happens if the associated state has been sent to the controller

Early release (ER) Packet redirection from the controller to DstVNF is performed on a per-connection basis.
Instead of waiting for the full state transfer to complete, packets are sent to the DstVNF if corresponding state has
been sent and acknowledged by DstVNF6. LF Move with all optimizations can be seen in Figure 5-5.

Figure 5-5: OpenNF LF with PZLLER

6 Both LL and ER optimizations will change the order of packets between flows, while maintaining the order within flows. This
reduces the order preserving guarantee to be order preserving only within flows, which may be significant for some VNFs.

82 Deliverable D3.2 18.06.2015

5.2.1.4 Bottlenecks in OpenNF
Our main concern with the OpenNF protocol is using the controller for VNF state transfer and in particular for
redirection of data packets during both LF and OP Move. One of the goals we have when transferring state is to
affect traffic passing through the VNFs as little as possible e.g. the LF Move reduces the impact on traffic by not
causing packet loss. However, when buffering data plane packets in the LF and OP cases we will induce additional
latency on the flows that are being moved. While we cannot avoid buffering, we can reduce the amount of traffic
buffered by reducing the total time it takes to transfer state by not sending messages via the controller.

Transporting data plane traffic over the control network (as events and as OpenFlow Packet-In/Out) risks
overloading the control network which typically has a lower bandwidth and higher latency than the data plane links.
Data plane flows can have a higher bandwidth than what is supported by the control network, making it impossible
to redirect these packets to the controller without loss.

5.2.2 Distributed state transfer (DiST)
To address the problems discussed in the previous section we extended OpenNF with Distributed State Transfer
(DiST) to avoid passing VNF state and data packets through the controller, this also removes the need for packet
buffering in the controller. DiST required the addition of new commands in the data plane API as well as changes to
the messages exchange between the controller and the VNFs. The API has been extended to include a destination
address at appropriate places, e.g. for enableEvents, and a new command was added to transfer VNF state directly
between VNFs, MovePerFlow(filter,dstIP). How the Move operation message exchanges have been extended in DiST
for the various guarantees is described below:

DiST No guarantees The initial GetPerFlow is replaced with a MovePerFlow message to SrcVNF containing the IP of
DstVNF. SrcVNF establishes a connection to DstVNF and uses PutPerFlow to transfer state. When all state for the
filter has been transferred, SrcVNF acknowledges the MovePerFlow to the controller which updates forwarding in
the switch.

DiST Loss-free with PZ The loss-free operation starts by sending an enableEvent(filter,drop,DstVNF) message to
SrcVNF, which initiates a TCP connection with DstVNF and creates a filter for redirecting packets to DstVNF where
they are buffered. Once enableEvent is acknowledged the controller sends a MovePerFlow message to SrcVNF and
state transfer starts. Once all affected state has been transferred SrcVNF sends a command to start processing the
buffered packets. SrcVNF finally acknowledges the MovePerFlow command to the controller, which updates
forwarding in the switch.

DiST Loss-free with PZLLER Each state for which transfer has started is marked and arriving packets associated
with marked state are redirected to DstVNF. Packets associated with state for which transfer has not yet started are
processed directly by SrcVNF. DstVNF in turn maintains a hash table that buffers packets per-flow. When all state
for a flow has been transferred DstVNF starts processing packets from that flows bucket in the hash table. If state

82 Deliverable D3.2 18.06.2015

5.2.1.4 Bottlenecks in OpenNF
Our main concern with the OpenNF protocol is using the controller for VNF state transfer and in particular for
redirection of data packets during both LF and OP Move. One of the goals we have when transferring state is to
affect traffic passing through the VNFs as little as possible e.g. the LF Move reduces the impact on traffic by not
causing packet loss. However, when buffering data plane packets in the LF and OP cases we will induce additional
latency on the flows that are being moved. While we cannot avoid buffering, we can reduce the amount of traffic
buffered by reducing the total time it takes to transfer state by not sending messages via the controller.

Transporting data plane traffic over the control network (as events and as OpenFlow Packet-In/Out) risks
overloading the control network which typically has a lower bandwidth and higher latency than the data plane links.
Data plane flows can have a higher bandwidth than what is supported by the control network, making it impossible
to redirect these packets to the controller without loss.

5.2.2 Distributed state transfer (DiST)
To address the problems discussed in the previous section we extended OpenNF with Distributed State Transfer
(DiST) to avoid passing VNF state and data packets through the controller, this also removes the need for packet
buffering in the controller. DiST required the addition of new commands in the data plane API as well as changes to
the messages exchange between the controller and the VNFs. The API has been extended to include a destination
address at appropriate places, e.g. for enableEvents, and a new command was added to transfer VNF state directly
between VNFs, MovePerFlow(filter,dstIP). How the Move operation message exchanges have been extended in DiST
for the various guarantees is described below:

DiST No guarantees The initial GetPerFlow is replaced with a MovePerFlow message to SrcVNF containing the IP of
DstVNF. SrcVNF establishes a connection to DstVNF and uses PutPerFlow to transfer state. When all state for the
filter has been transferred, SrcVNF acknowledges the MovePerFlow to the controller which updates forwarding in
the switch.

DiST Loss-free with PZ The loss-free operation starts by sending an enableEvent(filter,drop,DstVNF) message to
SrcVNF, which initiates a TCP connection with DstVNF and creates a filter for redirecting packets to DstVNF where
they are buffered. Once enableEvent is acknowledged the controller sends a MovePerFlow message to SrcVNF and
state transfer starts. Once all affected state has been transferred SrcVNF sends a command to start processing the
buffered packets. SrcVNF finally acknowledges the MovePerFlow command to the controller, which updates
forwarding in the switch.

DiST Loss-free with PZLLER Each state for which transfer has started is marked and arriving packets associated
with marked state are redirected to DstVNF. Packets associated with state for which transfer has not yet started are
processed directly by SrcVNF. DstVNF in turn maintains a hash table that buffers packets per-flow. When all state
for a flow has been transferred DstVNF starts processing packets from that flows bucket in the hash table. If state

82 Deliverable D3.2 18.06.2015

5.2.1.4 Bottlenecks in OpenNF
Our main concern with the OpenNF protocol is using the controller for VNF state transfer and in particular for
redirection of data packets during both LF and OP Move. One of the goals we have when transferring state is to
affect traffic passing through the VNFs as little as possible e.g. the LF Move reduces the impact on traffic by not
causing packet loss. However, when buffering data plane packets in the LF and OP cases we will induce additional
latency on the flows that are being moved. While we cannot avoid buffering, we can reduce the amount of traffic
buffered by reducing the total time it takes to transfer state by not sending messages via the controller.

Transporting data plane traffic over the control network (as events and as OpenFlow Packet-In/Out) risks
overloading the control network which typically has a lower bandwidth and higher latency than the data plane links.
Data plane flows can have a higher bandwidth than what is supported by the control network, making it impossible
to redirect these packets to the controller without loss.

5.2.2 Distributed state transfer (DiST)
To address the problems discussed in the previous section we extended OpenNF with Distributed State Transfer
(DiST) to avoid passing VNF state and data packets through the controller, this also removes the need for packet
buffering in the controller. DiST required the addition of new commands in the data plane API as well as changes to
the messages exchange between the controller and the VNFs. The API has been extended to include a destination
address at appropriate places, e.g. for enableEvents, and a new command was added to transfer VNF state directly
between VNFs, MovePerFlow(filter,dstIP). How the Move operation message exchanges have been extended in DiST
for the various guarantees is described below:

DiST No guarantees The initial GetPerFlow is replaced with a MovePerFlow message to SrcVNF containing the IP of
DstVNF. SrcVNF establishes a connection to DstVNF and uses PutPerFlow to transfer state. When all state for the
filter has been transferred, SrcVNF acknowledges the MovePerFlow to the controller which updates forwarding in
the switch.

DiST Loss-free with PZ The loss-free operation starts by sending an enableEvent(filter,drop,DstVNF) message to
SrcVNF, which initiates a TCP connection with DstVNF and creates a filter for redirecting packets to DstVNF where
they are buffered. Once enableEvent is acknowledged the controller sends a MovePerFlow message to SrcVNF and
state transfer starts. Once all affected state has been transferred SrcVNF sends a command to start processing the
buffered packets. SrcVNF finally acknowledges the MovePerFlow command to the controller, which updates
forwarding in the switch.

DiST Loss-free with PZLLER Each state for which transfer has started is marked and arriving packets associated
with marked state are redirected to DstVNF. Packets associated with state for which transfer has not yet started are
processed directly by SrcVNF. DstVNF in turn maintains a hash table that buffers packets per-flow. When all state
for a flow has been transferred DstVNF starts processing packets from that flows bucket in the hash table. If state

83 Deliverable D3.2 18.06.2015

for a flow has been transferred and there are no packets in the buffer, redirected packets are not buffered but
processed immediately. A message sequence chart for this flavour of Move is depicted in Figure 5-6.

Figure 5-6: DiST LF Move with PZLLER

DiST Order-preserving with PZLLER Extends the LF procedure with a two-phase forwarding update to ensure
that redirected packets from SrcVNF are processed before packets forwarded from the switch. Synchronizing the
two packet streams (one redirected from SrcVNF and the other forwarded from switch) is done using an ``InBand
Control packet'' (IBCPkt). The IBCPkt must be crafted differently for each filter and also depends on how the VNF
processes packets; the IBCPkt must match the filter definition in both VNFs but also be distinguishable from normal
data packets 7. The two-phase update starts by updating the switch forwarding rule for filter to duplicate traffic to
both Src- and DstVNF, followed by a Packet-Out message sending the IBCPkt to both VNFs at once8. Finally the
controller updated the switch forwarding rule to send traffic belonging to filter to DstVNF only.

DstVNF will now receive two IBCPkts, one directly from the switch and the other redirected by SrcVNF. If the IBCPkt
arrives first from the switch (Event1) DstVNF starts buffering packets from the switch9 while still processing
redirected packets from SrcVNF, until the second IBCPkt arrives. At that point processing of redirected packets
stops and processing of buffered packets from the switch starts. If an IBCPkt arrives from SrcVNF before the IBCPkt
from the switch (Event2) processing of redirected packets from SrcVNF is stopped. Once the second IBCPkt arrives
processing of packets from the switch is started. A message sequence chart for order-preserving Move is depicted
in Figure 5-7.

7 A similar problem exists in many OAM protocols in which probe packets must be fate-sharing with the traffic flow they
measure but still be distinguishable from user traffic. One solution is to inform the VNFs of the content of the IBCPkt ahead of
the Move operation so that they know what to look for.8 Assumes that the IBCPkt is inserted at the same position in both of the packet streams.9 Packets matching filter from the switch before IBCPkt are dropped, these packets will also be redirected from SrcVNF.

83 Deliverable D3.2 18.06.2015

for a flow has been transferred and there are no packets in the buffer, redirected packets are not buffered but
processed immediately. A message sequence chart for this flavour of Move is depicted in Figure 5-6.

Figure 5-6: DiST LF Move with PZLLER

DiST Order-preserving with PZLLER Extends the LF procedure with a two-phase forwarding update to ensure
that redirected packets from SrcVNF are processed before packets forwarded from the switch. Synchronizing the
two packet streams (one redirected from SrcVNF and the other forwarded from switch) is done using an ``InBand
Control packet'' (IBCPkt). The IBCPkt must be crafted differently for each filter and also depends on how the VNF
processes packets; the IBCPkt must match the filter definition in both VNFs but also be distinguishable from normal
data packets 7. The two-phase update starts by updating the switch forwarding rule for filter to duplicate traffic to
both Src- and DstVNF, followed by a Packet-Out message sending the IBCPkt to both VNFs at once8. Finally the
controller updated the switch forwarding rule to send traffic belonging to filter to DstVNF only.

DstVNF will now receive two IBCPkts, one directly from the switch and the other redirected by SrcVNF. If the IBCPkt
arrives first from the switch (Event1) DstVNF starts buffering packets from the switch9 while still processing
redirected packets from SrcVNF, until the second IBCPkt arrives. At that point processing of redirected packets
stops and processing of buffered packets from the switch starts. If an IBCPkt arrives from SrcVNF before the IBCPkt
from the switch (Event2) processing of redirected packets from SrcVNF is stopped. Once the second IBCPkt arrives
processing of packets from the switch is started. A message sequence chart for order-preserving Move is depicted
in Figure 5-7.

7 A similar problem exists in many OAM protocols in which probe packets must be fate-sharing with the traffic flow they
measure but still be distinguishable from user traffic. One solution is to inform the VNFs of the content of the IBCPkt ahead of
the Move operation so that they know what to look for.8 Assumes that the IBCPkt is inserted at the same position in both of the packet streams.9 Packets matching filter from the switch before IBCPkt are dropped, these packets will also be redirected from SrcVNF.

83 Deliverable D3.2 18.06.2015

for a flow has been transferred and there are no packets in the buffer, redirected packets are not buffered but
processed immediately. A message sequence chart for this flavour of Move is depicted in Figure 5-6.

Figure 5-6: DiST LF Move with PZLLER

DiST Order-preserving with PZLLER Extends the LF procedure with a two-phase forwarding update to ensure
that redirected packets from SrcVNF are processed before packets forwarded from the switch. Synchronizing the
two packet streams (one redirected from SrcVNF and the other forwarded from switch) is done using an ``InBand
Control packet'' (IBCPkt). The IBCPkt must be crafted differently for each filter and also depends on how the VNF
processes packets; the IBCPkt must match the filter definition in both VNFs but also be distinguishable from normal
data packets 7. The two-phase update starts by updating the switch forwarding rule for filter to duplicate traffic to
both Src- and DstVNF, followed by a Packet-Out message sending the IBCPkt to both VNFs at once8. Finally the
controller updated the switch forwarding rule to send traffic belonging to filter to DstVNF only.

DstVNF will now receive two IBCPkts, one directly from the switch and the other redirected by SrcVNF. If the IBCPkt
arrives first from the switch (Event1) DstVNF starts buffering packets from the switch9 while still processing
redirected packets from SrcVNF, until the second IBCPkt arrives. At that point processing of redirected packets
stops and processing of buffered packets from the switch starts. If an IBCPkt arrives from SrcVNF before the IBCPkt
from the switch (Event2) processing of redirected packets from SrcVNF is stopped. Once the second IBCPkt arrives
processing of packets from the switch is started. A message sequence chart for order-preserving Move is depicted
in Figure 5-7.

7 A similar problem exists in many OAM protocols in which probe packets must be fate-sharing with the traffic flow they
measure but still be distinguishable from user traffic. One solution is to inform the VNFs of the content of the IBCPkt ahead of
the Move operation so that they know what to look for.8 Assumes that the IBCPkt is inserted at the same position in both of the packet streams.9 Packets matching filter from the switch before IBCPkt are dropped, these packets will also be redirected from SrcVNF.

84 Deliverable D3.2 18.06.2015

Figure 5-7: DiST OP Move with PZLLER

5.2.3 Evaluation of DiST vs. original OpenNF
We evaluate DiST in the testbed configuration shown in Figure 5-8. Based on an assumption of roughly one order of
magnitude performance difference between control and data plane networks, the data plane links are limited to 100
MBit/s bandwidth with a 1 ms one-way delay while control plane links are limited to 10 MBit/s with 10 ms one-way
delay.

Figure 5-8: Testbed setup

Looking closer at the assumption of one order of magnitude difference for these two performance metrics, for
bandwidth is arguably too low as measurements reported in for example [DevoFlow] put the difference as high as
four orders of magnitude. In those measurements their switch line-card is capable of 300 GBit/s whereas the
control plane is limited to a mere 17 MBit/s. As for the latency difference, one order of magnitude may appear to be

Control plane
10 Mbit/s 20 ms RTT

Data plane
100 Mbit/s 2 ms RTT

OpenNF
controller

OpenFlow
Switch

SrcVNF

DstVNF
Source Sink

84 Deliverable D3.2 18.06.2015

Figure 5-7: DiST OP Move with PZLLER

5.2.3 Evaluation of DiST vs. original OpenNF
We evaluate DiST in the testbed configuration shown in Figure 5-8. Based on an assumption of roughly one order of
magnitude performance difference between control and data plane networks, the data plane links are limited to 100
MBit/s bandwidth with a 1 ms one-way delay while control plane links are limited to 10 MBit/s with 10 ms one-way
delay.

Figure 5-8: Testbed setup

Looking closer at the assumption of one order of magnitude difference for these two performance metrics, for
bandwidth is arguably too low as measurements reported in for example [DevoFlow] put the difference as high as
four orders of magnitude. In those measurements their switch line-card is capable of 300 GBit/s whereas the
control plane is limited to a mere 17 MBit/s. As for the latency difference, one order of magnitude may appear to be

Control plane
10 Mbit/s 20 ms RTT

Data plane
100 Mbit/s 2 ms RTT

OpenNF
controller

OpenFlow
Switch

SrcVNF

DstVNF
Source Sink

84 Deliverable D3.2 18.06.2015

Figure 5-7: DiST OP Move with PZLLER

5.2.3 Evaluation of DiST vs. original OpenNF
We evaluate DiST in the testbed configuration shown in Figure 5-8. Based on an assumption of roughly one order of
magnitude performance difference between control and data plane networks, the data plane links are limited to 100
MBit/s bandwidth with a 1 ms one-way delay while control plane links are limited to 10 MBit/s with 10 ms one-way
delay.

Figure 5-8: Testbed setup

Looking closer at the assumption of one order of magnitude difference for these two performance metrics, for
bandwidth is arguably too low as measurements reported in for example [DevoFlow] put the difference as high as
four orders of magnitude. In those measurements their switch line-card is capable of 300 GBit/s whereas the
control plane is limited to a mere 17 MBit/s. As for the latency difference, one order of magnitude may appear to be

Control plane
10 Mbit/s 20 ms RTT

Data plane
100 Mbit/s 2 ms RTT

OpenNF
controller

OpenFlow
Switch

SrcVNF

DstVNF
Source Sink

85 Deliverable D3.2 18.06.2015

too high instead. However, as reported in the same paper the line-card is capable of forwarding a packet within 5 µs
while the round-trip-time between line-card and local control plane CPU is 500 µs. How that difference translates
into a choice of latency is our case is difficult to say, as many other things also affect the difference in latency
between control and data plane, including e.g. the topology of both control and data plane networks, the distance to
the controller from the VNF as well as the distance between VNFs. While it is likely that the latency on the direct
path between two VNFs is lower than going via a third party, the assumption of a 10 times more latency is somewhat
arbitrary. For this reason we also evaluated the mechanisms with no performance difference between control and
data plane which is not realistic but provides a baseline for comparison.

As VNF we use the PRADS implementation from the authors of [Gember-Jacobson2014]. PRADS passively monitors
network traffic to gather information about the hosts and services it can see. The state transferred when moving
flows for PRADS is thus the information found about a host with an address in the flow definition, e.g. what services
it is using and whom it is communicating with.

As only the NG and LF DiST extensions to Move are currently implemented, we compare these with the original
OpenNF versions by replaying a live network traffic trace using tcpreplay[TCPr] and after 20 seconds we initiate a
Move. We replayed the traffic at 100, 500, 1000, 2500, and finally 5000 pps. During normal operation, i.e. no state
transfer is ongoing, the VNF implementation is able to handle around 15000pps. However during a Move; at 2500
pps the OpenNF SrcVNF starts dropping incoming packets, the same happens in DiST at 5000 pps10. For a fair
comparison we therefore focus on the results obtained below 2500 pps, i.e. the ones obtained at 1000 pps.

5.2.3.1 Controller load
In OpenNF Move the total amount of messages is the same as the amount of messages passing the controller,
approximately 3 + 2 + where is the number of state chunks, the number of redirected packets, and
the number of control messages (which is different for depending on the optimizations, between 3 and 5). With the
DiST extension the total amount of messages is approximately 2 + + ; the number is reduced since state
and packet do not need to go via the controller. More importantly for the controller load, in DiST the only messages
affecting the controller is as all other messages are sent directly between the VNFs. While the cost of the DiST
Move still scales with the amount of state to transfer and the number of redirected packets, that cost is placed at the
VNFs, keeping the controller load constant for each Move operation.

5.2.3.2 Operation Time
Some of the data we collected is shown in Table 5-1, these are results at 1000 pps.

10 Both are likely due to locking of shared data structures between the packet processing and state transferringthreads.
85 Deliverable D3.2 18.06.2015

too high instead. However, as reported in the same paper the line-card is capable of forwarding a packet within 5 µs
while the round-trip-time between line-card and local control plane CPU is 500 µs. How that difference translates
into a choice of latency is our case is difficult to say, as many other things also affect the difference in latency
between control and data plane, including e.g. the topology of both control and data plane networks, the distance to
the controller from the VNF as well as the distance between VNFs. While it is likely that the latency on the direct
path between two VNFs is lower than going via a third party, the assumption of a 10 times more latency is somewhat
arbitrary. For this reason we also evaluated the mechanisms with no performance difference between control and
data plane which is not realistic but provides a baseline for comparison.

As VNF we use the PRADS implementation from the authors of [Gember-Jacobson2014]. PRADS passively monitors
network traffic to gather information about the hosts and services it can see. The state transferred when moving
flows for PRADS is thus the information found about a host with an address in the flow definition, e.g. what services
it is using and whom it is communicating with.

As only the NG and LF DiST extensions to Move are currently implemented, we compare these with the original
OpenNF versions by replaying a live network traffic trace using tcpreplay[TCPr] and after 20 seconds we initiate a
Move. We replayed the traffic at 100, 500, 1000, 2500, and finally 5000 pps. During normal operation, i.e. no state
transfer is ongoing, the VNF implementation is able to handle around 15000pps. However during a Move; at 2500
pps the OpenNF SrcVNF starts dropping incoming packets, the same happens in DiST at 5000 pps10. For a fair
comparison we therefore focus on the results obtained below 2500 pps, i.e. the ones obtained at 1000 pps.

5.2.3.1 Controller load
In OpenNF Move the total amount of messages is the same as the amount of messages passing the controller,
approximately 3 + 2 + where is the number of state chunks, the number of redirected packets, and
the number of control messages (which is different for depending on the optimizations, between 3 and 5). With the
DiST extension the total amount of messages is approximately 2 + + ; the number is reduced since state
and packet do not need to go via the controller. More importantly for the controller load, in DiST the only messages
affecting the controller is as all other messages are sent directly between the VNFs. While the cost of the DiST
Move still scales with the amount of state to transfer and the number of redirected packets, that cost is placed at the
VNFs, keeping the controller load constant for each Move operation.

5.2.3.2 Operation Time
Some of the data we collected is shown in Table 5-1, these are results at 1000 pps.

10 Both are likely due to locking of shared data structures between the packet processing and state transferringthreads.
85 Deliverable D3.2 18.06.2015

too high instead. However, as reported in the same paper the line-card is capable of forwarding a packet within 5 µs
while the round-trip-time between line-card and local control plane CPU is 500 µs. How that difference translates
into a choice of latency is our case is difficult to say, as many other things also affect the difference in latency
between control and data plane, including e.g. the topology of both control and data plane networks, the distance to
the controller from the VNF as well as the distance between VNFs. While it is likely that the latency on the direct
path between two VNFs is lower than going via a third party, the assumption of a 10 times more latency is somewhat
arbitrary. For this reason we also evaluated the mechanisms with no performance difference between control and
data plane which is not realistic but provides a baseline for comparison.

As VNF we use the PRADS implementation from the authors of [Gember-Jacobson2014]. PRADS passively monitors
network traffic to gather information about the hosts and services it can see. The state transferred when moving
flows for PRADS is thus the information found about a host with an address in the flow definition, e.g. what services
it is using and whom it is communicating with.

As only the NG and LF DiST extensions to Move are currently implemented, we compare these with the original
OpenNF versions by replaying a live network traffic trace using tcpreplay[TCPr] and after 20 seconds we initiate a
Move. We replayed the traffic at 100, 500, 1000, 2500, and finally 5000 pps. During normal operation, i.e. no state
transfer is ongoing, the VNF implementation is able to handle around 15000pps. However during a Move; at 2500
pps the OpenNF SrcVNF starts dropping incoming packets, the same happens in DiST at 5000 pps10. For a fair
comparison we therefore focus on the results obtained below 2500 pps, i.e. the ones obtained at 1000 pps.

5.2.3.1 Controller load
In OpenNF Move the total amount of messages is the same as the amount of messages passing the controller,
approximately 3 + 2 + where is the number of state chunks, the number of redirected packets, and
the number of control messages (which is different for depending on the optimizations, between 3 and 5). With the
DiST extension the total amount of messages is approximately 2 + + ; the number is reduced since state
and packet do not need to go via the controller. More importantly for the controller load, in DiST the only messages
affecting the controller is as all other messages are sent directly between the VNFs. While the cost of the DiST
Move still scales with the amount of state to transfer and the number of redirected packets, that cost is placed at the
VNFs, keeping the controller load constant for each Move operation.

5.2.3.2 Operation Time
Some of the data we collected is shown in Table 5-1, these are results at 1000 pps.

10 Both are likely due to locking of shared data structures between the packet processing and state transferringthreads.

86 Deliverable D3.2 18.06.2015

Table 5-1: DiST vs OpenNF performance data gathered at 1000 pps, with 95% CI

Config # States # Redirected MoveTime(s) RedirTime(s) Ser% Deser%

OpenNF LF PZ 2186±1 6678±179 7.44±0.21 8.11±0.17 2.63 1.95

DiST LF PZ 2184±2 489±39 0.51±0.06 0.82±0.04 40.22 33.01

OpenNF LF PZLLER 2186±1 17±5 2.25±0.04 1.51±0.05 7.99 6.67

DiST LF PZLLER 2204±2 6±1 0.41±0.04 0.41±0.21 48.63 40.81

(OpenNF* LF PZLLER) 2187±1 6±2 0.78±0.02 0.96±0.17 26.83 22.07

MoveTime is the time from start of the Move operation on the controller until the switch forwarding update.
MoveTime for the original OpenNF solution is about 3 to 6 times higher than DiST for the PZLLER case, this is mostly
explained by the latency differences on the control vs. data plane, but the reduced number of messages in DiST
contributes as well. To separate the contribution from latency from the number of messages we ran OpenNF in an
unrealistic case where control and data plane have the same performance, shown as OpenNF*. Comparing the
MoveTime for DiST and OpenNF* it is clear that the reduced number of message makes DiST about twice as fast
even in this case. The importance of the LL and ER optimizations is also obvious here; they are very effective at
reducing the number of redirected packets. In DiST these optimizations reduce the MoveTime by about 20% at 1000
pps, whereas for OpenNF the reduction is about 70%. However, the effectiveness of these optimizations depends on
the composition of the incoming traffic.

RedirTime is the time from initiating state transfer at the SrcVNF until the last packet is redirected. We measured
RedirTime in order to see how long time packets are still being redirected after the VNF state has been moved. This
can be significant if we e.g. shut down SrcVNF once we believe Move is completed. As can be seen, in some cases
RedirTime is longer than MoveTime indicating that RedirTime should be considered when determining if the Move
has completed or not. We also measured Ser and Deser which is the percentage of MoveTime spent (de-)serializing
data in the VNF during state export and import respectively. As can be seen a large part of the MoveTime in DiST is
spent on serializing, showing another bottleneck to be removed.

MoveTime in LF mode with PZLLER versus number of state chunks transferred for the different pps values is shown
in Figure 5-9 on the left y-axis, illustrated with bars. As can be seen, DiST is always faster than OpenNF. On the right
y-axis is the ratio between OpenNF, OpenNF* and DiST MoveTime, plotted with dotted lines. While it appears as
OpenNF* is getting closer to DiST in performance as the number of states and pps increases, it should be noted that
OpenNF* is dropping packets at these speeds.

86 Deliverable D3.2 18.06.2015

Table 5-1: DiST vs OpenNF performance data gathered at 1000 pps, with 95% CI

Config # States # Redirected MoveTime(s) RedirTime(s) Ser% Deser%

OpenNF LF PZ 2186±1 6678±179 7.44±0.21 8.11±0.17 2.63 1.95

DiST LF PZ 2184±2 489±39 0.51±0.06 0.82±0.04 40.22 33.01

OpenNF LF PZLLER 2186±1 17±5 2.25±0.04 1.51±0.05 7.99 6.67

DiST LF PZLLER 2204±2 6±1 0.41±0.04 0.41±0.21 48.63 40.81

(OpenNF* LF PZLLER) 2187±1 6±2 0.78±0.02 0.96±0.17 26.83 22.07

MoveTime is the time from start of the Move operation on the controller until the switch forwarding update.
MoveTime for the original OpenNF solution is about 3 to 6 times higher than DiST for the PZLLER case, this is mostly
explained by the latency differences on the control vs. data plane, but the reduced number of messages in DiST
contributes as well. To separate the contribution from latency from the number of messages we ran OpenNF in an
unrealistic case where control and data plane have the same performance, shown as OpenNF*. Comparing the
MoveTime for DiST and OpenNF* it is clear that the reduced number of message makes DiST about twice as fast
even in this case. The importance of the LL and ER optimizations is also obvious here; they are very effective at
reducing the number of redirected packets. In DiST these optimizations reduce the MoveTime by about 20% at 1000
pps, whereas for OpenNF the reduction is about 70%. However, the effectiveness of these optimizations depends on
the composition of the incoming traffic.

RedirTime is the time from initiating state transfer at the SrcVNF until the last packet is redirected. We measured
RedirTime in order to see how long time packets are still being redirected after the VNF state has been moved. This
can be significant if we e.g. shut down SrcVNF once we believe Move is completed. As can be seen, in some cases
RedirTime is longer than MoveTime indicating that RedirTime should be considered when determining if the Move
has completed or not. We also measured Ser and Deser which is the percentage of MoveTime spent (de-)serializing
data in the VNF during state export and import respectively. As can be seen a large part of the MoveTime in DiST is
spent on serializing, showing another bottleneck to be removed.

MoveTime in LF mode with PZLLER versus number of state chunks transferred for the different pps values is shown
in Figure 5-9 on the left y-axis, illustrated with bars. As can be seen, DiST is always faster than OpenNF. On the right
y-axis is the ratio between OpenNF, OpenNF* and DiST MoveTime, plotted with dotted lines. While it appears as
OpenNF* is getting closer to DiST in performance as the number of states and pps increases, it should be noted that
OpenNF* is dropping packets at these speeds.

86 Deliverable D3.2 18.06.2015

Table 5-1: DiST vs OpenNF performance data gathered at 1000 pps, with 95% CI

Config # States # Redirected MoveTime(s) RedirTime(s) Ser% Deser%

OpenNF LF PZ 2186±1 6678±179 7.44±0.21 8.11±0.17 2.63 1.95

DiST LF PZ 2184±2 489±39 0.51±0.06 0.82±0.04 40.22 33.01

OpenNF LF PZLLER 2186±1 17±5 2.25±0.04 1.51±0.05 7.99 6.67

DiST LF PZLLER 2204±2 6±1 0.41±0.04 0.41±0.21 48.63 40.81

(OpenNF* LF PZLLER) 2187±1 6±2 0.78±0.02 0.96±0.17 26.83 22.07

MoveTime is the time from start of the Move operation on the controller until the switch forwarding update.
MoveTime for the original OpenNF solution is about 3 to 6 times higher than DiST for the PZLLER case, this is mostly
explained by the latency differences on the control vs. data plane, but the reduced number of messages in DiST
contributes as well. To separate the contribution from latency from the number of messages we ran OpenNF in an
unrealistic case where control and data plane have the same performance, shown as OpenNF*. Comparing the
MoveTime for DiST and OpenNF* it is clear that the reduced number of message makes DiST about twice as fast
even in this case. The importance of the LL and ER optimizations is also obvious here; they are very effective at
reducing the number of redirected packets. In DiST these optimizations reduce the MoveTime by about 20% at 1000
pps, whereas for OpenNF the reduction is about 70%. However, the effectiveness of these optimizations depends on
the composition of the incoming traffic.

RedirTime is the time from initiating state transfer at the SrcVNF until the last packet is redirected. We measured
RedirTime in order to see how long time packets are still being redirected after the VNF state has been moved. This
can be significant if we e.g. shut down SrcVNF once we believe Move is completed. As can be seen, in some cases
RedirTime is longer than MoveTime indicating that RedirTime should be considered when determining if the Move
has completed or not. We also measured Ser and Deser which is the percentage of MoveTime spent (de-)serializing
data in the VNF during state export and import respectively. As can be seen a large part of the MoveTime in DiST is
spent on serializing, showing another bottleneck to be removed.

MoveTime in LF mode with PZLLER versus number of state chunks transferred for the different pps values is shown
in Figure 5-9 on the left y-axis, illustrated with bars. As can be seen, DiST is always faster than OpenNF. On the right
y-axis is the ratio between OpenNF, OpenNF* and DiST MoveTime, plotted with dotted lines. While it appears as
OpenNF* is getting closer to DiST in performance as the number of states and pps increases, it should be noted that
OpenNF* is dropping packets at these speeds.

87 Deliverable D3.2 18.06.2015

Figure 5-9: MoveTime for different amount of state (left), ratio between DiST and OpenNF (right). Each state chunk
averages around 750 bytes.

5.2.3.3 Traffic Pattern at Sink
Figure 5-10 depicts the traffic pattern of the processed packets at Sink for LF Move with PZLLER at 1000 pps. The
dotted boxes in the figure indicate when the Move started and finished. With PZLLER the SrcVNF should continue to
process packets during the operation and hence the packet rate should not be affected, which is observed for DiST.
In original OpenNF the traffic rate drops to zero in the beginning of Move, likely due to shared resources being locked
by the state transfer thread when the Move is initiated. This in turn causes incoming packets to be queued; the
release of the lock explains the spike in the traffic pattern as incoming packets are being processed. Moreover, these
packets updated the state in SrcVNF instead of DstVNF, leading to unsynchronized state. In DiST this works correctly
as can be seen from the number of states transferred. OpenNF transfers the same number of states regardless of
optimization while DiST PZLLER also transfers states created at SrcVNF during the operation.

Figure 5-10: Traffic pattern at Sink during the move (indicated by the boxes) at 1000 pps. Identical traffic traces used
in both cases, with the same timing.

87 Deliverable D3.2 18.06.2015

Figure 5-9: MoveTime for different amount of state (left), ratio between DiST and OpenNF (right). Each state chunk
averages around 750 bytes.

5.2.3.3 Traffic Pattern at Sink
Figure 5-10 depicts the traffic pattern of the processed packets at Sink for LF Move with PZLLER at 1000 pps. The
dotted boxes in the figure indicate when the Move started and finished. With PZLLER the SrcVNF should continue to
process packets during the operation and hence the packet rate should not be affected, which is observed for DiST.
In original OpenNF the traffic rate drops to zero in the beginning of Move, likely due to shared resources being locked
by the state transfer thread when the Move is initiated. This in turn causes incoming packets to be queued; the
release of the lock explains the spike in the traffic pattern as incoming packets are being processed. Moreover, these
packets updated the state in SrcVNF instead of DstVNF, leading to unsynchronized state. In DiST this works correctly
as can be seen from the number of states transferred. OpenNF transfers the same number of states regardless of
optimization while DiST PZLLER also transfers states created at SrcVNF during the operation.

Figure 5-10: Traffic pattern at Sink during the move (indicated by the boxes) at 1000 pps. Identical traffic traces used
in both cases, with the same timing.

87 Deliverable D3.2 18.06.2015

Figure 5-9: MoveTime for different amount of state (left), ratio between DiST and OpenNF (right). Each state chunk
averages around 750 bytes.

5.2.3.3 Traffic Pattern at Sink
Figure 5-10 depicts the traffic pattern of the processed packets at Sink for LF Move with PZLLER at 1000 pps. The
dotted boxes in the figure indicate when the Move started and finished. With PZLLER the SrcVNF should continue to
process packets during the operation and hence the packet rate should not be affected, which is observed for DiST.
In original OpenNF the traffic rate drops to zero in the beginning of Move, likely due to shared resources being locked
by the state transfer thread when the Move is initiated. This in turn causes incoming packets to be queued; the
release of the lock explains the spike in the traffic pattern as incoming packets are being processed. Moreover, these
packets updated the state in SrcVNF instead of DstVNF, leading to unsynchronized state. In DiST this works correctly
as can be seen from the number of states transferred. OpenNF transfers the same number of states regardless of
optimization while DiST PZLLER also transfers states created at SrcVNF during the operation.

Figure 5-10: Traffic pattern at Sink during the move (indicated by the boxes) at 1000 pps. Identical traffic traces used
in both cases, with the same timing.

88 Deliverable D3.2 18.06.2015

5.2.4 Conclusions on of evaluation and potential extensions
Distributing the Move operation heavily reduces the amount of messages exchanged during the operation, halving
the amount of messages per redirected packet and removing a third of the messages per state chunk transferred.
Additionally, only a few control messages, instead of all messages traverse the control network to load the
controller, increasing the scalability of the system as a whole. In a more realistic scenario where performance in the
control plane is lower than that of the data plane these changes show a substantial performance gain, being roughly
3 times faster at 100 pps, 5 times at 1000 pps, and 6 times at 2500 pps. These performance values are however
depending on the assumption of 10 times higher latency on the control plane, how accurate this assumption is
depends on many factors. There are however good reasons to be suspicious of control plane performance, e.g. in
some switches Barrier messages can cause up to 400 ms control plane latency [Kuzinar2014].

Another issue that is clear is the time required for (de-)serialization, which consuming a large part of the total
MoveTime. We believe the largest contribution to this time comes from the generic C structure serialization library
used to extract the state. It allows C structures with pointers to be converted to strings with hardware independent
references, avoiding the need to manually write encodings for each state structure. However, the performance of
this approach seems to be a limiting factor. Additionally the use of JSON also contributes, as shown in [JSONComp]
other techniques are much faster and produce less data to transfer. Moving to e.g. Google Protocol Buffers for both
the protocol and state serialization could be a large improvement [Protobuf].

The observation of packet losses at 5000 pps (about 20 MBit/s) during a Move with DiST surprised us as the PRADS
VNF is capable of at least 15000 pps (about 60 MBit/s) during normal execution. After trying to debug the code we
believe the reason for these losses is lock contention between the packet processing thread and the state
transferring thread, combined with the extra cost of redirecting packets. One solution to this issue could be to
change the order of the steps in Move and start with forwarding redirection at the switch and buffering at DstVNF,
and then transfer VNF state. This would reduce contention as the packets associated with the state we are
transferring would arrive at DstVNF rather than at SrcVNF. Another benefit is that SrcVNF does not have to redirect
packets, further reducing contention. An order preserving version of this solution is illustrated in Figure 5-11.

88 Deliverable D3.2 18.06.2015

5.2.4 Conclusions on of evaluation and potential extensions
Distributing the Move operation heavily reduces the amount of messages exchanged during the operation, halving
the amount of messages per redirected packet and removing a third of the messages per state chunk transferred.
Additionally, only a few control messages, instead of all messages traverse the control network to load the
controller, increasing the scalability of the system as a whole. In a more realistic scenario where performance in the
control plane is lower than that of the data plane these changes show a substantial performance gain, being roughly
3 times faster at 100 pps, 5 times at 1000 pps, and 6 times at 2500 pps. These performance values are however
depending on the assumption of 10 times higher latency on the control plane, how accurate this assumption is
depends on many factors. There are however good reasons to be suspicious of control plane performance, e.g. in
some switches Barrier messages can cause up to 400 ms control plane latency [Kuzinar2014].

Another issue that is clear is the time required for (de-)serialization, which consuming a large part of the total
MoveTime. We believe the largest contribution to this time comes from the generic C structure serialization library
used to extract the state. It allows C structures with pointers to be converted to strings with hardware independent
references, avoiding the need to manually write encodings for each state structure. However, the performance of
this approach seems to be a limiting factor. Additionally the use of JSON also contributes, as shown in [JSONComp]
other techniques are much faster and produce less data to transfer. Moving to e.g. Google Protocol Buffers for both
the protocol and state serialization could be a large improvement [Protobuf].

The observation of packet losses at 5000 pps (about 20 MBit/s) during a Move with DiST surprised us as the PRADS
VNF is capable of at least 15000 pps (about 60 MBit/s) during normal execution. After trying to debug the code we
believe the reason for these losses is lock contention between the packet processing thread and the state
transferring thread, combined with the extra cost of redirecting packets. One solution to this issue could be to
change the order of the steps in Move and start with forwarding redirection at the switch and buffering at DstVNF,
and then transfer VNF state. This would reduce contention as the packets associated with the state we are
transferring would arrive at DstVNF rather than at SrcVNF. Another benefit is that SrcVNF does not have to redirect
packets, further reducing contention. An order preserving version of this solution is illustrated in Figure 5-11.

88 Deliverable D3.2 18.06.2015

5.2.4 Conclusions on of evaluation and potential extensions
Distributing the Move operation heavily reduces the amount of messages exchanged during the operation, halving
the amount of messages per redirected packet and removing a third of the messages per state chunk transferred.
Additionally, only a few control messages, instead of all messages traverse the control network to load the
controller, increasing the scalability of the system as a whole. In a more realistic scenario where performance in the
control plane is lower than that of the data plane these changes show a substantial performance gain, being roughly
3 times faster at 100 pps, 5 times at 1000 pps, and 6 times at 2500 pps. These performance values are however
depending on the assumption of 10 times higher latency on the control plane, how accurate this assumption is
depends on many factors. There are however good reasons to be suspicious of control plane performance, e.g. in
some switches Barrier messages can cause up to 400 ms control plane latency [Kuzinar2014].

Another issue that is clear is the time required for (de-)serialization, which consuming a large part of the total
MoveTime. We believe the largest contribution to this time comes from the generic C structure serialization library
used to extract the state. It allows C structures with pointers to be converted to strings with hardware independent
references, avoiding the need to manually write encodings for each state structure. However, the performance of
this approach seems to be a limiting factor. Additionally the use of JSON also contributes, as shown in [JSONComp]
other techniques are much faster and produce less data to transfer. Moving to e.g. Google Protocol Buffers for both
the protocol and state serialization could be a large improvement [Protobuf].

The observation of packet losses at 5000 pps (about 20 MBit/s) during a Move with DiST surprised us as the PRADS
VNF is capable of at least 15000 pps (about 60 MBit/s) during normal execution. After trying to debug the code we
believe the reason for these losses is lock contention between the packet processing thread and the state
transferring thread, combined with the extra cost of redirecting packets. One solution to this issue could be to
change the order of the steps in Move and start with forwarding redirection at the switch and buffering at DstVNF,
and then transfer VNF state. This would reduce contention as the packets associated with the state we are
transferring would arrive at DstVNF rather than at SrcVNF. Another benefit is that SrcVNF does not have to redirect
packets, further reducing contention. An order preserving version of this solution is illustrated in Figure 5-11.

89 Deliverable D3.2 18.06.2015

Figure 5-11: DiST OP Move, alternate order with stream synchronization and buffering before state transfer

One negative effect of redirecting traffic before moving state is that we cannot implement the Late Locking
optimization; packets that with LL would be processed at SrcVNF will instead be buffered at DstVNF. The Early
Release optimization can however be implemented even in this scenario. Without Late Locking in this alternative
solution we risk buffering flows at DstVNF for a long time while waiting for their VNF state to be transferred,
inducing long latencies for those flows. Individually transferring smaller flows instead of grouping them into a single
large Move could reduce the impact of this (e.g. performing 255 Move operations on /16 IP subnets instead one
Move operation on a /8 IP subnet). However, many Move operations would consume more flow rule entries in the
switch and likely increase the total time, if this is a viable strategy remains to be seen.

5.3 Service resiliency
Traditional telecom services largely rely on specialized hardware devices which have been specially engineered to
deliver high performance and high reliability. However, when virtualizing telecom services into software-based
components (NFVs), additional mechanisms might be needed in order to cope with failures caused by for example
software bugs, server overload, memory leaks, etc. These phenomena might cause failing NFs, links, or even entire
NF-FG instantiations. Service resiliency refers to the ability of a service to withstand these changes/failures in its
environment in order to remain operable over the considered time period (reliability). Often this involves a range of
corrective actions which are usually referred as recovery mechanisms. Maintaining state of involved NFs is crucial in
providing service resiliency. Depending on involved resiliency mechanisms, state may need to be migrated using
techniques which are very similar to the ones detailed in previous sections. Most resiliency mechanisms somehow

89 Deliverable D3.2 18.06.2015

Figure 5-11: DiST OP Move, alternate order with stream synchronization and buffering before state transfer

One negative effect of redirecting traffic before moving state is that we cannot implement the Late Locking
optimization; packets that with LL would be processed at SrcVNF will instead be buffered at DstVNF. The Early
Release optimization can however be implemented even in this scenario. Without Late Locking in this alternative
solution we risk buffering flows at DstVNF for a long time while waiting for their VNF state to be transferred,
inducing long latencies for those flows. Individually transferring smaller flows instead of grouping them into a single
large Move could reduce the impact of this (e.g. performing 255 Move operations on /16 IP subnets instead one
Move operation on a /8 IP subnet). However, many Move operations would consume more flow rule entries in the
switch and likely increase the total time, if this is a viable strategy remains to be seen.

5.3 Service resiliency
Traditional telecom services largely rely on specialized hardware devices which have been specially engineered to
deliver high performance and high reliability. However, when virtualizing telecom services into software-based
components (NFVs), additional mechanisms might be needed in order to cope with failures caused by for example
software bugs, server overload, memory leaks, etc. These phenomena might cause failing NFs, links, or even entire
NF-FG instantiations. Service resiliency refers to the ability of a service to withstand these changes/failures in its
environment in order to remain operable over the considered time period (reliability). Often this involves a range of
corrective actions which are usually referred as recovery mechanisms. Maintaining state of involved NFs is crucial in
providing service resiliency. Depending on involved resiliency mechanisms, state may need to be migrated using
techniques which are very similar to the ones detailed in previous sections. Most resiliency mechanisms somehow

89 Deliverable D3.2 18.06.2015

Figure 5-11: DiST OP Move, alternate order with stream synchronization and buffering before state transfer

One negative effect of redirecting traffic before moving state is that we cannot implement the Late Locking
optimization; packets that with LL would be processed at SrcVNF will instead be buffered at DstVNF. The Early
Release optimization can however be implemented even in this scenario. Without Late Locking in this alternative
solution we risk buffering flows at DstVNF for a long time while waiting for their VNF state to be transferred,
inducing long latencies for those flows. Individually transferring smaller flows instead of grouping them into a single
large Move could reduce the impact of this (e.g. performing 255 Move operations on /16 IP subnets instead one
Move operation on a /8 IP subnet). However, many Move operations would consume more flow rule entries in the
switch and likely increase the total time, if this is a viable strategy remains to be seen.

5.3 Service resiliency
Traditional telecom services largely rely on specialized hardware devices which have been specially engineered to
deliver high performance and high reliability. However, when virtualizing telecom services into software-based
components (NFVs), additional mechanisms might be needed in order to cope with failures caused by for example
software bugs, server overload, memory leaks, etc. These phenomena might cause failing NFs, links, or even entire
NF-FG instantiations. Service resiliency refers to the ability of a service to withstand these changes/failures in its
environment in order to remain operable over the considered time period (reliability). Often this involves a range of
corrective actions which are usually referred as recovery mechanisms. Maintaining state of involved NFs is crucial in
providing service resiliency. Depending on involved resiliency mechanisms, state may need to be migrated using
techniques which are very similar to the ones detailed in previous sections. Most resiliency mechanisms somehow

90 Deliverable D3.2 18.06.2015

rely on the adequate use of backup components. Network resiliency [Vasseur2004] is an established research and
engineering domain involving a wide range of protection and restoration mechanisms at node, link, path segment or
path-level on any network layer up to layer 3. Resiliency/Reliability for server-based component also has been
researched and documented extensively. For example, (application-independent) server pooling mechanisms, e.g.
[Lei2008] involving some form of duplication on the server side enabling one instance of a server pool to stand in
for the other when a failure has been detected. However, virtualized Network Functions and Service Graphs of NFs
have particular characteristics and requirements which cannot be easily accommodated by simply applying existing
network or server reliability mechanisms:

 NFs are different from usual application servers, in the fact that they might focus on low-level and high-speed
packet operations (e.g., header-based lookups, header-rewriting, deep packet inspection) and related packet-
level (session) state

 NFs are different from usual application servers, in the fact that they might not assume
reachability/addressability using traditional Layer 2 or Layer 3 addressing techniques, for example Ethernet
MAC- or IP address, because one NF might depend on raw packet information from another NF

In summary, because network packets, rather than application-level state are the focus point in NFV-based services,
recovery mechanisms must be very efficient in order to avoid significant packet loss, retransmission or buffering
when components fail. The following subsections present an overview of resiliency mechanisms for (parts of) NFV-
based services. The section is concluded with a concrete example of applying NF protection.

5.3.1 Protection vs. restoration
Protection mechanisms are mechanisms which pro-actively reserve backup resources which might be activated
upon failure detection, while restoration mechanisms only trigger the search for backup resources upon the
moment of failure detection. Many NFs are stateful, referring to either: i) state which is a direct result from
control/configuration instructions (e.g., firewalling rules requested by an operator), or ii) state which is a result of
the NF processing data packets (transient session state). Protection mechanisms involve mechanisms to also
replicate one or both forms of state pro-actively, before the failure actually occurs and is detected. Restoration
mechanisms risk that none or only part of the state might be recovered in case a failure occurs.

5.3.2 Recovery scope
The recovery scope refers to the set of Service Graph components or instances which might require recovery. We
envision the following possible scopes:

 NF (instance) recovery: recovery of an individual NF instance

90 Deliverable D3.2 18.06.2015

rely on the adequate use of backup components. Network resiliency [Vasseur2004] is an established research and
engineering domain involving a wide range of protection and restoration mechanisms at node, link, path segment or
path-level on any network layer up to layer 3. Resiliency/Reliability for server-based component also has been
researched and documented extensively. For example, (application-independent) server pooling mechanisms, e.g.
[Lei2008] involving some form of duplication on the server side enabling one instance of a server pool to stand in
for the other when a failure has been detected. However, virtualized Network Functions and Service Graphs of NFs
have particular characteristics and requirements which cannot be easily accommodated by simply applying existing
network or server reliability mechanisms:

 NFs are different from usual application servers, in the fact that they might focus on low-level and high-speed
packet operations (e.g., header-based lookups, header-rewriting, deep packet inspection) and related packet-
level (session) state

 NFs are different from usual application servers, in the fact that they might not assume
reachability/addressability using traditional Layer 2 or Layer 3 addressing techniques, for example Ethernet
MAC- or IP address, because one NF might depend on raw packet information from another NF

In summary, because network packets, rather than application-level state are the focus point in NFV-based services,
recovery mechanisms must be very efficient in order to avoid significant packet loss, retransmission or buffering
when components fail. The following subsections present an overview of resiliency mechanisms for (parts of) NFV-
based services. The section is concluded with a concrete example of applying NF protection.

5.3.1 Protection vs. restoration
Protection mechanisms are mechanisms which pro-actively reserve backup resources which might be activated
upon failure detection, while restoration mechanisms only trigger the search for backup resources upon the
moment of failure detection. Many NFs are stateful, referring to either: i) state which is a direct result from
control/configuration instructions (e.g., firewalling rules requested by an operator), or ii) state which is a result of
the NF processing data packets (transient session state). Protection mechanisms involve mechanisms to also
replicate one or both forms of state pro-actively, before the failure actually occurs and is detected. Restoration
mechanisms risk that none or only part of the state might be recovered in case a failure occurs.

5.3.2 Recovery scope
The recovery scope refers to the set of Service Graph components or instances which might require recovery. We
envision the following possible scopes:

 NF (instance) recovery: recovery of an individual NF instance

90 Deliverable D3.2 18.06.2015

rely on the adequate use of backup components. Network resiliency [Vasseur2004] is an established research and
engineering domain involving a wide range of protection and restoration mechanisms at node, link, path segment or
path-level on any network layer up to layer 3. Resiliency/Reliability for server-based component also has been
researched and documented extensively. For example, (application-independent) server pooling mechanisms, e.g.
[Lei2008] involving some form of duplication on the server side enabling one instance of a server pool to stand in
for the other when a failure has been detected. However, virtualized Network Functions and Service Graphs of NFs
have particular characteristics and requirements which cannot be easily accommodated by simply applying existing
network or server reliability mechanisms:

 NFs are different from usual application servers, in the fact that they might focus on low-level and high-speed
packet operations (e.g., header-based lookups, header-rewriting, deep packet inspection) and related packet-
level (session) state

 NFs are different from usual application servers, in the fact that they might not assume
reachability/addressability using traditional Layer 2 or Layer 3 addressing techniques, for example Ethernet
MAC- or IP address, because one NF might depend on raw packet information from another NF

In summary, because network packets, rather than application-level state are the focus point in NFV-based services,
recovery mechanisms must be very efficient in order to avoid significant packet loss, retransmission or buffering
when components fail. The following subsections present an overview of resiliency mechanisms for (parts of) NFV-
based services. The section is concluded with a concrete example of applying NF protection.

5.3.1 Protection vs. restoration
Protection mechanisms are mechanisms which pro-actively reserve backup resources which might be activated
upon failure detection, while restoration mechanisms only trigger the search for backup resources upon the
moment of failure detection. Many NFs are stateful, referring to either: i) state which is a direct result from
control/configuration instructions (e.g., firewalling rules requested by an operator), or ii) state which is a result of
the NF processing data packets (transient session state). Protection mechanisms involve mechanisms to also
replicate one or both forms of state pro-actively, before the failure actually occurs and is detected. Restoration
mechanisms risk that none or only part of the state might be recovered in case a failure occurs.

5.3.2 Recovery scope
The recovery scope refers to the set of Service Graph components or instances which might require recovery. We
envision the following possible scopes:

 NF (instance) recovery: recovery of an individual NF instance

91 Deliverable D3.2 18.06.2015

 Sub-NF-FG (instance) recovery: recovery of a part of an (or the entire) instantiated NF-FG, usually a
combination of interconnected NF instances. This is usually needed if a failure has impact on closely located
parts of the network/graph.

 NF-FG (instance) slice recovery: recovery of a set of correlated NFs, but not necessarily (directly)
interconnected NFs.

5.3.3 Failure detection
Failures can occur in nodes and links of the instantiated NF-FG. Failures are detected through observation points,
polling for example link, segment, path, NF instance activity. Observation points communicate events to monitoring
points (as described in WP4 deliverable and milestone documents), and observation points interact with (Control)
NFs, control or orchestration systems in order to handle the detected failure.

5.3.4 Recovery controlling component
Depending on protection or recovery setups, the notified component may trigger a restoration scheme, or activate
(the signalling and/or provisioning of) the backup network or node instances. Depending on the control locality of
the recovery process11, any of these options might be preferable:

 Local recovery: when the recovery controlling components are close to the NF instance might be advantageous
for minimizing the required time for handling the failover process. This might involve for example the activation
of a backup forwarding entry (towards a backup NF instance) in a network element close to the failing NF
instance

 Global recovery: when the recovery controlling components must interact with components which are not
necessarily close to the failing instance in order to activate recovery. In case of global recovery, the full NF-FG
might be required to be re-established and therefore, may involve reconfiguring multiple Network Functions
and Network Elements. This might for example involve:

o Interaction with the global or local orchestrator(s) to orchestrate additional/other resources

o Interaction with network or compute controllers to re-provision and signal network or cloud resources.
In an SDN setup this follows the (logically) centralized provisioning process, in other setups, this might
involve the signalling of paths through distributed protocols such as RSVP(-TE).

o Interaction with traffic steering mechanisms and components, for example enabling global-decision-
based source routing encoded in the traffic steering packet headers.

11 The control locality of the recovery process refers to the distance of the controlling/management entity toprovisioned instances. Given the hierarchical control infrastructure, we consider the service layer OSS/BSS asthe control entity with the highest possible distance to provisioned instance, succeeded by the global resourceorchestrator, the local orchestrator(s) in case of recursive domains, the network/cloud control system, controlNFs, network elements (switches), up to the level of the NF instance itself.
91 Deliverable D3.2 18.06.2015

 Sub-NF-FG (instance) recovery: recovery of a part of an (or the entire) instantiated NF-FG, usually a
combination of interconnected NF instances. This is usually needed if a failure has impact on closely located
parts of the network/graph.

 NF-FG (instance) slice recovery: recovery of a set of correlated NFs, but not necessarily (directly)
interconnected NFs.

5.3.3 Failure detection
Failures can occur in nodes and links of the instantiated NF-FG. Failures are detected through observation points,
polling for example link, segment, path, NF instance activity. Observation points communicate events to monitoring
points (as described in WP4 deliverable and milestone documents), and observation points interact with (Control)
NFs, control or orchestration systems in order to handle the detected failure.

5.3.4 Recovery controlling component
Depending on protection or recovery setups, the notified component may trigger a restoration scheme, or activate
(the signalling and/or provisioning of) the backup network or node instances. Depending on the control locality of
the recovery process11, any of these options might be preferable:

 Local recovery: when the recovery controlling components are close to the NF instance might be advantageous
for minimizing the required time for handling the failover process. This might involve for example the activation
of a backup forwarding entry (towards a backup NF instance) in a network element close to the failing NF
instance

 Global recovery: when the recovery controlling components must interact with components which are not
necessarily close to the failing instance in order to activate recovery. In case of global recovery, the full NF-FG
might be required to be re-established and therefore, may involve reconfiguring multiple Network Functions
and Network Elements. This might for example involve:

o Interaction with the global or local orchestrator(s) to orchestrate additional/other resources

o Interaction with network or compute controllers to re-provision and signal network or cloud resources.
In an SDN setup this follows the (logically) centralized provisioning process, in other setups, this might
involve the signalling of paths through distributed protocols such as RSVP(-TE).

o Interaction with traffic steering mechanisms and components, for example enabling global-decision-
based source routing encoded in the traffic steering packet headers.

11 The control locality of the recovery process refers to the distance of the controlling/management entity toprovisioned instances. Given the hierarchical control infrastructure, we consider the service layer OSS/BSS asthe control entity with the highest possible distance to provisioned instance, succeeded by the global resourceorchestrator, the local orchestrator(s) in case of recursive domains, the network/cloud control system, controlNFs, network elements (switches), up to the level of the NF instance itself.
91 Deliverable D3.2 18.06.2015

 Sub-NF-FG (instance) recovery: recovery of a part of an (or the entire) instantiated NF-FG, usually a
combination of interconnected NF instances. This is usually needed if a failure has impact on closely located
parts of the network/graph.

 NF-FG (instance) slice recovery: recovery of a set of correlated NFs, but not necessarily (directly)
interconnected NFs.

5.3.3 Failure detection
Failures can occur in nodes and links of the instantiated NF-FG. Failures are detected through observation points,
polling for example link, segment, path, NF instance activity. Observation points communicate events to monitoring
points (as described in WP4 deliverable and milestone documents), and observation points interact with (Control)
NFs, control or orchestration systems in order to handle the detected failure.

5.3.4 Recovery controlling component
Depending on protection or recovery setups, the notified component may trigger a restoration scheme, or activate
(the signalling and/or provisioning of) the backup network or node instances. Depending on the control locality of
the recovery process11, any of these options might be preferable:

 Local recovery: when the recovery controlling components are close to the NF instance might be advantageous
for minimizing the required time for handling the failover process. This might involve for example the activation
of a backup forwarding entry (towards a backup NF instance) in a network element close to the failing NF
instance

 Global recovery: when the recovery controlling components must interact with components which are not
necessarily close to the failing instance in order to activate recovery. In case of global recovery, the full NF-FG
might be required to be re-established and therefore, may involve reconfiguring multiple Network Functions
and Network Elements. This might for example involve:

o Interaction with the global or local orchestrator(s) to orchestrate additional/other resources

o Interaction with network or compute controllers to re-provision and signal network or cloud resources.
In an SDN setup this follows the (logically) centralized provisioning process, in other setups, this might
involve the signalling of paths through distributed protocols such as RSVP(-TE).

o Interaction with traffic steering mechanisms and components, for example enabling global-decision-
based source routing encoded in the traffic steering packet headers.

11 The control locality of the recovery process refers to the distance of the controlling/management entity toprovisioned instances. Given the hierarchical control infrastructure, we consider the service layer OSS/BSS asthe control entity with the highest possible distance to provisioned instance, succeeded by the global resourceorchestrator, the local orchestrator(s) in case of recursive domains, the network/cloud control system, controlNFs, network elements (switches), up to the level of the NF instance itself.

92 Deliverable D3.2 18.06.2015

Note that the recovery control mechanism itself also must be provisioned. Especially in case of local recovery,
backup instances, as well as backup entries in corresponding network elements must be pre-provisioned by the
default top-down service programming process. When no recovery control mechanism is provisioned, failures might
be unaddressed, or might be addressed through global restoration mechanisms.

5.3.5 State synchronization or migration component
Full service recovery ensures that not only backup (network, compute or storage) instances provide the same
functionality, but also involve the same state of their primary counterparts.

State migration mechanisms described in the previous section might be re-used for NFV-service and NF protection
mechanisms. Protection mechanisms may for example use periodic or triggered state migrations between primary
and backup resources. Periodic state migration can occur very often, but potentially heavily impacting network
(bandwidth) and processing requirements in order to keep state in sync as much as possible. On-demand/triggered
state migrations might only be triggered when significant state changes are detected, reducing both migration
resources as well as reducing the probability of outdated state on backup resources. These mechanisms might for
example rely on the ASAP_COOKIE mechanism12 of the Reliable Server Pooling protocols [RFC5351]. Although these
mechanisms cover both control/management and data plane traffic-induced state replication, they might have a
significant impact on required migration (network and computing) resources for regularly synchronizing state. An
alternative mechanism might only replicate management/control-relate state by sniffing the corresponding
channels and replicating actions on both primary and backup instances.

NFV-based service and NF restoration mechanisms face significant challenges for restoring state on backup
resources because primary resources are not fully accessible anymore for migrating state. Potential future research
might focus on mechanisms trying to recover parts of state of failing instances.

5.3.6 NF protection example
Let’s consider a Service Graph with three NFs: NF1, NF2 and NF3, in which the SG description specifies high
availability requirements for NF2. In order to fulfil the latter availability requirement, the Service Layer Adaption
component might translate this into a protection setup for which NF2 has a primary instance NF2a and a backup
instance NF2b. These are orchestrated by the underlying orchestrator, in addition to required monitoring and control
NF functionality. Aliveness of NF2a and NF2b is monitored by MPCTRLNF (which both fulfils observation and
monitoring functionality)13. This monitoring process might for example rely on active polling and acknowledging
keep-alive messages from MPCTRLNF towards NF2a and NF2b. The default setup of the Network Element
responsible for interconnecting NF2 with NF1 and NF3 is indicated in the mapped NF-FG of Figure 5-12. From the

12 The ASAP_COOKIE mechanism is a RserPool mechanism enabling the periodic transmission of snapshots of a(server) state towards a user/client of the server pool. This enables the client to transfer state to a newlyactivated server once the primary server fails.13 Note that the ports on NF2a, NF2b and MPCTRLNF responsible for monitoring the aliveness of NF2a and NF2bare not depicted in the figure to improve readability.
92 Deliverable D3.2 18.06.2015

Note that the recovery control mechanism itself also must be provisioned. Especially in case of local recovery,
backup instances, as well as backup entries in corresponding network elements must be pre-provisioned by the
default top-down service programming process. When no recovery control mechanism is provisioned, failures might
be unaddressed, or might be addressed through global restoration mechanisms.

5.3.5 State synchronization or migration component
Full service recovery ensures that not only backup (network, compute or storage) instances provide the same
functionality, but also involve the same state of their primary counterparts.

State migration mechanisms described in the previous section might be re-used for NFV-service and NF protection
mechanisms. Protection mechanisms may for example use periodic or triggered state migrations between primary
and backup resources. Periodic state migration can occur very often, but potentially heavily impacting network
(bandwidth) and processing requirements in order to keep state in sync as much as possible. On-demand/triggered
state migrations might only be triggered when significant state changes are detected, reducing both migration
resources as well as reducing the probability of outdated state on backup resources. These mechanisms might for
example rely on the ASAP_COOKIE mechanism12 of the Reliable Server Pooling protocols [RFC5351]. Although these
mechanisms cover both control/management and data plane traffic-induced state replication, they might have a
significant impact on required migration (network and computing) resources for regularly synchronizing state. An
alternative mechanism might only replicate management/control-relate state by sniffing the corresponding
channels and replicating actions on both primary and backup instances.

NFV-based service and NF restoration mechanisms face significant challenges for restoring state on backup
resources because primary resources are not fully accessible anymore for migrating state. Potential future research
might focus on mechanisms trying to recover parts of state of failing instances.

5.3.6 NF protection example
Let’s consider a Service Graph with three NFs: NF1, NF2 and NF3, in which the SG description specifies high
availability requirements for NF2. In order to fulfil the latter availability requirement, the Service Layer Adaption
component might translate this into a protection setup for which NF2 has a primary instance NF2a and a backup
instance NF2b. These are orchestrated by the underlying orchestrator, in addition to required monitoring and control
NF functionality. Aliveness of NF2a and NF2b is monitored by MPCTRLNF (which both fulfils observation and
monitoring functionality)13. This monitoring process might for example rely on active polling and acknowledging
keep-alive messages from MPCTRLNF towards NF2a and NF2b. The default setup of the Network Element
responsible for interconnecting NF2 with NF1 and NF3 is indicated in the mapped NF-FG of Figure 5-12. From the

12 The ASAP_COOKIE mechanism is a RserPool mechanism enabling the periodic transmission of snapshots of a(server) state towards a user/client of the server pool. This enables the client to transfer state to a newlyactivated server once the primary server fails.13 Note that the ports on NF2a, NF2b and MPCTRLNF responsible for monitoring the aliveness of NF2a and NF2bare not depicted in the figure to improve readability.
92 Deliverable D3.2 18.06.2015

Note that the recovery control mechanism itself also must be provisioned. Especially in case of local recovery,
backup instances, as well as backup entries in corresponding network elements must be pre-provisioned by the
default top-down service programming process. When no recovery control mechanism is provisioned, failures might
be unaddressed, or might be addressed through global restoration mechanisms.

5.3.5 State synchronization or migration component
Full service recovery ensures that not only backup (network, compute or storage) instances provide the same
functionality, but also involve the same state of their primary counterparts.

State migration mechanisms described in the previous section might be re-used for NFV-service and NF protection
mechanisms. Protection mechanisms may for example use periodic or triggered state migrations between primary
and backup resources. Periodic state migration can occur very often, but potentially heavily impacting network
(bandwidth) and processing requirements in order to keep state in sync as much as possible. On-demand/triggered
state migrations might only be triggered when significant state changes are detected, reducing both migration
resources as well as reducing the probability of outdated state on backup resources. These mechanisms might for
example rely on the ASAP_COOKIE mechanism12 of the Reliable Server Pooling protocols [RFC5351]. Although these
mechanisms cover both control/management and data plane traffic-induced state replication, they might have a
significant impact on required migration (network and computing) resources for regularly synchronizing state. An
alternative mechanism might only replicate management/control-relate state by sniffing the corresponding
channels and replicating actions on both primary and backup instances.

NFV-based service and NF restoration mechanisms face significant challenges for restoring state on backup
resources because primary resources are not fully accessible anymore for migrating state. Potential future research
might focus on mechanisms trying to recover parts of state of failing instances.

5.3.6 NF protection example
Let’s consider a Service Graph with three NFs: NF1, NF2 and NF3, in which the SG description specifies high
availability requirements for NF2. In order to fulfil the latter availability requirement, the Service Layer Adaption
component might translate this into a protection setup for which NF2 has a primary instance NF2a and a backup
instance NF2b. These are orchestrated by the underlying orchestrator, in addition to required monitoring and control
NF functionality. Aliveness of NF2a and NF2b is monitored by MPCTRLNF (which both fulfils observation and
monitoring functionality)13. This monitoring process might for example rely on active polling and acknowledging
keep-alive messages from MPCTRLNF towards NF2a and NF2b. The default setup of the Network Element
responsible for interconnecting NF2 with NF1 and NF3 is indicated in the mapped NF-FG of Figure 5-12. From the

12 The ASAP_COOKIE mechanism is a RserPool mechanism enabling the periodic transmission of snapshots of a(server) state towards a user/client of the server pool. This enables the client to transfer state to a newlyactivated server once the primary server fails.13 Note that the ports on NF2a, NF2b and MPCTRLNF responsible for monitoring the aliveness of NF2a and NF2bare not depicted in the figure to improve readability.

93 Deliverable D3.2 18.06.2015

moment MPCTRLNF is detecting a loss of signal of NF2a, it can trigger NE1 to reconfigure its switching tables such as
to adapt the forwarding rules fr-a and fr-b to port 8 and 9 instead of to port 4 and 6 correspondingly. Note that
MPCTRLNF is in this case both functioning as Control NF in addition to its role of monitoring point. The resulting
steps are represented in the sequence diagram of Figure 5-13.

Figure 5-12: NF protection example

93 Deliverable D3.2 18.06.2015

moment MPCTRLNF is detecting a loss of signal of NF2a, it can trigger NE1 to reconfigure its switching tables such as
to adapt the forwarding rules fr-a and fr-b to port 8 and 9 instead of to port 4 and 6 correspondingly. Note that
MPCTRLNF is in this case both functioning as Control NF in addition to its role of monitoring point. The resulting
steps are represented in the sequence diagram of Figure 5-13.

Figure 5-12: NF protection example

93 Deliverable D3.2 18.06.2015

moment MPCTRLNF is detecting a loss of signal of NF2a, it can trigger NE1 to reconfigure its switching tables such as
to adapt the forwarding rules fr-a and fr-b to port 8 and 9 instead of to port 4 and 6 correspondingly. Note that
MPCTRLNF is in this case both functioning as Control NF in addition to its role of monitoring point. The resulting
steps are represented in the sequence diagram of Figure 5-13.

Figure 5-12: NF protection example

94 Deliverable D3.2 18.06.2015

Figure 5-13: Sequence diagram for NF protection process

5.3.7 Conclusions
Service resiliency mechanisms target state maintenance under conditions when components of an NF-FG fail or
degrade, for example caused by bugs in the software implementation of a VNF or due to hardware failures in the
network or server infrastructure. Synchronization and transfer of state for resiliency purposes requires similar
mechanisms and primitives as proposed for service scaling in section 5.2, allowing these systems to share
functionality. However, state maintenance targeting service resiliency adds a particular context to when and for
which scope state is migrated, what triggers the migration, and which component is in control of the process.

For the question of when state migration should be applied, it can be done either in a pro-active fashion by
periodically or continuously synchronize updated state (for protection) or in a reactive fashion for restoration of
failed components. As failed components may be unreachable due to the failure, the reactive approach may be
mostly applicable in cases when a service is degrading but the internal state is still recoverable. This could be for
example due to infrastructure failures such as failing hard drive or network interface on compute nodes, or a faulty
forwarding element in the network. On the other hand, protection mechanisms provide a higher level of resiliency
but come with a high cost in terms of both compute and network resources.

There is also a need to determine for which scope resiliency mechanisms should be activated e.g. for a single NF, a
whole service, or a group of services. Here monitoring and troubleshooting tools developed in WP4 could provide
assistance to detect the extent of the failure, together with aliveness mechanisms described in the protection
example above. This largely determines which component is controlling the recovery process, e.g. a CtrlApp or the

94 Deliverable D3.2 18.06.2015

Figure 5-13: Sequence diagram for NF protection process

5.3.7 Conclusions
Service resiliency mechanisms target state maintenance under conditions when components of an NF-FG fail or
degrade, for example caused by bugs in the software implementation of a VNF or due to hardware failures in the
network or server infrastructure. Synchronization and transfer of state for resiliency purposes requires similar
mechanisms and primitives as proposed for service scaling in section 5.2, allowing these systems to share
functionality. However, state maintenance targeting service resiliency adds a particular context to when and for
which scope state is migrated, what triggers the migration, and which component is in control of the process.

For the question of when state migration should be applied, it can be done either in a pro-active fashion by
periodically or continuously synchronize updated state (for protection) or in a reactive fashion for restoration of
failed components. As failed components may be unreachable due to the failure, the reactive approach may be
mostly applicable in cases when a service is degrading but the internal state is still recoverable. This could be for
example due to infrastructure failures such as failing hard drive or network interface on compute nodes, or a faulty
forwarding element in the network. On the other hand, protection mechanisms provide a higher level of resiliency
but come with a high cost in terms of both compute and network resources.

There is also a need to determine for which scope resiliency mechanisms should be activated e.g. for a single NF, a
whole service, or a group of services. Here monitoring and troubleshooting tools developed in WP4 could provide
assistance to detect the extent of the failure, together with aliveness mechanisms described in the protection
example above. This largely determines which component is controlling the recovery process, e.g. a CtrlApp or the

94 Deliverable D3.2 18.06.2015

Figure 5-13: Sequence diagram for NF protection process

5.3.7 Conclusions
Service resiliency mechanisms target state maintenance under conditions when components of an NF-FG fail or
degrade, for example caused by bugs in the software implementation of a VNF or due to hardware failures in the
network or server infrastructure. Synchronization and transfer of state for resiliency purposes requires similar
mechanisms and primitives as proposed for service scaling in section 5.2, allowing these systems to share
functionality. However, state maintenance targeting service resiliency adds a particular context to when and for
which scope state is migrated, what triggers the migration, and which component is in control of the process.

For the question of when state migration should be applied, it can be done either in a pro-active fashion by
periodically or continuously synchronize updated state (for protection) or in a reactive fashion for restoration of
failed components. As failed components may be unreachable due to the failure, the reactive approach may be
mostly applicable in cases when a service is degrading but the internal state is still recoverable. This could be for
example due to infrastructure failures such as failing hard drive or network interface on compute nodes, or a faulty
forwarding element in the network. On the other hand, protection mechanisms provide a higher level of resiliency
but come with a high cost in terms of both compute and network resources.

There is also a need to determine for which scope resiliency mechanisms should be activated e.g. for a single NF, a
whole service, or a group of services. Here monitoring and troubleshooting tools developed in WP4 could provide
assistance to detect the extent of the failure, together with aliveness mechanisms described in the protection
example above. This largely determines which component is controlling the recovery process, e.g. a CtrlApp or the

95 Deliverable D3.2 18.06.2015

Resource Controllers of the UNIFY platform. For example an infrastructure failure may cause alarms both in the
infrastructure and service layer, but be solvable by a simple traffic redirection from a failing switch rather than
migrating or triggering failover for all affected VNFs or services.

95 Deliverable D3.2 18.06.2015

Resource Controllers of the UNIFY platform. For example an infrastructure failure may cause alarms both in the
infrastructure and service layer, but be solvable by a simple traffic redirection from a failing switch rather than
migrating or triggering failover for all affected VNFs or services.

95 Deliverable D3.2 18.06.2015

Resource Controllers of the UNIFY platform. For example an infrastructure failure may cause alarms both in the
infrastructure and service layer, but be solvable by a simple traffic redirection from a failing switch rather than
migrating or triggering failover for all affected VNFs or services.

96 Deliverable D3.2 18.06.2015

6 Traffic steering and forwarding state

The UNIFY project aims at defining a layered architectural framework for automated service chain orchestration and
deployment. In this deliverable we have systematically gone through the UNIFY architecture in a top-down manner
and starting from service programmability, the definition of Service Graphs and NF-FG in the Service Layer (section
2), through resource orchestration, service decomposition, elasticity and scalability in the Orchestration Layer
(sections 3 and 4) and finally we have arrived to the Infrastructure Layer where we considered individual network
functions including NF state (section 5). In this section we close our top-down journey through the whole
architecture with a short study on scalable traffic steering or data plane orchestration.

Steering traffic efficiently in a flexible and controllable way between the NFs of a service is an indispensable part of
an orchestration framework. While it is indispensable, the design of fast and scalable routing architectures is still a
great challenge after decades of routing research. The advent of software defined networking and virtualization
pushes the routing challenge even to extremity as the flexibility of SDN architectures allows deploying many existing
routing approaches at the same time on the same network, moreover there is no obstacle to introduce hybrid
routing technologies which can result in tailor-made solutions for specific network circumstances. The throughout
analysis and development of traffic steering strategies which can fully exploit the features of SDN is way beyond the
scope of this deliverable. Nevertheless the UNIFY project members agree that the importance of this topic deserves
taking a first step at least, towards the characterization of fast and scalable SDN routing strategies which can be
foundations of service chaining architectures in the future. In what follows we present the results of our first
attempt in directions. Our contribution will be twofold. First, we present a 3-tiered architectural model which can
incorporate many existing routing technologies and projects research directions towards finding the ultimate routing
for SDN which we call Software Defined Routing (SDR). We argue that SDR in something that can effectively
distribute routing state between the tiers of our model according to the resources and desired functions of the
network. To our opinion, the distribution of state between tiers can be feasible way towards scalable routings.
Secondly, we illustrate the benefits of state distribution through a simple numerical evaluation over well-known
network topologies. Besides the power of our model to unify the existing routings under a single framework it may
generate more questions than it answers. This is made somewhat intentionally as the goal of our study is to call the
research community and the industry to invest time in investigating the algorithmic aspects of data plane
orchestration, in order to supply a solid mathematical foundation and an optimization toolset to practitioners for
building truly dependable software-defined networks and service chaining architectures like UNIFY.

In the UNIFY architecture, abstract forwarding information is stored in NF-FGs in our programmability framework.
At the lower layers, this abstract information must be translated into different types of routing states that can be
pushed directly to the network elements as different types of flow rules, tunnel information or packet header fields.
This is the responsibility of Network controllers in the Infrastructure Layer, which has to manage the forwarding
states at different elements in the network. From the operators’ point of view, it is crucial to manage this behaviour

96 Deliverable D3.2 18.06.2015

6 Traffic steering and forwarding state

The UNIFY project aims at defining a layered architectural framework for automated service chain orchestration and
deployment. In this deliverable we have systematically gone through the UNIFY architecture in a top-down manner
and starting from service programmability, the definition of Service Graphs and NF-FG in the Service Layer (section
2), through resource orchestration, service decomposition, elasticity and scalability in the Orchestration Layer
(sections 3 and 4) and finally we have arrived to the Infrastructure Layer where we considered individual network
functions including NF state (section 5). In this section we close our top-down journey through the whole
architecture with a short study on scalable traffic steering or data plane orchestration.

Steering traffic efficiently in a flexible and controllable way between the NFs of a service is an indispensable part of
an orchestration framework. While it is indispensable, the design of fast and scalable routing architectures is still a
great challenge after decades of routing research. The advent of software defined networking and virtualization
pushes the routing challenge even to extremity as the flexibility of SDN architectures allows deploying many existing
routing approaches at the same time on the same network, moreover there is no obstacle to introduce hybrid
routing technologies which can result in tailor-made solutions for specific network circumstances. The throughout
analysis and development of traffic steering strategies which can fully exploit the features of SDN is way beyond the
scope of this deliverable. Nevertheless the UNIFY project members agree that the importance of this topic deserves
taking a first step at least, towards the characterization of fast and scalable SDN routing strategies which can be
foundations of service chaining architectures in the future. In what follows we present the results of our first
attempt in directions. Our contribution will be twofold. First, we present a 3-tiered architectural model which can
incorporate many existing routing technologies and projects research directions towards finding the ultimate routing
for SDN which we call Software Defined Routing (SDR). We argue that SDR in something that can effectively
distribute routing state between the tiers of our model according to the resources and desired functions of the
network. To our opinion, the distribution of state between tiers can be feasible way towards scalable routings.
Secondly, we illustrate the benefits of state distribution through a simple numerical evaluation over well-known
network topologies. Besides the power of our model to unify the existing routings under a single framework it may
generate more questions than it answers. This is made somewhat intentionally as the goal of our study is to call the
research community and the industry to invest time in investigating the algorithmic aspects of data plane
orchestration, in order to supply a solid mathematical foundation and an optimization toolset to practitioners for
building truly dependable software-defined networks and service chaining architectures like UNIFY.

In the UNIFY architecture, abstract forwarding information is stored in NF-FGs in our programmability framework.
At the lower layers, this abstract information must be translated into different types of routing states that can be
pushed directly to the network elements as different types of flow rules, tunnel information or packet header fields.
This is the responsibility of Network controllers in the Infrastructure Layer, which has to manage the forwarding
states at different elements in the network. From the operators’ point of view, it is crucial to manage this behaviour

96 Deliverable D3.2 18.06.2015

6 Traffic steering and forwarding state

The UNIFY project aims at defining a layered architectural framework for automated service chain orchestration and
deployment. In this deliverable we have systematically gone through the UNIFY architecture in a top-down manner
and starting from service programmability, the definition of Service Graphs and NF-FG in the Service Layer (section
2), through resource orchestration, service decomposition, elasticity and scalability in the Orchestration Layer
(sections 3 and 4) and finally we have arrived to the Infrastructure Layer where we considered individual network
functions including NF state (section 5). In this section we close our top-down journey through the whole
architecture with a short study on scalable traffic steering or data plane orchestration.

Steering traffic efficiently in a flexible and controllable way between the NFs of a service is an indispensable part of
an orchestration framework. While it is indispensable, the design of fast and scalable routing architectures is still a
great challenge after decades of routing research. The advent of software defined networking and virtualization
pushes the routing challenge even to extremity as the flexibility of SDN architectures allows deploying many existing
routing approaches at the same time on the same network, moreover there is no obstacle to introduce hybrid
routing technologies which can result in tailor-made solutions for specific network circumstances. The throughout
analysis and development of traffic steering strategies which can fully exploit the features of SDN is way beyond the
scope of this deliverable. Nevertheless the UNIFY project members agree that the importance of this topic deserves
taking a first step at least, towards the characterization of fast and scalable SDN routing strategies which can be
foundations of service chaining architectures in the future. In what follows we present the results of our first
attempt in directions. Our contribution will be twofold. First, we present a 3-tiered architectural model which can
incorporate many existing routing technologies and projects research directions towards finding the ultimate routing
for SDN which we call Software Defined Routing (SDR). We argue that SDR in something that can effectively
distribute routing state between the tiers of our model according to the resources and desired functions of the
network. To our opinion, the distribution of state between tiers can be feasible way towards scalable routings.
Secondly, we illustrate the benefits of state distribution through a simple numerical evaluation over well-known
network topologies. Besides the power of our model to unify the existing routings under a single framework it may
generate more questions than it answers. This is made somewhat intentionally as the goal of our study is to call the
research community and the industry to invest time in investigating the algorithmic aspects of data plane
orchestration, in order to supply a solid mathematical foundation and an optimization toolset to practitioners for
building truly dependable software-defined networks and service chaining architectures like UNIFY.

In the UNIFY architecture, abstract forwarding information is stored in NF-FGs in our programmability framework.
At the lower layers, this abstract information must be translated into different types of routing states that can be
pushed directly to the network elements as different types of flow rules, tunnel information or packet header fields.
This is the responsibility of Network controllers in the Infrastructure Layer, which has to manage the forwarding
states at different elements in the network. From the operators’ point of view, it is crucial to manage this behaviour

97 Deliverable D3.2 18.06.2015

as efficiently as possible and in an optimal way. Unlike UNIFY, the abstract forwarding information can be originated
from different high-level policies of the operator other than service chaining. Thus in what follows we present an
architectural model which gets the abstract forwarding information as input no matter from where is actually
comes from and the only purpose is to map these abstract rules to forwarding state.

In the rest of this section we explicitly define the problem of data plane orchestration by using our 3-tiered model.
After that the classification of existing and possible future routing strategies is presented based on the state
distribution among the three tiers. Finally we formalize the problem of trading-off state between tiers and present
some early results which illustrate that there are sweet spots in the trade-off space and promote further studies of
hybrid routing strategies.

6.1 Theoretical approach to traffic steering
The grand vision of Software-Defined Networks (SDN) is to consolidate SDN-capable devices and legacy network
infrastructure, stripped from the “ossified” distributed control plane, into a common virtualized data plane resource,
operated under the supervision of a central software controller. Control plane programmability (via a standardized
API) is expected to offer a greater extent of automation, dependability, flexibility, and better profitability to
operators, to open up the control plane for rapid innovation, and to eliminate vendor-lock in. This great deal of
generality, however, creates a new algorithmic challenge [Raghavan2012, Koponen2011, Kang2013, Ashwood2014,
Ashwood2013, Kolias2014], broadly posed as follows: If SDN can accommodate such a large variety of packet routing
and forwarding paradigms, or essentially any combination thereof, then exactly which one is to choose for a
particular set of operator goals and how to design the corresponding routing itself? With regard to UNIFY the above
general question can be translated as: which is the best forwarding paradigm for hosting service chaining
architectures?

6.1.1 A framework for Software Defined Routing (SDR)
To cast this algorithmic challenge in a clear framework, we borrow some basic ideas from the SDN literature
[Raghavan2012, Kang2013].

In SDN, the high-level policies implemented as applications running on the central controller, execute direct
control over the way traffic flows through the data plane, which is in turn abstracted away towards these high-level
policies as a “big switch” with the usage of forwarding abstractions. This offers an easy way to specify global
operational priorities, like access control rules, admission control preferences, traffic steering criteria for service
chaining, etc., with the bulk of the underlying complexity hidden. High-level policies are then mapped to the data
plane by the routing policy, producing a forwarding path for each individual flow according to some fixed traffic
engineering goals, like multipath load-balancing, resilience, or minimization of latency and congestion. Note that,
from an algorithmic standpoint, there is nothing particularly fancy about these policies, as a clean, well-tested, and
widely implemented collection of algorithmic and numerical recipes is available today to convert any set of abstract
traffic control requirements (essentially, a traffic matrix) into adequate forwarding paths [Mehdi2010].

97 Deliverable D3.2 18.06.2015

as efficiently as possible and in an optimal way. Unlike UNIFY, the abstract forwarding information can be originated
from different high-level policies of the operator other than service chaining. Thus in what follows we present an
architectural model which gets the abstract forwarding information as input no matter from where is actually
comes from and the only purpose is to map these abstract rules to forwarding state.

In the rest of this section we explicitly define the problem of data plane orchestration by using our 3-tiered model.
After that the classification of existing and possible future routing strategies is presented based on the state
distribution among the three tiers. Finally we formalize the problem of trading-off state between tiers and present
some early results which illustrate that there are sweet spots in the trade-off space and promote further studies of
hybrid routing strategies.

6.1 Theoretical approach to traffic steering
The grand vision of Software-Defined Networks (SDN) is to consolidate SDN-capable devices and legacy network
infrastructure, stripped from the “ossified” distributed control plane, into a common virtualized data plane resource,
operated under the supervision of a central software controller. Control plane programmability (via a standardized
API) is expected to offer a greater extent of automation, dependability, flexibility, and better profitability to
operators, to open up the control plane for rapid innovation, and to eliminate vendor-lock in. This great deal of
generality, however, creates a new algorithmic challenge [Raghavan2012, Koponen2011, Kang2013, Ashwood2014,
Ashwood2013, Kolias2014], broadly posed as follows: If SDN can accommodate such a large variety of packet routing
and forwarding paradigms, or essentially any combination thereof, then exactly which one is to choose for a
particular set of operator goals and how to design the corresponding routing itself? With regard to UNIFY the above
general question can be translated as: which is the best forwarding paradigm for hosting service chaining
architectures?

6.1.1 A framework for Software Defined Routing (SDR)
To cast this algorithmic challenge in a clear framework, we borrow some basic ideas from the SDN literature
[Raghavan2012, Kang2013].

In SDN, the high-level policies implemented as applications running on the central controller, execute direct
control over the way traffic flows through the data plane, which is in turn abstracted away towards these high-level
policies as a “big switch” with the usage of forwarding abstractions. This offers an easy way to specify global
operational priorities, like access control rules, admission control preferences, traffic steering criteria for service
chaining, etc., with the bulk of the underlying complexity hidden. High-level policies are then mapped to the data
plane by the routing policy, producing a forwarding path for each individual flow according to some fixed traffic
engineering goals, like multipath load-balancing, resilience, or minimization of latency and congestion. Note that,
from an algorithmic standpoint, there is nothing particularly fancy about these policies, as a clean, well-tested, and
widely implemented collection of algorithmic and numerical recipes is available today to convert any set of abstract
traffic control requirements (essentially, a traffic matrix) into adequate forwarding paths [Mehdi2010].

97 Deliverable D3.2 18.06.2015

as efficiently as possible and in an optimal way. Unlike UNIFY, the abstract forwarding information can be originated
from different high-level policies of the operator other than service chaining. Thus in what follows we present an
architectural model which gets the abstract forwarding information as input no matter from where is actually
comes from and the only purpose is to map these abstract rules to forwarding state.

In the rest of this section we explicitly define the problem of data plane orchestration by using our 3-tiered model.
After that the classification of existing and possible future routing strategies is presented based on the state
distribution among the three tiers. Finally we formalize the problem of trading-off state between tiers and present
some early results which illustrate that there are sweet spots in the trade-off space and promote further studies of
hybrid routing strategies.

6.1 Theoretical approach to traffic steering
The grand vision of Software-Defined Networks (SDN) is to consolidate SDN-capable devices and legacy network
infrastructure, stripped from the “ossified” distributed control plane, into a common virtualized data plane resource,
operated under the supervision of a central software controller. Control plane programmability (via a standardized
API) is expected to offer a greater extent of automation, dependability, flexibility, and better profitability to
operators, to open up the control plane for rapid innovation, and to eliminate vendor-lock in. This great deal of
generality, however, creates a new algorithmic challenge [Raghavan2012, Koponen2011, Kang2013, Ashwood2014,
Ashwood2013, Kolias2014], broadly posed as follows: If SDN can accommodate such a large variety of packet routing
and forwarding paradigms, or essentially any combination thereof, then exactly which one is to choose for a
particular set of operator goals and how to design the corresponding routing itself? With regard to UNIFY the above
general question can be translated as: which is the best forwarding paradigm for hosting service chaining
architectures?

6.1.1 A framework for Software Defined Routing (SDR)
To cast this algorithmic challenge in a clear framework, we borrow some basic ideas from the SDN literature
[Raghavan2012, Kang2013].

In SDN, the high-level policies implemented as applications running on the central controller, execute direct
control over the way traffic flows through the data plane, which is in turn abstracted away towards these high-level
policies as a “big switch” with the usage of forwarding abstractions. This offers an easy way to specify global
operational priorities, like access control rules, admission control preferences, traffic steering criteria for service
chaining, etc., with the bulk of the underlying complexity hidden. High-level policies are then mapped to the data
plane by the routing policy, producing a forwarding path for each individual flow according to some fixed traffic
engineering goals, like multipath load-balancing, resilience, or minimization of latency and congestion. Note that,
from an algorithmic standpoint, there is nothing particularly fancy about these policies, as a clean, well-tested, and
widely implemented collection of algorithmic and numerical recipes is available today to convert any set of abstract
traffic control requirements (essentially, a traffic matrix) into adequate forwarding paths [Mehdi2010].

98 Deliverable D3.2 18.06.2015

The lion’s share of the complexity is buried deep within the third, final component, responsible for compiling the
traffic flow specifications into actual forwarding rules that can then be readily deployed at the data plane. Such
forwarding rules involve MPLS forwarding tables, IP routing tables, Ethernet MAC tables, optical lightpath
configurations, OpenFlow flow tables, etc. This component, called the rule-placement algorithm [Kang2013], or the
data plane orchestration algorithm [Kolias2014], needs to deal with the specifics of the underlying topology, the
type, software and hardware version, and rule space limits of the inventory of individual switching devices, and the
characteristics of the interconnection links. Implicit in most of the related literature [Kang2013, Alex2010, Gupta1999,
Rottenstreich2013, Kanizo2013, Yu2010, Abley2007] is that, apart from correctness, the main optimization objective
is to minimize and balance the forwarding state across the data plane. Here, the term “forwarding state” refers to
any hardware and software resource necessary to realize some intended forwarding behaviour; “minimization”
thereof implies cutting down on the amount of resources involved in programming that behaviour as these
resources are subject to stringent, and often rather restrictive [Kang2013, Kanizo2013], technological limits; and
finally “balance” means to dispense this state as much as possible to relieve individual data plane components from
forwarding state overflow [Kanizo2013, Retvari2013]. To make this idea explicit though, we need to dig a bit deeper
into how the data plane is modelled.

6.1.1.1 The data plane abstraction
First, we leverage the idea from [Raghavan2012] to separate the edge, that uses software forwarding over generic
purpose CPUs and GPUs to implement a broad selection of traffic control, conversion, and steering functionalities,
from the core, deployed over a mix of legacy and SDN-capable switches, responsible solely for providing transport
services between edge ports, that is, to realize the “big switch” abstraction. Note that both the edge and the core
work under the supervision of the central controller. Moreover, we assume that all traffic control, logging, shaping,
and all access control measures are applied at the edge in software, where resource constraints are not that
compelling, which leaves only packet transport services to be realized in the core. In what follows we consider only
the core of the network.

The second constituent is a tiered approach; decoupling core components based on the way forwarding state is
represented across these tiers.

Underlay – The underlay consists of “dumb” devices, and links between them, providing nothing more than bare
point-to-point packet delivery service between configurable pairs of endpoints. In what follows, we shall call these
point-to-point connections forwarding abstractions and we view these as the sole bearers of forwarding state
within the underlay. As the underlay can be of very limited functionality, we like to think about it as something very
fast, quasi-static (reconfigured infrequently or not reconfigurable at all), dumb (cannot combine forwarding
abstractions, does not understand higher level network semantics), and deployed on specialized, costly, hard-to-
upgrade devices with limited resources. This tier mostly corresponds to the “infrastructure” as of SDIA
[Raghavan2012].

98 Deliverable D3.2 18.06.2015

The lion’s share of the complexity is buried deep within the third, final component, responsible for compiling the
traffic flow specifications into actual forwarding rules that can then be readily deployed at the data plane. Such
forwarding rules involve MPLS forwarding tables, IP routing tables, Ethernet MAC tables, optical lightpath
configurations, OpenFlow flow tables, etc. This component, called the rule-placement algorithm [Kang2013], or the
data plane orchestration algorithm [Kolias2014], needs to deal with the specifics of the underlying topology, the
type, software and hardware version, and rule space limits of the inventory of individual switching devices, and the
characteristics of the interconnection links. Implicit in most of the related literature [Kang2013, Alex2010, Gupta1999,
Rottenstreich2013, Kanizo2013, Yu2010, Abley2007] is that, apart from correctness, the main optimization objective
is to minimize and balance the forwarding state across the data plane. Here, the term “forwarding state” refers to
any hardware and software resource necessary to realize some intended forwarding behaviour; “minimization”
thereof implies cutting down on the amount of resources involved in programming that behaviour as these
resources are subject to stringent, and often rather restrictive [Kang2013, Kanizo2013], technological limits; and
finally “balance” means to dispense this state as much as possible to relieve individual data plane components from
forwarding state overflow [Kanizo2013, Retvari2013]. To make this idea explicit though, we need to dig a bit deeper
into how the data plane is modelled.

6.1.1.1 The data plane abstraction
First, we leverage the idea from [Raghavan2012] to separate the edge, that uses software forwarding over generic
purpose CPUs and GPUs to implement a broad selection of traffic control, conversion, and steering functionalities,
from the core, deployed over a mix of legacy and SDN-capable switches, responsible solely for providing transport
services between edge ports, that is, to realize the “big switch” abstraction. Note that both the edge and the core
work under the supervision of the central controller. Moreover, we assume that all traffic control, logging, shaping,
and all access control measures are applied at the edge in software, where resource constraints are not that
compelling, which leaves only packet transport services to be realized in the core. In what follows we consider only
the core of the network.

The second constituent is a tiered approach; decoupling core components based on the way forwarding state is
represented across these tiers.

Underlay – The underlay consists of “dumb” devices, and links between them, providing nothing more than bare
point-to-point packet delivery service between configurable pairs of endpoints. In what follows, we shall call these
point-to-point connections forwarding abstractions and we view these as the sole bearers of forwarding state
within the underlay. As the underlay can be of very limited functionality, we like to think about it as something very
fast, quasi-static (reconfigured infrequently or not reconfigurable at all), dumb (cannot combine forwarding
abstractions, does not understand higher level network semantics), and deployed on specialized, costly, hard-to-
upgrade devices with limited resources. This tier mostly corresponds to the “infrastructure” as of SDIA
[Raghavan2012].

98 Deliverable D3.2 18.06.2015

The lion’s share of the complexity is buried deep within the third, final component, responsible for compiling the
traffic flow specifications into actual forwarding rules that can then be readily deployed at the data plane. Such
forwarding rules involve MPLS forwarding tables, IP routing tables, Ethernet MAC tables, optical lightpath
configurations, OpenFlow flow tables, etc. This component, called the rule-placement algorithm [Kang2013], or the
data plane orchestration algorithm [Kolias2014], needs to deal with the specifics of the underlying topology, the
type, software and hardware version, and rule space limits of the inventory of individual switching devices, and the
characteristics of the interconnection links. Implicit in most of the related literature [Kang2013, Alex2010, Gupta1999,
Rottenstreich2013, Kanizo2013, Yu2010, Abley2007] is that, apart from correctness, the main optimization objective
is to minimize and balance the forwarding state across the data plane. Here, the term “forwarding state” refers to
any hardware and software resource necessary to realize some intended forwarding behaviour; “minimization”
thereof implies cutting down on the amount of resources involved in programming that behaviour as these
resources are subject to stringent, and often rather restrictive [Kang2013, Kanizo2013], technological limits; and
finally “balance” means to dispense this state as much as possible to relieve individual data plane components from
forwarding state overflow [Kanizo2013, Retvari2013]. To make this idea explicit though, we need to dig a bit deeper
into how the data plane is modelled.

6.1.1.1 The data plane abstraction
First, we leverage the idea from [Raghavan2012] to separate the edge, that uses software forwarding over generic
purpose CPUs and GPUs to implement a broad selection of traffic control, conversion, and steering functionalities,
from the core, deployed over a mix of legacy and SDN-capable switches, responsible solely for providing transport
services between edge ports, that is, to realize the “big switch” abstraction. Note that both the edge and the core
work under the supervision of the central controller. Moreover, we assume that all traffic control, logging, shaping,
and all access control measures are applied at the edge in software, where resource constraints are not that
compelling, which leaves only packet transport services to be realized in the core. In what follows we consider only
the core of the network.

The second constituent is a tiered approach; decoupling core components based on the way forwarding state is
represented across these tiers.

Underlay – The underlay consists of “dumb” devices, and links between them, providing nothing more than bare
point-to-point packet delivery service between configurable pairs of endpoints. In what follows, we shall call these
point-to-point connections forwarding abstractions and we view these as the sole bearers of forwarding state
within the underlay. As the underlay can be of very limited functionality, we like to think about it as something very
fast, quasi-static (reconfigured infrequently or not reconfigurable at all), dumb (cannot combine forwarding
abstractions, does not understand higher level network semantics), and deployed on specialized, costly, hard-to-
upgrade devices with limited resources. This tier mostly corresponds to the “infrastructure” as of SDIA
[Raghavan2012].

99 Deliverable D3.2 18.06.2015

Overlay – The overlay contains “smarter” devices connected by forwarding abstractions, providing end-to-end
packet delivery service between the edge ports. Overlay nodes arbitrate packets between forwarding abstractions,
relying on higher level or even global protocol semantics (e.g. addressing, header types, configuration of forwarding
abstractions) encoded as forwarding state (e.g. in the form of forwarding or flow tables). Due to the increased
complexity of the forwarding operations in this tier, we think about an overlay node as something slower, more
dynamic, programmable and running on cheaper forwarding fabric. This tier roughly coincides with the
“architecture” in SDIA [Raghavan2012].

Note that any single physical equipment can find itself hosting both underlay and overlay functionality, similarly to
how an OpenFlow switch can be seen as an MPLS switch for one flowspace and an IP router for another. Also note
that complex SDN architectures may contain additional layers using the connections provided by the overlay as
forwarding abstractions (for an analogy consider an IP over MPLS over optical network). For tractability reasons and
space constraints we limit ourselves to the two-layer case and leave the analysis of more complex architectures for
future work.

Packets – Somewhat remarkably, we consider the collection of data packets circulating around the data plane as a
separate tier, on the basis that any data packet can contain forwarding state. Most legacy network protocols offer
some means to communicate loose or strict explicit routes within the packet headers and SDN makes this even
simpler. Correspondingly, we use the following abstraction for representing packets:

Flow identifier Forwarding information Payload

The flow identifier (like MPLS labels or the IP 5-tuple) can be used in combination with underlay and overlay state to
make the appropriate forwarding decisions in these tiers. In turn, forwarding information can be interpreted in the
context of a given node and contains explicit information regarding the treatment of the packet at that node (e.g.
source routing). We assume that forwarding info is filled by routers/switches at the edge.

6.1.1.2 The cross-tier orchestration algorithm
We can now formulate the problem of orchestration within this framework:

The task of the orchestration algorithm is to, given a set of flows and corresponding forwarding paths, generate an
optimal configuration of forwarding state to be programmed into the data plane in order to realize those paths, with
the objective to minimize and balance said forwarding state across the data plane devices and tiers, subject to the
capacity of each individual device.

Within this context, capacity constraints involve any technological barriers in the data plane, like for instance any
limitation on the number of forwarding abstractions an underlay node can originate or terminate (e.g., the number
of wavelength converters at an optical switch), any technological restriction on the forwarding table size at an

99 Deliverable D3.2 18.06.2015

Overlay – The overlay contains “smarter” devices connected by forwarding abstractions, providing end-to-end
packet delivery service between the edge ports. Overlay nodes arbitrate packets between forwarding abstractions,
relying on higher level or even global protocol semantics (e.g. addressing, header types, configuration of forwarding
abstractions) encoded as forwarding state (e.g. in the form of forwarding or flow tables). Due to the increased
complexity of the forwarding operations in this tier, we think about an overlay node as something slower, more
dynamic, programmable and running on cheaper forwarding fabric. This tier roughly coincides with the
“architecture” in SDIA [Raghavan2012].

Note that any single physical equipment can find itself hosting both underlay and overlay functionality, similarly to
how an OpenFlow switch can be seen as an MPLS switch for one flowspace and an IP router for another. Also note
that complex SDN architectures may contain additional layers using the connections provided by the overlay as
forwarding abstractions (for an analogy consider an IP over MPLS over optical network). For tractability reasons and
space constraints we limit ourselves to the two-layer case and leave the analysis of more complex architectures for
future work.

Packets – Somewhat remarkably, we consider the collection of data packets circulating around the data plane as a
separate tier, on the basis that any data packet can contain forwarding state. Most legacy network protocols offer
some means to communicate loose or strict explicit routes within the packet headers and SDN makes this even
simpler. Correspondingly, we use the following abstraction for representing packets:

Flow identifier Forwarding information Payload

The flow identifier (like MPLS labels or the IP 5-tuple) can be used in combination with underlay and overlay state to
make the appropriate forwarding decisions in these tiers. In turn, forwarding information can be interpreted in the
context of a given node and contains explicit information regarding the treatment of the packet at that node (e.g.
source routing). We assume that forwarding info is filled by routers/switches at the edge.

6.1.1.2 The cross-tier orchestration algorithm
We can now formulate the problem of orchestration within this framework:

The task of the orchestration algorithm is to, given a set of flows and corresponding forwarding paths, generate an
optimal configuration of forwarding state to be programmed into the data plane in order to realize those paths, with
the objective to minimize and balance said forwarding state across the data plane devices and tiers, subject to the
capacity of each individual device.

Within this context, capacity constraints involve any technological barriers in the data plane, like for instance any
limitation on the number of forwarding abstractions an underlay node can originate or terminate (e.g., the number
of wavelength converters at an optical switch), any technological restriction on the forwarding table size at an

99 Deliverable D3.2 18.06.2015

Overlay – The overlay contains “smarter” devices connected by forwarding abstractions, providing end-to-end
packet delivery service between the edge ports. Overlay nodes arbitrate packets between forwarding abstractions,
relying on higher level or even global protocol semantics (e.g. addressing, header types, configuration of forwarding
abstractions) encoded as forwarding state (e.g. in the form of forwarding or flow tables). Due to the increased
complexity of the forwarding operations in this tier, we think about an overlay node as something slower, more
dynamic, programmable and running on cheaper forwarding fabric. This tier roughly coincides with the
“architecture” in SDIA [Raghavan2012].

Note that any single physical equipment can find itself hosting both underlay and overlay functionality, similarly to
how an OpenFlow switch can be seen as an MPLS switch for one flowspace and an IP router for another. Also note
that complex SDN architectures may contain additional layers using the connections provided by the overlay as
forwarding abstractions (for an analogy consider an IP over MPLS over optical network). For tractability reasons and
space constraints we limit ourselves to the two-layer case and leave the analysis of more complex architectures for
future work.

Packets – Somewhat remarkably, we consider the collection of data packets circulating around the data plane as a
separate tier, on the basis that any data packet can contain forwarding state. Most legacy network protocols offer
some means to communicate loose or strict explicit routes within the packet headers and SDN makes this even
simpler. Correspondingly, we use the following abstraction for representing packets:

Flow identifier Forwarding information Payload

The flow identifier (like MPLS labels or the IP 5-tuple) can be used in combination with underlay and overlay state to
make the appropriate forwarding decisions in these tiers. In turn, forwarding information can be interpreted in the
context of a given node and contains explicit information regarding the treatment of the packet at that node (e.g.
source routing). We assume that forwarding info is filled by routers/switches at the edge.

6.1.1.2 The cross-tier orchestration algorithm
We can now formulate the problem of orchestration within this framework:

The task of the orchestration algorithm is to, given a set of flows and corresponding forwarding paths, generate an
optimal configuration of forwarding state to be programmed into the data plane in order to realize those paths, with
the objective to minimize and balance said forwarding state across the data plane devices and tiers, subject to the
capacity of each individual device.

Within this context, capacity constraints involve any technological barriers in the data plane, like for instance any
limitation on the number of forwarding abstractions an underlay node can originate or terminate (e.g., the number
of wavelength converters at an optical switch), any technological restriction on the forwarding table size at an

100 Deliverable D3.2 18.06.2015

overlay node (MPLS forwarding table size, max IP FIB or flow table entries, etc.) or on the size of the packet headers
(e.g., max MPLS label stack depth, max IP header size, etc.).

Research is already under way to design such orchestration algorithms. There are methods to remove state from
the underlay [Wang2001], the overlay [Alex2010, Rottenstreich2013, Retvari2013], or from the packet headers
[Krishna2004], and several proposals exist to distribute state across the topology [Kanizo2013, Yu2010].
Unfortunately, these approaches do not allow trading off forwarding space in one tier for that in another, cutting
down a sizable and valuable portion of the problem space.

The main goal of our research was, accordingly, to investigate the algorithmic aspects of data plane orchestration.
We argue that the key is to minimize forwarding state across the tiers, and for mental model we advocate the above
three-tier data plane abstraction. Only making the tedious job of uncovering all options in this problem space will we
be able to supply a solid mathematical foundation and an optimization toolset to practitioners for building truly
dependable software-defined networks.

In the next section, we demonstrate the usefulness of the three-tier data plane abstraction: we show that it
suggests a representative classification of routing and forwarding paradigms based on the way each one represents
forwarding state. It also suggests a new model that we call Software-Defined Routing, encompassing essentially all
these routing paradigms.

6.1.2 Classification of routing & forwarding paradigms
Next, we turn to exercise the three-tier data plane abstraction to classify routing and forwarding paradigms, starting
from simple ones like hop-by-hop routing and full-mesh overlays, all the way to complex ones like pathlet routing
(see Figure 6-1). The classification will be intentionally made incomprehensive: the goal is not to cover all known
routing paradigms but rather to come up with a broad but workable subset. In the below classification, the
numerical code X/Y/Z marks the way forwarding state is represented: X=1 if forwarding state appears in some form
encoded as forwarding abstractions at the underlay and 0 otherwise, and similarly Y (Z) indicates the appearance of
state at the overlay (packets, respectively). We start from the three basic paradigms that encode forwarding state
only at a single tier and we move gradually towards more complex paradigms.

100 Deliverable D3.2 18.06.2015

overlay node (MPLS forwarding table size, max IP FIB or flow table entries, etc.) or on the size of the packet headers
(e.g., max MPLS label stack depth, max IP header size, etc.).

Research is already under way to design such orchestration algorithms. There are methods to remove state from
the underlay [Wang2001], the overlay [Alex2010, Rottenstreich2013, Retvari2013], or from the packet headers
[Krishna2004], and several proposals exist to distribute state across the topology [Kanizo2013, Yu2010].
Unfortunately, these approaches do not allow trading off forwarding space in one tier for that in another, cutting
down a sizable and valuable portion of the problem space.

The main goal of our research was, accordingly, to investigate the algorithmic aspects of data plane orchestration.
We argue that the key is to minimize forwarding state across the tiers, and for mental model we advocate the above
three-tier data plane abstraction. Only making the tedious job of uncovering all options in this problem space will we
be able to supply a solid mathematical foundation and an optimization toolset to practitioners for building truly
dependable software-defined networks.

In the next section, we demonstrate the usefulness of the three-tier data plane abstraction: we show that it
suggests a representative classification of routing and forwarding paradigms based on the way each one represents
forwarding state. It also suggests a new model that we call Software-Defined Routing, encompassing essentially all
these routing paradigms.

6.1.2 Classification of routing & forwarding paradigms
Next, we turn to exercise the three-tier data plane abstraction to classify routing and forwarding paradigms, starting
from simple ones like hop-by-hop routing and full-mesh overlays, all the way to complex ones like pathlet routing
(see Figure 6-1). The classification will be intentionally made incomprehensive: the goal is not to cover all known
routing paradigms but rather to come up with a broad but workable subset. In the below classification, the
numerical code X/Y/Z marks the way forwarding state is represented: X=1 if forwarding state appears in some form
encoded as forwarding abstractions at the underlay and 0 otherwise, and similarly Y (Z) indicates the appearance of
state at the overlay (packets, respectively). We start from the three basic paradigms that encode forwarding state
only at a single tier and we move gradually towards more complex paradigms.

100 Deliverable D3.2 18.06.2015

overlay node (MPLS forwarding table size, max IP FIB or flow table entries, etc.) or on the size of the packet headers
(e.g., max MPLS label stack depth, max IP header size, etc.).

Research is already under way to design such orchestration algorithms. There are methods to remove state from
the underlay [Wang2001], the overlay [Alex2010, Rottenstreich2013, Retvari2013], or from the packet headers
[Krishna2004], and several proposals exist to distribute state across the topology [Kanizo2013, Yu2010].
Unfortunately, these approaches do not allow trading off forwarding space in one tier for that in another, cutting
down a sizable and valuable portion of the problem space.

The main goal of our research was, accordingly, to investigate the algorithmic aspects of data plane orchestration.
We argue that the key is to minimize forwarding state across the tiers, and for mental model we advocate the above
three-tier data plane abstraction. Only making the tedious job of uncovering all options in this problem space will we
be able to supply a solid mathematical foundation and an optimization toolset to practitioners for building truly
dependable software-defined networks.

In the next section, we demonstrate the usefulness of the three-tier data plane abstraction: we show that it
suggests a representative classification of routing and forwarding paradigms based on the way each one represents
forwarding state. It also suggests a new model that we call Software-Defined Routing, encompassing essentially all
these routing paradigms.

6.1.2 Classification of routing & forwarding paradigms
Next, we turn to exercise the three-tier data plane abstraction to classify routing and forwarding paradigms, starting
from simple ones like hop-by-hop routing and full-mesh overlays, all the way to complex ones like pathlet routing
(see Figure 6-1). The classification will be intentionally made incomprehensive: the goal is not to cover all known
routing paradigms but rather to come up with a broad but workable subset. In the below classification, the
numerical code X/Y/Z marks the way forwarding state is represented: X=1 if forwarding state appears in some form
encoded as forwarding abstractions at the underlay and 0 otherwise, and similarly Y (Z) indicates the appearance of
state at the overlay (packets, respectively). We start from the three basic paradigms that encode forwarding state
only at a single tier and we move gradually towards more complex paradigms.

101 Deliverable D3.2 18.06.2015

Figure 6-1: Routing & forwarding paradigms categorized by forwarding state representation.

Full-mesh overlays14 (1/0/0) – In a full-mesh overlay every single flow is mapped to a separate forwarding
abstraction, thereby encoding all forwarding state within the underlay and stripping all state from the overlay and
the packet headers (apart from the flow identification which is always there anyways). Full-mesh overlays used to
enjoy wide popularity to build IP/MPLS overlays [Wang2001], but later got dismissed due to quadratic scaling (in
terms of the number of source-destination pairs, if this happens to be our traffic unit of choice).

Hop-by-hop routing (0/1/0) – This is the good old IP routing paradigm (MPLS with LSP counts here too, along with
basic Ethernet etc.), whereas each individual network link and LAN is perceived as a separate forwarding abstraction.
Data forwarding occurs by each node passing packets on to the next-hop by inspecting (some part of the) the flow
identifier in the headers, and the related forwarding state is fully encoded into the forwarding tables maintained at
network nodes. Hop-by-hop routing is known to suffer scalability issues, manifested in the rapid overflow of these
per-node flow tables, a resource heavily restricted in today’s hardware [Kang2013, Kanizo2013, Retvari2013].

Explicit routing (0/0/1) – Explicit routing confines all forwarding state into the packet headers, eliminating state
from the underlay (so again, each physical link is a separate forwarding abstraction) and from the overlay (hence
this model is sometimes also called “stateless routing” [Tapolcai2012]). This paradigm is often criticized due to
notorious MTU-overflow issues, bad security and inefficiency (with excess header info overtaking useful packet
payload), not to mention the maximum header length limitations found in many forwarding plane technologies.

Pure paradigms, which encode state at only a single tier, suffer from grave scalability issues. A plausible way out is to
disseminate state at multiple tiers, as of the following three paradigms.

Overlay routing (1/1/0) – Overlay routing uses tunnels as forwarding abstractions, whereby the underlay exposes a
logical network topology to the overlay which can then readily route over this logical topology. Hence, state appears
at the underlay and the overlay, but not in packet headers. A typical example is IP/MPLS overlays or, more recently,

14 The naming of this paradigm slightly confusing as it is called “full-mesh overlay” and we don’t keep state in theoverlay at all, however we keep this term to be compliant with the literature which uses this term covering thesame functionality.

SDR

Packets

OverlayUnderlay

Full-mesh
overlay

Overlay
routing

Hop-by-hop
routing

Pathlet
routing

Loose
source
routing

Explicit
routing

101 Deliverable D3.2 18.06.2015

Figure 6-1: Routing & forwarding paradigms categorized by forwarding state representation.

Full-mesh overlays14 (1/0/0) – In a full-mesh overlay every single flow is mapped to a separate forwarding
abstraction, thereby encoding all forwarding state within the underlay and stripping all state from the overlay and
the packet headers (apart from the flow identification which is always there anyways). Full-mesh overlays used to
enjoy wide popularity to build IP/MPLS overlays [Wang2001], but later got dismissed due to quadratic scaling (in
terms of the number of source-destination pairs, if this happens to be our traffic unit of choice).

Hop-by-hop routing (0/1/0) – This is the good old IP routing paradigm (MPLS with LSP counts here too, along with
basic Ethernet etc.), whereas each individual network link and LAN is perceived as a separate forwarding abstraction.
Data forwarding occurs by each node passing packets on to the next-hop by inspecting (some part of the) the flow
identifier in the headers, and the related forwarding state is fully encoded into the forwarding tables maintained at
network nodes. Hop-by-hop routing is known to suffer scalability issues, manifested in the rapid overflow of these
per-node flow tables, a resource heavily restricted in today’s hardware [Kang2013, Kanizo2013, Retvari2013].

Explicit routing (0/0/1) – Explicit routing confines all forwarding state into the packet headers, eliminating state
from the underlay (so again, each physical link is a separate forwarding abstraction) and from the overlay (hence
this model is sometimes also called “stateless routing” [Tapolcai2012]). This paradigm is often criticized due to
notorious MTU-overflow issues, bad security and inefficiency (with excess header info overtaking useful packet
payload), not to mention the maximum header length limitations found in many forwarding plane technologies.

Pure paradigms, which encode state at only a single tier, suffer from grave scalability issues. A plausible way out is to
disseminate state at multiple tiers, as of the following three paradigms.

Overlay routing (1/1/0) – Overlay routing uses tunnels as forwarding abstractions, whereby the underlay exposes a
logical network topology to the overlay which can then readily route over this logical topology. Hence, state appears
at the underlay and the overlay, but not in packet headers. A typical example is IP/MPLS overlays or, more recently,

14 The naming of this paradigm slightly confusing as it is called “full-mesh overlay” and we don’t keep state in theoverlay at all, however we keep this term to be compliant with the literature which uses this term covering thesame functionality.

SDR

Packets

OverlayUnderlay

Full-mesh
overlay

Overlay
routing

Hop-by-hop
routing

Pathlet
routing

Loose
source
routing

Explicit
routing

101 Deliverable D3.2 18.06.2015

Figure 6-1: Routing & forwarding paradigms categorized by forwarding state representation.

Full-mesh overlays14 (1/0/0) – In a full-mesh overlay every single flow is mapped to a separate forwarding
abstraction, thereby encoding all forwarding state within the underlay and stripping all state from the overlay and
the packet headers (apart from the flow identification which is always there anyways). Full-mesh overlays used to
enjoy wide popularity to build IP/MPLS overlays [Wang2001], but later got dismissed due to quadratic scaling (in
terms of the number of source-destination pairs, if this happens to be our traffic unit of choice).

Hop-by-hop routing (0/1/0) – This is the good old IP routing paradigm (MPLS with LSP counts here too, along with
basic Ethernet etc.), whereas each individual network link and LAN is perceived as a separate forwarding abstraction.
Data forwarding occurs by each node passing packets on to the next-hop by inspecting (some part of the) the flow
identifier in the headers, and the related forwarding state is fully encoded into the forwarding tables maintained at
network nodes. Hop-by-hop routing is known to suffer scalability issues, manifested in the rapid overflow of these
per-node flow tables, a resource heavily restricted in today’s hardware [Kang2013, Kanizo2013, Retvari2013].

Explicit routing (0/0/1) – Explicit routing confines all forwarding state into the packet headers, eliminating state
from the underlay (so again, each physical link is a separate forwarding abstraction) and from the overlay (hence
this model is sometimes also called “stateless routing” [Tapolcai2012]). This paradigm is often criticized due to
notorious MTU-overflow issues, bad security and inefficiency (with excess header info overtaking useful packet
payload), not to mention the maximum header length limitations found in many forwarding plane technologies.

Pure paradigms, which encode state at only a single tier, suffer from grave scalability issues. A plausible way out is to
disseminate state at multiple tiers, as of the following three paradigms.

Overlay routing (1/1/0) – Overlay routing uses tunnels as forwarding abstractions, whereby the underlay exposes a
logical network topology to the overlay which can then readily route over this logical topology. Hence, state appears
at the underlay and the overlay, but not in packet headers. A typical example is IP/MPLS overlays or, more recently,

14 The naming of this paradigm slightly confusing as it is called “full-mesh overlay” and we don’t keep state in theoverlay at all, however we keep this term to be compliant with the literature which uses this term covering thesame functionality.

SDR

Packets

OverlayUnderlay

Full-mesh
overlay

Overlay
routing

Hop-by-hop
routing

Pathlet
routing

Loose
source
routing

Explicit
routing

102 Deliverable D3.2 18.06.2015

SDN traffic steering mechanisms, whereas tunnels are configured through OpenFlow and overlay nodes are hosted
at middleboxes [Anwer2013].

Loose source routing (0/1/1) – Loose source routing (LSR) uses a combination of state encoded in forwarding
tables at the overlay to route packets between subsequent stages of the forwarding path and the succession of
these stages is encoded within the packet header as loose source routes. In a pure form of LSR no forwarding state
appears within the underlay. LSR seems to enjoy renewed interest, with segment routing advocated at the IETF for
better routing flexibility [Previdi2014b].

Pathlet routing (1/0/1) – Pathlet routing uses short path slices (called “pathlets”) as forwarding abstractions and
nodes arbitrate packets between these abstractions based on the stack of pathlet IDs in the packet headers. Pathlet
routing is mostly intended for general inter-domain routing [Koponen2011, Godfrey2009] and SDN traffic steering
[Chiesa2014], but there is no reason whatsoever why we couldn’t leverage this concept as a general routing and
forwarding concept.

One might wonder now what is exactly at the coordinates 0/0/0 and 1/1/1. The former corresponds to the
interesting but completely out-of-scope case whereas no state appears anywhere, neither in the underlay, nor in
the overlay or in the headers (apart from the mandatory flow identification field), yet packets somehow still arrive to
the destination. One might argue that random walks, network flooding, ant-colony optimization, or quantum
communication could be classified into this category, but the model just breaks at this point. More interesting is the
case of 1/1/1, the all-encompassing and ultimately flexible routing paradigm that allows to represent forwarding
state in any assortment of tunnels, routing tables, or packets. Due to this versatility and universality, we call this
combination the Software-Defined Routing (SDR) paradigm.

Software Defined Routing (1/1/1) – Within SDR, we are free to establish whatever forwarding abstractions at the
underlay, exposing these to the overlay, and get packets through this virtualized data plane using both forwarding
state placed by the controller at the overlay nodes and explicit routing information encoded by the edge into the
packets.

The algorithmic challenge is now to come up with suitable orchestration algorithms that can map any set of input
paths to such a broad combination of data plane tiers, meanwhile minimizing the amount of state encoded at any
single tier. Finding a mathematical model for the problem in this general form seems daunting though. In what
follows, therefore, we define and analyze a slightly simpler model.

6.1.3 Trading off space across tiers
The complexity and the memory requirement of making a forwarding decision can exhibit high variation across our
three tiers. In case of forwarding in the underlay, the process is simply determining the forwarding abstraction the
packet belongs to and output the packet on the corresponding port. If the packet cannot be forwarded in the
underlay (e.g. the node is the last node of the forwarding abstraction) it is escalated to the overlay or the packet tier

102 Deliverable D3.2 18.06.2015

SDN traffic steering mechanisms, whereas tunnels are configured through OpenFlow and overlay nodes are hosted
at middleboxes [Anwer2013].

Loose source routing (0/1/1) – Loose source routing (LSR) uses a combination of state encoded in forwarding
tables at the overlay to route packets between subsequent stages of the forwarding path and the succession of
these stages is encoded within the packet header as loose source routes. In a pure form of LSR no forwarding state
appears within the underlay. LSR seems to enjoy renewed interest, with segment routing advocated at the IETF for
better routing flexibility [Previdi2014b].

Pathlet routing (1/0/1) – Pathlet routing uses short path slices (called “pathlets”) as forwarding abstractions and
nodes arbitrate packets between these abstractions based on the stack of pathlet IDs in the packet headers. Pathlet
routing is mostly intended for general inter-domain routing [Koponen2011, Godfrey2009] and SDN traffic steering
[Chiesa2014], but there is no reason whatsoever why we couldn’t leverage this concept as a general routing and
forwarding concept.

One might wonder now what is exactly at the coordinates 0/0/0 and 1/1/1. The former corresponds to the
interesting but completely out-of-scope case whereas no state appears anywhere, neither in the underlay, nor in
the overlay or in the headers (apart from the mandatory flow identification field), yet packets somehow still arrive to
the destination. One might argue that random walks, network flooding, ant-colony optimization, or quantum
communication could be classified into this category, but the model just breaks at this point. More interesting is the
case of 1/1/1, the all-encompassing and ultimately flexible routing paradigm that allows to represent forwarding
state in any assortment of tunnels, routing tables, or packets. Due to this versatility and universality, we call this
combination the Software-Defined Routing (SDR) paradigm.

Software Defined Routing (1/1/1) – Within SDR, we are free to establish whatever forwarding abstractions at the
underlay, exposing these to the overlay, and get packets through this virtualized data plane using both forwarding
state placed by the controller at the overlay nodes and explicit routing information encoded by the edge into the
packets.

The algorithmic challenge is now to come up with suitable orchestration algorithms that can map any set of input
paths to such a broad combination of data plane tiers, meanwhile minimizing the amount of state encoded at any
single tier. Finding a mathematical model for the problem in this general form seems daunting though. In what
follows, therefore, we define and analyze a slightly simpler model.

6.1.3 Trading off space across tiers
The complexity and the memory requirement of making a forwarding decision can exhibit high variation across our
three tiers. In case of forwarding in the underlay, the process is simply determining the forwarding abstraction the
packet belongs to and output the packet on the corresponding port. If the packet cannot be forwarded in the
underlay (e.g. the node is the last node of the forwarding abstraction) it is escalated to the overlay or the packet tier

102 Deliverable D3.2 18.06.2015

SDN traffic steering mechanisms, whereas tunnels are configured through OpenFlow and overlay nodes are hosted
at middleboxes [Anwer2013].

Loose source routing (0/1/1) – Loose source routing (LSR) uses a combination of state encoded in forwarding
tables at the overlay to route packets between subsequent stages of the forwarding path and the succession of
these stages is encoded within the packet header as loose source routes. In a pure form of LSR no forwarding state
appears within the underlay. LSR seems to enjoy renewed interest, with segment routing advocated at the IETF for
better routing flexibility [Previdi2014b].

Pathlet routing (1/0/1) – Pathlet routing uses short path slices (called “pathlets”) as forwarding abstractions and
nodes arbitrate packets between these abstractions based on the stack of pathlet IDs in the packet headers. Pathlet
routing is mostly intended for general inter-domain routing [Koponen2011, Godfrey2009] and SDN traffic steering
[Chiesa2014], but there is no reason whatsoever why we couldn’t leverage this concept as a general routing and
forwarding concept.

One might wonder now what is exactly at the coordinates 0/0/0 and 1/1/1. The former corresponds to the
interesting but completely out-of-scope case whereas no state appears anywhere, neither in the underlay, nor in
the overlay or in the headers (apart from the mandatory flow identification field), yet packets somehow still arrive to
the destination. One might argue that random walks, network flooding, ant-colony optimization, or quantum
communication could be classified into this category, but the model just breaks at this point. More interesting is the
case of 1/1/1, the all-encompassing and ultimately flexible routing paradigm that allows to represent forwarding
state in any assortment of tunnels, routing tables, or packets. Due to this versatility and universality, we call this
combination the Software-Defined Routing (SDR) paradigm.

Software Defined Routing (1/1/1) – Within SDR, we are free to establish whatever forwarding abstractions at the
underlay, exposing these to the overlay, and get packets through this virtualized data plane using both forwarding
state placed by the controller at the overlay nodes and explicit routing information encoded by the edge into the
packets.

The algorithmic challenge is now to come up with suitable orchestration algorithms that can map any set of input
paths to such a broad combination of data plane tiers, meanwhile minimizing the amount of state encoded at any
single tier. Finding a mathematical model for the problem in this general form seems daunting though. In what
follows, therefore, we define and analyze a slightly simpler model.

6.1.3 Trading off space across tiers
The complexity and the memory requirement of making a forwarding decision can exhibit high variation across our
three tiers. In case of forwarding in the underlay, the process is simply determining the forwarding abstraction the
packet belongs to and output the packet on the corresponding port. If the packet cannot be forwarded in the
underlay (e.g. the node is the last node of the forwarding abstraction) it is escalated to the overlay or the packet tier

103 Deliverable D3.2 18.06.2015

(see Figure 6-2). Forwarding in the overlay implements the logic of combining the forwarding abstractions exposed
by the underlay based on the flow identification part of the header. We argue that overlay forwarding may be more
complex (e.g. involve more complex matching processes and actions). For an analogy, label-based switching is much
faster than the enforcement of IP level policies prescribing which MPLS tunnels to combine to realize some end-to-
end connection in IP. However if we want to implement the same connections with MPLS the memory requirement
would be much higher as we would need MPLS tunnels between every pair of IP endpoints. Finally, forwarding using
the forwarding information in the packet needs to (i) interpret the forwarding info e.g. read the appropriate section
and translates what it means at the given node and (ii) updates this field by e.g. adding/removing new/obsolete
parts before outputting the packet.

Figure 6-2: Possible forwarding decision paths in a physical node.

In what follows, we formulate a model that can capture non-trivial aspects of the above general architecture yet
permitting analytic tractability. To achieve this goal we will lose a little of the generality of the above framework and
will not differentiate between the packet and overlay tiers. However, we do differentiate between the underlay and
the rest of the tiers, as underlay forwarding is clearly the cheapest, fastest and greenest option, and we try to push
forwarding decisions as much as possible down into the underlay and escalate the forwarding process to other tiers
when absolutely unavoidable. For the sake of simplicity from now on we consider our underlay tier to be the bare
bone physical infrastructure.

6.1.3.1 Model
We associate an undirected graph G(V,E) with the underlay network, where V (|V|=n) corresponds to physical
switching devices (e.g., routers or switches) and E (|E|=m) represents physical links (e.g., cables). Let the traffic unit
be source-destination pairs: S = {(s, d)}, s, d ∈ V, with a desired forwarding path specified for each (s,d)-pair by the
routing policy.

103 Deliverable D3.2 18.06.2015

(see Figure 6-2). Forwarding in the overlay implements the logic of combining the forwarding abstractions exposed
by the underlay based on the flow identification part of the header. We argue that overlay forwarding may be more
complex (e.g. involve more complex matching processes and actions). For an analogy, label-based switching is much
faster than the enforcement of IP level policies prescribing which MPLS tunnels to combine to realize some end-to-
end connection in IP. However if we want to implement the same connections with MPLS the memory requirement
would be much higher as we would need MPLS tunnels between every pair of IP endpoints. Finally, forwarding using
the forwarding information in the packet needs to (i) interpret the forwarding info e.g. read the appropriate section
and translates what it means at the given node and (ii) updates this field by e.g. adding/removing new/obsolete
parts before outputting the packet.

Figure 6-2: Possible forwarding decision paths in a physical node.

In what follows, we formulate a model that can capture non-trivial aspects of the above general architecture yet
permitting analytic tractability. To achieve this goal we will lose a little of the generality of the above framework and
will not differentiate between the packet and overlay tiers. However, we do differentiate between the underlay and
the rest of the tiers, as underlay forwarding is clearly the cheapest, fastest and greenest option, and we try to push
forwarding decisions as much as possible down into the underlay and escalate the forwarding process to other tiers
when absolutely unavoidable. For the sake of simplicity from now on we consider our underlay tier to be the bare
bone physical infrastructure.

6.1.3.1 Model
We associate an undirected graph G(V,E) with the underlay network, where V (|V|=n) corresponds to physical
switching devices (e.g., routers or switches) and E (|E|=m) represents physical links (e.g., cables). Let the traffic unit
be source-destination pairs: S = {(s, d)}, s, d ∈ V, with a desired forwarding path specified for each (s,d)-pair by the
routing policy.

103 Deliverable D3.2 18.06.2015

(see Figure 6-2). Forwarding in the overlay implements the logic of combining the forwarding abstractions exposed
by the underlay based on the flow identification part of the header. We argue that overlay forwarding may be more
complex (e.g. involve more complex matching processes and actions). For an analogy, label-based switching is much
faster than the enforcement of IP level policies prescribing which MPLS tunnels to combine to realize some end-to-
end connection in IP. However if we want to implement the same connections with MPLS the memory requirement
would be much higher as we would need MPLS tunnels between every pair of IP endpoints. Finally, forwarding using
the forwarding information in the packet needs to (i) interpret the forwarding info e.g. read the appropriate section
and translates what it means at the given node and (ii) updates this field by e.g. adding/removing new/obsolete
parts before outputting the packet.

Figure 6-2: Possible forwarding decision paths in a physical node.

In what follows, we formulate a model that can capture non-trivial aspects of the above general architecture yet
permitting analytic tractability. To achieve this goal we will lose a little of the generality of the above framework and
will not differentiate between the packet and overlay tiers. However, we do differentiate between the underlay and
the rest of the tiers, as underlay forwarding is clearly the cheapest, fastest and greenest option, and we try to push
forwarding decisions as much as possible down into the underlay and escalate the forwarding process to other tiers
when absolutely unavoidable. For the sake of simplicity from now on we consider our underlay tier to be the bare
bone physical infrastructure.

6.1.3.1 Model
We associate an undirected graph G(V,E) with the underlay network, where V (|V|=n) corresponds to physical
switching devices (e.g., routers or switches) and E (|E|=m) represents physical links (e.g., cables). Let the traffic unit
be source-destination pairs: S = {(s, d)}, s, d ∈ V, with a desired forwarding path specified for each (s,d)-pair by the
routing policy.

104 Deliverable D3.2 18.06.2015

Forwarding abstractions – A forwarding abstraction tij of length |tij| from node i to j is an ordered set of |tij| edges
that form a path from i to j in G

tij = {(i = u0 , u1), (u1 , u2), ..., (u|tij|−1, u|tij| = j)}, where∀k ∈ 0, …,|tij|−1, (uk, uk+1) ∈ E .

Denote the set of all forwarding abstractions by T and let lT = |T|. With a slight abuse of notation, we let tij to also
denote a unique id for the corresponding forwarding abstraction.

Forwarding – Forwarding in the underlay is done by an exact matching on the forwarding abstraction id encoded in
the packet header from a static table stored at the node and running a simple output action. The forwarding table Fv

at node v∈V consists of a set of rules Fv = {tij→ (oij)}, where tij is a forwarding abstraction id and oij is an output port
forward the packet on. The number of entries in Fv essentially determines the amount of forwarding state stored at
the underlay at node v. For simplicity, we assume that lT is a good representative for the size of Fv. In fact, this is only
an upper bound. Yet, this assumption will prove indispensable for the below analysis. Note that whenever there is no
appropriate id tij in the header or a matching entry is not found in Fv, the decision needs to be escalated to the
overlay or the packet tiers.

6.1.3.2 Problem formulation and complexity
The problem of orchestration in this model is to determine the optimal configuration for T, so that the forwarding
state at the underlay nodes (represented by lT) and the number of escalations to other tiers ε are minimal.

Definition 1 (The SDR problem) – Given a graph G(V,E), flows S with paths Psd, and integers E and L, find a
configuration T so that there is a correct route for each (s,d) ∈ S (i.e. each P ∈ Psd can be expressed as a
concatenation of some tij ∈ S), while lT < L and ε≤E.

The difficulty lies at provisioning just the optimal number and configuration of forwarding abstractions. On the one
hand, if we let all source-destination paths be assigned a separate forwarding abstraction then we end up with lT =
O(n2) and ε=0 (full-mesh overlay). The other way around, i.e., letting each physical link be a forwarding abstraction
yields lT = O(m) and ε=O(n) (explicit routing or hop-by-hop routing). Easily, the truth must be somewhere in
between. It turns out, however, that finding the sweet spot at which state is optimally distributed between the two
extremes is very difficult.

Theorem 1 – The SDR problem is NP-complete.

The proof is by reduction to the hitting set problem. Note also that the problem is not even approximable within any
constant c>0, unless P=NP.

104 Deliverable D3.2 18.06.2015

Forwarding abstractions – A forwarding abstraction tij of length |tij| from node i to j is an ordered set of |tij| edges
that form a path from i to j in G

tij = {(i = u0 , u1), (u1 , u2), ..., (u|tij|−1, u|tij| = j)}, where∀k ∈ 0, …,|tij|−1, (uk, uk+1) ∈ E .

Denote the set of all forwarding abstractions by T and let lT = |T|. With a slight abuse of notation, we let tij to also
denote a unique id for the corresponding forwarding abstraction.

Forwarding – Forwarding in the underlay is done by an exact matching on the forwarding abstraction id encoded in
the packet header from a static table stored at the node and running a simple output action. The forwarding table Fv

at node v∈V consists of a set of rules Fv = {tij→ (oij)}, where tij is a forwarding abstraction id and oij is an output port
forward the packet on. The number of entries in Fv essentially determines the amount of forwarding state stored at
the underlay at node v. For simplicity, we assume that lT is a good representative for the size of Fv. In fact, this is only
an upper bound. Yet, this assumption will prove indispensable for the below analysis. Note that whenever there is no
appropriate id tij in the header or a matching entry is not found in Fv, the decision needs to be escalated to the
overlay or the packet tiers.

6.1.3.2 Problem formulation and complexity
The problem of orchestration in this model is to determine the optimal configuration for T, so that the forwarding
state at the underlay nodes (represented by lT) and the number of escalations to other tiers ε are minimal.

Definition 1 (The SDR problem) – Given a graph G(V,E), flows S with paths Psd, and integers E and L, find a
configuration T so that there is a correct route for each (s,d) ∈ S (i.e. each P ∈ Psd can be expressed as a
concatenation of some tij ∈ S), while lT < L and ε≤E.

The difficulty lies at provisioning just the optimal number and configuration of forwarding abstractions. On the one
hand, if we let all source-destination paths be assigned a separate forwarding abstraction then we end up with lT =
O(n2) and ε=0 (full-mesh overlay). The other way around, i.e., letting each physical link be a forwarding abstraction
yields lT = O(m) and ε=O(n) (explicit routing or hop-by-hop routing). Easily, the truth must be somewhere in
between. It turns out, however, that finding the sweet spot at which state is optimally distributed between the two
extremes is very difficult.

Theorem 1 – The SDR problem is NP-complete.

The proof is by reduction to the hitting set problem. Note also that the problem is not even approximable within any
constant c>0, unless P=NP.

104 Deliverable D3.2 18.06.2015

Forwarding abstractions – A forwarding abstraction tij of length |tij| from node i to j is an ordered set of |tij| edges
that form a path from i to j in G

tij = {(i = u0 , u1), (u1 , u2), ..., (u|tij|−1, u|tij| = j)}, where∀k ∈ 0, …,|tij|−1, (uk, uk+1) ∈ E .

Denote the set of all forwarding abstractions by T and let lT = |T|. With a slight abuse of notation, we let tij to also
denote a unique id for the corresponding forwarding abstraction.

Forwarding – Forwarding in the underlay is done by an exact matching on the forwarding abstraction id encoded in
the packet header from a static table stored at the node and running a simple output action. The forwarding table Fv

at node v∈V consists of a set of rules Fv = {tij→ (oij)}, where tij is a forwarding abstraction id and oij is an output port
forward the packet on. The number of entries in Fv essentially determines the amount of forwarding state stored at
the underlay at node v. For simplicity, we assume that lT is a good representative for the size of Fv. In fact, this is only
an upper bound. Yet, this assumption will prove indispensable for the below analysis. Note that whenever there is no
appropriate id tij in the header or a matching entry is not found in Fv, the decision needs to be escalated to the
overlay or the packet tiers.

6.1.3.2 Problem formulation and complexity
The problem of orchestration in this model is to determine the optimal configuration for T, so that the forwarding
state at the underlay nodes (represented by lT) and the number of escalations to other tiers ε are minimal.

Definition 1 (The SDR problem) – Given a graph G(V,E), flows S with paths Psd, and integers E and L, find a
configuration T so that there is a correct route for each (s,d) ∈ S (i.e. each P ∈ Psd can be expressed as a
concatenation of some tij ∈ S), while lT < L and ε≤E.

The difficulty lies at provisioning just the optimal number and configuration of forwarding abstractions. On the one
hand, if we let all source-destination paths be assigned a separate forwarding abstraction then we end up with lT =
O(n2) and ε=0 (full-mesh overlay). The other way around, i.e., letting each physical link be a forwarding abstraction
yields lT = O(m) and ε=O(n) (explicit routing or hop-by-hop routing). Easily, the truth must be somewhere in
between. It turns out, however, that finding the sweet spot at which state is optimally distributed between the two
extremes is very difficult.

Theorem 1 – The SDR problem is NP-complete.

The proof is by reduction to the hitting set problem. Note also that the problem is not even approximable within any
constant c>0, unless P=NP.

105 Deliverable D3.2 18.06.2015

6.1.4 Results
It seems that exercising the underlay forwarding vs. escalation trade-off analytically is very difficult in general, due
to the intractability of the underlying optimization problem. Instead of diving deep into analytical bounds and exact
and approximate algorithms, we rather highlight here some of the results we have in order to demonstrate this
trade-off. For the sake of simplicity, from here onwards we shall assume that S=V×V (all-pairs version) and the
routing policy is shortest path over unit cost graphs. Under this assumption, E∈T.

Figure 6-3: The “underlay forwarding vs. escalation to higher tiers” trade-off.

If we restrict the underlying graph to be a tree then we can give some useful upper bounds. Figure 6-3 illustrates
the above trade-off for this case. For the sake of cleaner presentation, the notation lT in this case denotes only the
number of forwarding abstractions in excess to the trivial one-hop ones (i.e., lT = |T| − m = |T| − n + 1). The most
interesting finding seems to be that we can do with at most 2 escalations just by adding O(log n) forwarding
abstractions to each node on average or log n escalations with constant number of forwarding abstractions per
node. Note that the optimum might be even better, as these results are upper bounds. Note also that the claims hold
for any tree as the bounds are analytic.

Figure 6-4: Number of forwarding abstractions in the optimal SDR configuration as the function of the escalations,
for various real-world topologies. Note the logarithmic scale on the y-axis.

105 Deliverable D3.2 18.06.2015

6.1.4 Results
It seems that exercising the underlay forwarding vs. escalation trade-off analytically is very difficult in general, due
to the intractability of the underlying optimization problem. Instead of diving deep into analytical bounds and exact
and approximate algorithms, we rather highlight here some of the results we have in order to demonstrate this
trade-off. For the sake of simplicity, from here onwards we shall assume that S=V×V (all-pairs version) and the
routing policy is shortest path over unit cost graphs. Under this assumption, E∈T.

Figure 6-3: The “underlay forwarding vs. escalation to higher tiers” trade-off.

If we restrict the underlying graph to be a tree then we can give some useful upper bounds. Figure 6-3 illustrates
the above trade-off for this case. For the sake of cleaner presentation, the notation lT in this case denotes only the
number of forwarding abstractions in excess to the trivial one-hop ones (i.e., lT = |T| − m = |T| − n + 1). The most
interesting finding seems to be that we can do with at most 2 escalations just by adding O(log n) forwarding
abstractions to each node on average or log n escalations with constant number of forwarding abstractions per
node. Note that the optimum might be even better, as these results are upper bounds. Note also that the claims hold
for any tree as the bounds are analytic.

Figure 6-4: Number of forwarding abstractions in the optimal SDR configuration as the function of the escalations,
for various real-world topologies. Note the logarithmic scale on the y-axis.

105 Deliverable D3.2 18.06.2015

6.1.4 Results
It seems that exercising the underlay forwarding vs. escalation trade-off analytically is very difficult in general, due
to the intractability of the underlying optimization problem. Instead of diving deep into analytical bounds and exact
and approximate algorithms, we rather highlight here some of the results we have in order to demonstrate this
trade-off. For the sake of simplicity, from here onwards we shall assume that S=V×V (all-pairs version) and the
routing policy is shortest path over unit cost graphs. Under this assumption, E∈T.

Figure 6-3: The “underlay forwarding vs. escalation to higher tiers” trade-off.

If we restrict the underlying graph to be a tree then we can give some useful upper bounds. Figure 6-3 illustrates
the above trade-off for this case. For the sake of cleaner presentation, the notation lT in this case denotes only the
number of forwarding abstractions in excess to the trivial one-hop ones (i.e., lT = |T| − m = |T| − n + 1). The most
interesting finding seems to be that we can do with at most 2 escalations just by adding O(log n) forwarding
abstractions to each node on average or log n escalations with constant number of forwarding abstractions per
node. Note that the optimum might be even better, as these results are upper bounds. Note also that the claims hold
for any tree as the bounds are analytic.

Figure 6-4: Number of forwarding abstractions in the optimal SDR configuration as the function of the escalations,
for various real-world topologies. Note the logarithmic scale on the y-axis.

106 Deliverable D3.2 18.06.2015

Figure 6-5: Number of forwarding abstractions in the approximate SDR configuration as the function of escalations
for the NSF topology.

Stepping beyond trees, we defined an integer linear program (ILP) suitable to obtain the optimal solution for the
SDR problem over general graphs. The ILP contains a couple of thousand variables and constraints even for mid-size
problems, so for larger graphs we went with a greedy heuristic. The idea here is to, in each iteration, instantiate the
forwarding abstraction that reduces the number of escalations the most. The results with the ILP over various ISP
topologies are given in Figure 6-4 and a comparison of the optimal and the approximate solutions is given in Figure
6-5 for the representative NSF (AS 102) topology.

It seems that the transition from “all state in the underlay” (full-mesh) to “all state above” (explicit/hop-by-hop
routing) is reassuringly fast: adding only a moderate number of forwarding abstractions, such that the average
forwarding state per router is limited to only a few entries, say, 1–5, the number of escalations drops quickly from
the prohibitive regime of dozens to the fairly reasonable range of 2–4 constituting a sweet spot mixing the
advantages of both forwarding technologies..

This showcases the power of SDR: while it is very well imaginable that an operator could not allow (due to intrinsic
limitations of the switches) or would not want (for efficiency reasons) the header size/overlay state to grow beyond
a certain limit, or could not allow establishing hundreds of forwarding abstractions for supporting full-mesh
overlays, and so said operator could not realize the intended routing that he or she sees best fit for the traffic
engineering goals, our SDR model brings the solution within reach by distributing forwarding state across the tiers.
Meanwhile, it significantly reduces the state in all tiers from what was available with “pure” routing paradigms. We
believe that this short case study sufficiently demonstrates the power of an SDN orchestration algorithm based on
our model of SDR. Moreover, these results can provide useful inputs for designing future traffic steering algorithms
hosting the programmability and orchestration framework of UNIFY.

106 Deliverable D3.2 18.06.2015

Figure 6-5: Number of forwarding abstractions in the approximate SDR configuration as the function of escalations
for the NSF topology.

Stepping beyond trees, we defined an integer linear program (ILP) suitable to obtain the optimal solution for the
SDR problem over general graphs. The ILP contains a couple of thousand variables and constraints even for mid-size
problems, so for larger graphs we went with a greedy heuristic. The idea here is to, in each iteration, instantiate the
forwarding abstraction that reduces the number of escalations the most. The results with the ILP over various ISP
topologies are given in Figure 6-4 and a comparison of the optimal and the approximate solutions is given in Figure
6-5 for the representative NSF (AS 102) topology.

It seems that the transition from “all state in the underlay” (full-mesh) to “all state above” (explicit/hop-by-hop
routing) is reassuringly fast: adding only a moderate number of forwarding abstractions, such that the average
forwarding state per router is limited to only a few entries, say, 1–5, the number of escalations drops quickly from
the prohibitive regime of dozens to the fairly reasonable range of 2–4 constituting a sweet spot mixing the
advantages of both forwarding technologies..

This showcases the power of SDR: while it is very well imaginable that an operator could not allow (due to intrinsic
limitations of the switches) or would not want (for efficiency reasons) the header size/overlay state to grow beyond
a certain limit, or could not allow establishing hundreds of forwarding abstractions for supporting full-mesh
overlays, and so said operator could not realize the intended routing that he or she sees best fit for the traffic
engineering goals, our SDR model brings the solution within reach by distributing forwarding state across the tiers.
Meanwhile, it significantly reduces the state in all tiers from what was available with “pure” routing paradigms. We
believe that this short case study sufficiently demonstrates the power of an SDN orchestration algorithm based on
our model of SDR. Moreover, these results can provide useful inputs for designing future traffic steering algorithms
hosting the programmability and orchestration framework of UNIFY.

106 Deliverable D3.2 18.06.2015

Figure 6-5: Number of forwarding abstractions in the approximate SDR configuration as the function of escalations
for the NSF topology.

Stepping beyond trees, we defined an integer linear program (ILP) suitable to obtain the optimal solution for the
SDR problem over general graphs. The ILP contains a couple of thousand variables and constraints even for mid-size
problems, so for larger graphs we went with a greedy heuristic. The idea here is to, in each iteration, instantiate the
forwarding abstraction that reduces the number of escalations the most. The results with the ILP over various ISP
topologies are given in Figure 6-4 and a comparison of the optimal and the approximate solutions is given in Figure
6-5 for the representative NSF (AS 102) topology.

It seems that the transition from “all state in the underlay” (full-mesh) to “all state above” (explicit/hop-by-hop
routing) is reassuringly fast: adding only a moderate number of forwarding abstractions, such that the average
forwarding state per router is limited to only a few entries, say, 1–5, the number of escalations drops quickly from
the prohibitive regime of dozens to the fairly reasonable range of 2–4 constituting a sweet spot mixing the
advantages of both forwarding technologies..

This showcases the power of SDR: while it is very well imaginable that an operator could not allow (due to intrinsic
limitations of the switches) or would not want (for efficiency reasons) the header size/overlay state to grow beyond
a certain limit, or could not allow establishing hundreds of forwarding abstractions for supporting full-mesh
overlays, and so said operator could not realize the intended routing that he or she sees best fit for the traffic
engineering goals, our SDR model brings the solution within reach by distributing forwarding state across the tiers.
Meanwhile, it significantly reduces the state in all tiers from what was available with “pure” routing paradigms. We
believe that this short case study sufficiently demonstrates the power of an SDN orchestration algorithm based on
our model of SDR. Moreover, these results can provide useful inputs for designing future traffic steering algorithms
hosting the programmability and orchestration framework of UNIFY.

107 Deliverable D3.2 18.06.2015

7 Scalable orchestration architectures

This section is devoted to summarize our main achievements regarding a service programming and orchestration
framework to implementation the UNIFY concepts, where they can be validated, tested, and in turn provide
feedback to further refine concepts and developed algorithms. Our main goal is to design a scalable orchestration
architecture with all relevant components and to implement several elements of that in a common framework.
These building blocks are the key components of our UNIFY programmability framework which enables the joint
programming and virtualization of cloud and networking resources. An essential requirement from our framework
is the support of efficient integration of different modules implemented by different partners and the easy re-use
and integration of available tools.

Second, we give a high-level description of the next version of our proof of concept prototyping environment called
ESCAPEv2. This framework realizes all the relevant components of our scalable orchestration architecture. More
specifically, it supports (i) operations with almost arbitrary sized SGs, RGs and NF-FGs; (ii) different virtual network
embedding/mapping algorithms; (iii) NF decomposition; (iv) different technological domains via adapter modules;
(v) easy integration and extension. The current state of the prototype and further implementation details can be
found in Annex 1.

On the one hand, the orchestration framework has to inherently support different legacy domains (network and
cloud as well) controlled by state-of-the-art software and/or hardware tools. On the other hand, the relevant
fraction of today’s internet traffic is originated or terminated at wireless end-points; therefore, orchestrating radio
resources has significant importance. Hence, a separate section is devoted to present our approach on joint
orchestration of radio and optical transport resources including the concept and a proof of concept demonstrator.

7.1 Design and implementation of ESCAPEv2
We have established a prototyping framework called ESCAPE (Extensible Service ChAin Prototyping Environment
using Mininet, Click, NETCONF and POX) including the 3 layers of UNIFY architecture, namely, Infrastructure Layer
(IL), Orchestration Layer (OL), Service Layer (SL) and demonstrated the first version in [Csoma2014]. ESCAPE has
been significantly redesigned in order to:

 Get a scalable orchestration architecture with all relevant components

 Follow more closely the current functional architecture of UNIFY

 Make integration with other prototypes easier.

The main goal of ESCAPE is to support the development of several parts of the service chaining architecture
including VNF implementation, traffic steering, virtual network embedding, etc. However, here we focus on the
orchestration part. ESCAPE is (mainly) implemented in Python on top of POX platform and Mininet [POX, Mininet].

107 Deliverable D3.2 18.06.2015

7 Scalable orchestration architectures

This section is devoted to summarize our main achievements regarding a service programming and orchestration
framework to implementation the UNIFY concepts, where they can be validated, tested, and in turn provide
feedback to further refine concepts and developed algorithms. Our main goal is to design a scalable orchestration
architecture with all relevant components and to implement several elements of that in a common framework.
These building blocks are the key components of our UNIFY programmability framework which enables the joint
programming and virtualization of cloud and networking resources. An essential requirement from our framework
is the support of efficient integration of different modules implemented by different partners and the easy re-use
and integration of available tools.

Second, we give a high-level description of the next version of our proof of concept prototyping environment called
ESCAPEv2. This framework realizes all the relevant components of our scalable orchestration architecture. More
specifically, it supports (i) operations with almost arbitrary sized SGs, RGs and NF-FGs; (ii) different virtual network
embedding/mapping algorithms; (iii) NF decomposition; (iv) different technological domains via adapter modules;
(v) easy integration and extension. The current state of the prototype and further implementation details can be
found in Annex 1.

On the one hand, the orchestration framework has to inherently support different legacy domains (network and
cloud as well) controlled by state-of-the-art software and/or hardware tools. On the other hand, the relevant
fraction of today’s internet traffic is originated or terminated at wireless end-points; therefore, orchestrating radio
resources has significant importance. Hence, a separate section is devoted to present our approach on joint
orchestration of radio and optical transport resources including the concept and a proof of concept demonstrator.

7.1 Design and implementation of ESCAPEv2
We have established a prototyping framework called ESCAPE (Extensible Service ChAin Prototyping Environment
using Mininet, Click, NETCONF and POX) including the 3 layers of UNIFY architecture, namely, Infrastructure Layer
(IL), Orchestration Layer (OL), Service Layer (SL) and demonstrated the first version in [Csoma2014]. ESCAPE has
been significantly redesigned in order to:

 Get a scalable orchestration architecture with all relevant components

 Follow more closely the current functional architecture of UNIFY

 Make integration with other prototypes easier.

The main goal of ESCAPE is to support the development of several parts of the service chaining architecture
including VNF implementation, traffic steering, virtual network embedding, etc. However, here we focus on the
orchestration part. ESCAPE is (mainly) implemented in Python on top of POX platform and Mininet [POX, Mininet].

107 Deliverable D3.2 18.06.2015

7 Scalable orchestration architectures

This section is devoted to summarize our main achievements regarding a service programming and orchestration
framework to implementation the UNIFY concepts, where they can be validated, tested, and in turn provide
feedback to further refine concepts and developed algorithms. Our main goal is to design a scalable orchestration
architecture with all relevant components and to implement several elements of that in a common framework.
These building blocks are the key components of our UNIFY programmability framework which enables the joint
programming and virtualization of cloud and networking resources. An essential requirement from our framework
is the support of efficient integration of different modules implemented by different partners and the easy re-use
and integration of available tools.

Second, we give a high-level description of the next version of our proof of concept prototyping environment called
ESCAPEv2. This framework realizes all the relevant components of our scalable orchestration architecture. More
specifically, it supports (i) operations with almost arbitrary sized SGs, RGs and NF-FGs; (ii) different virtual network
embedding/mapping algorithms; (iii) NF decomposition; (iv) different technological domains via adapter modules;
(v) easy integration and extension. The current state of the prototype and further implementation details can be
found in Annex 1.

On the one hand, the orchestration framework has to inherently support different legacy domains (network and
cloud as well) controlled by state-of-the-art software and/or hardware tools. On the other hand, the relevant
fraction of today’s internet traffic is originated or terminated at wireless end-points; therefore, orchestrating radio
resources has significant importance. Hence, a separate section is devoted to present our approach on joint
orchestration of radio and optical transport resources including the concept and a proof of concept demonstrator.

7.1 Design and implementation of ESCAPEv2
We have established a prototyping framework called ESCAPE (Extensible Service ChAin Prototyping Environment
using Mininet, Click, NETCONF and POX) including the 3 layers of UNIFY architecture, namely, Infrastructure Layer
(IL), Orchestration Layer (OL), Service Layer (SL) and demonstrated the first version in [Csoma2014]. ESCAPE has
been significantly redesigned in order to:

 Get a scalable orchestration architecture with all relevant components

 Follow more closely the current functional architecture of UNIFY

 Make integration with other prototypes easier.

The main goal of ESCAPE is to support the development of several parts of the service chaining architecture
including VNF implementation, traffic steering, virtual network embedding, etc. However, here we focus on the
orchestration part. ESCAPE is (mainly) implemented in Python on top of POX platform and Mininet [POX, Mininet].

108 Deliverable D3.2 18.06.2015

The modular approach and loosely coupled components make it easy to change several parts and evaluate own
algorithms. In this section, we give a high level overview of the framework. Further details on the implementation
are given in Annex 1. The system architecture of the latest version of ESCAPE is shown in Figure 7-1.

The Service Layer contains an API and a GUI at the top level where users can request and manage services and
VNFs. The API is capable of formulating SG from the request and passes that to a dedicated service orchestrator
which is responsible for gathering resource information (RG) from Virtual resource manager. This is the virtual view
provided by the Virtualizer of the lower layer (e.g, BiS-BiS view). Mapping of SG to RG is delegated to the SG mapper
module which constructs an NF-FG storing the request, the virtual resources and the mapping between NFs and
infrastructure nodes in a common data structure. In case of a single BiS-BiS view, the mapping is trivial and might be
omitted by constructing an NF-FG carrying information only on the request and the resources (unmapped NF-FG).

OL encompasses the most important components of the resource orchestration process which replaces the ETSI's
VIM. An API is set up on the top centralizing the interaction with the upper layer and realizing the Sl-Or interface. On
the one hand, the request coming as an NF-FG is forwarded to the RO via the corresponding Virtualizer (which is
responsible for policy enforcement as well). On the other hand, the virtual view created and managed by the
Virtualizer is provided as an RG to the upper layer. RO is the key entity managing the components involved in the
orchestration. The input is an NF-FG which should be mapped to the detailed domain view. Albeit, this view is also an
abstraction provided by the Domain Virtualizer. RO collects and forwards all required data to RO mapper. More
specifically, the NF-FG, the domain view (as an RG) and the NF-IB are passed to the RO mapper which invokes the
configured mapping strategy and interacts with the Neo4j-based graph database containing information on NFs and
decomposition rules. NF-IB corresponds to “VNF Catalogue” in NFV MANO with the difference of supporting service
decomposition. The outcome is a new NF-FG which is sent to the Controller Adaptation part. The role of CA is
twofold. First, it gathers technology specific information on resources of different domains then builds an abstract
domain view. The interaction with different types of technology domains are handled by adapters, such as POX
adapter for OpenFlow networks controlled by POX, Mininet adapter for Mininet domains. Second, the incoming NF-
FG request is decomposed according to the low-level domains and delegated to the corresponding adapters.

108 Deliverable D3.2 18.06.2015

The modular approach and loosely coupled components make it easy to change several parts and evaluate own
algorithms. In this section, we give a high level overview of the framework. Further details on the implementation
are given in Annex 1. The system architecture of the latest version of ESCAPE is shown in Figure 7-1.

The Service Layer contains an API and a GUI at the top level where users can request and manage services and
VNFs. The API is capable of formulating SG from the request and passes that to a dedicated service orchestrator
which is responsible for gathering resource information (RG) from Virtual resource manager. This is the virtual view
provided by the Virtualizer of the lower layer (e.g, BiS-BiS view). Mapping of SG to RG is delegated to the SG mapper
module which constructs an NF-FG storing the request, the virtual resources and the mapping between NFs and
infrastructure nodes in a common data structure. In case of a single BiS-BiS view, the mapping is trivial and might be
omitted by constructing an NF-FG carrying information only on the request and the resources (unmapped NF-FG).

OL encompasses the most important components of the resource orchestration process which replaces the ETSI's
VIM. An API is set up on the top centralizing the interaction with the upper layer and realizing the Sl-Or interface. On
the one hand, the request coming as an NF-FG is forwarded to the RO via the corresponding Virtualizer (which is
responsible for policy enforcement as well). On the other hand, the virtual view created and managed by the
Virtualizer is provided as an RG to the upper layer. RO is the key entity managing the components involved in the
orchestration. The input is an NF-FG which should be mapped to the detailed domain view. Albeit, this view is also an
abstraction provided by the Domain Virtualizer. RO collects and forwards all required data to RO mapper. More
specifically, the NF-FG, the domain view (as an RG) and the NF-IB are passed to the RO mapper which invokes the
configured mapping strategy and interacts with the Neo4j-based graph database containing information on NFs and
decomposition rules. NF-IB corresponds to “VNF Catalogue” in NFV MANO with the difference of supporting service
decomposition. The outcome is a new NF-FG which is sent to the Controller Adaptation part. The role of CA is
twofold. First, it gathers technology specific information on resources of different domains then builds an abstract
domain view. The interaction with different types of technology domains are handled by adapters, such as POX
adapter for OpenFlow networks controlled by POX, Mininet adapter for Mininet domains. Second, the incoming NF-
FG request is decomposed according to the low-level domains and delegated to the corresponding adapters.

108 Deliverable D3.2 18.06.2015

The modular approach and loosely coupled components make it easy to change several parts and evaluate own
algorithms. In this section, we give a high level overview of the framework. Further details on the implementation
are given in Annex 1. The system architecture of the latest version of ESCAPE is shown in Figure 7-1.

The Service Layer contains an API and a GUI at the top level where users can request and manage services and
VNFs. The API is capable of formulating SG from the request and passes that to a dedicated service orchestrator
which is responsible for gathering resource information (RG) from Virtual resource manager. This is the virtual view
provided by the Virtualizer of the lower layer (e.g, BiS-BiS view). Mapping of SG to RG is delegated to the SG mapper
module which constructs an NF-FG storing the request, the virtual resources and the mapping between NFs and
infrastructure nodes in a common data structure. In case of a single BiS-BiS view, the mapping is trivial and might be
omitted by constructing an NF-FG carrying information only on the request and the resources (unmapped NF-FG).

OL encompasses the most important components of the resource orchestration process which replaces the ETSI's
VIM. An API is set up on the top centralizing the interaction with the upper layer and realizing the Sl-Or interface. On
the one hand, the request coming as an NF-FG is forwarded to the RO via the corresponding Virtualizer (which is
responsible for policy enforcement as well). On the other hand, the virtual view created and managed by the
Virtualizer is provided as an RG to the upper layer. RO is the key entity managing the components involved in the
orchestration. The input is an NF-FG which should be mapped to the detailed domain view. Albeit, this view is also an
abstraction provided by the Domain Virtualizer. RO collects and forwards all required data to RO mapper. More
specifically, the NF-FG, the domain view (as an RG) and the NF-IB are passed to the RO mapper which invokes the
configured mapping strategy and interacts with the Neo4j-based graph database containing information on NFs and
decomposition rules. NF-IB corresponds to “VNF Catalogue” in NFV MANO with the difference of supporting service
decomposition. The outcome is a new NF-FG which is sent to the Controller Adaptation part. The role of CA is
twofold. First, it gathers technology specific information on resources of different domains then builds an abstract
domain view. The interaction with different types of technology domains are handled by adapters, such as POX
adapter for OpenFlow networks controlled by POX, Mininet adapter for Mininet domains. Second, the incoming NF-
FG request is decomposed according to the low-level domains and delegated to the corresponding adapters.

109 Deliverable D3.2 18.06.2015

Figure 7-1: System architecture of ESCAPEv2

We have implemented a simple, Mininet-based infrastructure environment in order to support rapid prototyping
(see lower left part of Figure 7-1). Here, VNFs are implemented in Click modular router [Kohler2000] and run as

109 Deliverable D3.2 18.06.2015

Figure 7-1: System architecture of ESCAPEv2

We have implemented a simple, Mininet-based infrastructure environment in order to support rapid prototyping
(see lower left part of Figure 7-1). Here, VNFs are implemented in Click modular router [Kohler2000] and run as

109 Deliverable D3.2 18.06.2015

Figure 7-1: System architecture of ESCAPEv2

We have implemented a simple, Mininet-based infrastructure environment in order to support rapid prototyping
(see lower left part of Figure 7-1). Here, VNFs are implemented in Click modular router [Kohler2000] and run as

110 Deliverable D3.2 18.06.2015

distinct processes with configurable isolation models (based on Linux cgroups), while the network infrastructure
consists of OpenFlow switches (realized with Open vSwitch software switches). The orchestration over this domain
is realized by two distinct control interfaces. We have a dedicated adapter for compute resources of Mininet domain
(Mininet adapter) communicating the NETCONF protocol, and we have another one for network resources. The
latter is implemented by the POX OpenFlow controller and a corresponding adapter. A dedicated controller
application is responsible for steering traffic between VNFs, implemented as a POX application which sends flow
entries to OpenFlow switches. We extended Mininet with NETCONF capability in order to support managed nodes
(VNF containers) hosting VNFs. Via the Mininet adapter module, the orchestrator is able to start/stop VNFs on
demand. The interface with the remote procedure calls and data structures is described by our special YANG model.
Based on the YANG model, low-level instrumentation codes were implemented as NETCONF modules to hide the
infrastructure level details. This includes dynamic port creation in the switch of the containers, running Click
processes with given parameters, and connecting them via virtual Ethernet pairs, etc. It is worth noting that this
approach supports migration to other environments, such as Docker domains (only the instrumentation codes have
to be replaced).

ESCAPE supports recursive orchestration by implementing the Sl-Or interface at CA towards lower level domains.
This shows the benefits of our joint programmatic interface based on the NF-FG model. In this way, we need only a
single control interface. The Sl-Or interface supports integration of Universal Node domains as well as other Sl-Or
capable domains. We have for example combined our framework with an OpenStack (OS) data center with the
OpenDaylight (ODL) controller to form a multi-domain setup where multi-level orchestration could be performed.
The corresponding components of this complex framework are shown in the lower right part of Figure 7-1. Here,
ESCAPE is responsible for global orchestration on top of Mininet and OS/ODL domains while the latter has its own
local orchestrator connected by an Sl-Or interface. In OS/ODL domain, VNFs are deployed as virtual machines
(which run Click processes in our framework). An abstract view of the whole OS/ODL domain is exposed to ESCAPE
orchestrator by a virtualizer. In the simplest case, this virtualizer provides a BiS-BiS view, i.e., a VNF container with a
lot of resources and with local orchestrating capability. The global orchestrator is capable of partitioning an NF-FG
into multiple subgraphs which can be given to the OS/ODL domain for further decomposition and instantiation. The
local orchestrator of OS/ODL domain is based on OS components managing VMs (e.g., Nova) and ODL15 controlling
OpenFlow switches of the data center. These elements can be considered as traditional infrastructure controllers
with corresponding controller adapter modules responsible for low level technology dependent details, such as
creating ports dynamically, starting/stopping VMs, configuring network to steer traffic properly, etc. After successful
instantiation of the received NF-FG, the local orchestrator notifies the global orchestrator and provides necessary
access information.

15OS delegates network configuration requests to ODL via the Neutron REST API and ODL configures the internalswitches via OpenFlow.
110 Deliverable D3.2 18.06.2015

distinct processes with configurable isolation models (based on Linux cgroups), while the network infrastructure
consists of OpenFlow switches (realized with Open vSwitch software switches). The orchestration over this domain
is realized by two distinct control interfaces. We have a dedicated adapter for compute resources of Mininet domain
(Mininet adapter) communicating the NETCONF protocol, and we have another one for network resources. The
latter is implemented by the POX OpenFlow controller and a corresponding adapter. A dedicated controller
application is responsible for steering traffic between VNFs, implemented as a POX application which sends flow
entries to OpenFlow switches. We extended Mininet with NETCONF capability in order to support managed nodes
(VNF containers) hosting VNFs. Via the Mininet adapter module, the orchestrator is able to start/stop VNFs on
demand. The interface with the remote procedure calls and data structures is described by our special YANG model.
Based on the YANG model, low-level instrumentation codes were implemented as NETCONF modules to hide the
infrastructure level details. This includes dynamic port creation in the switch of the containers, running Click
processes with given parameters, and connecting them via virtual Ethernet pairs, etc. It is worth noting that this
approach supports migration to other environments, such as Docker domains (only the instrumentation codes have
to be replaced).

ESCAPE supports recursive orchestration by implementing the Sl-Or interface at CA towards lower level domains.
This shows the benefits of our joint programmatic interface based on the NF-FG model. In this way, we need only a
single control interface. The Sl-Or interface supports integration of Universal Node domains as well as other Sl-Or
capable domains. We have for example combined our framework with an OpenStack (OS) data center with the
OpenDaylight (ODL) controller to form a multi-domain setup where multi-level orchestration could be performed.
The corresponding components of this complex framework are shown in the lower right part of Figure 7-1. Here,
ESCAPE is responsible for global orchestration on top of Mininet and OS/ODL domains while the latter has its own
local orchestrator connected by an Sl-Or interface. In OS/ODL domain, VNFs are deployed as virtual machines
(which run Click processes in our framework). An abstract view of the whole OS/ODL domain is exposed to ESCAPE
orchestrator by a virtualizer. In the simplest case, this virtualizer provides a BiS-BiS view, i.e., a VNF container with a
lot of resources and with local orchestrating capability. The global orchestrator is capable of partitioning an NF-FG
into multiple subgraphs which can be given to the OS/ODL domain for further decomposition and instantiation. The
local orchestrator of OS/ODL domain is based on OS components managing VMs (e.g., Nova) and ODL15 controlling
OpenFlow switches of the data center. These elements can be considered as traditional infrastructure controllers
with corresponding controller adapter modules responsible for low level technology dependent details, such as
creating ports dynamically, starting/stopping VMs, configuring network to steer traffic properly, etc. After successful
instantiation of the received NF-FG, the local orchestrator notifies the global orchestrator and provides necessary
access information.

15OS delegates network configuration requests to ODL via the Neutron REST API and ODL configures the internalswitches via OpenFlow.
110 Deliverable D3.2 18.06.2015

distinct processes with configurable isolation models (based on Linux cgroups), while the network infrastructure
consists of OpenFlow switches (realized with Open vSwitch software switches). The orchestration over this domain
is realized by two distinct control interfaces. We have a dedicated adapter for compute resources of Mininet domain
(Mininet adapter) communicating the NETCONF protocol, and we have another one for network resources. The
latter is implemented by the POX OpenFlow controller and a corresponding adapter. A dedicated controller
application is responsible for steering traffic between VNFs, implemented as a POX application which sends flow
entries to OpenFlow switches. We extended Mininet with NETCONF capability in order to support managed nodes
(VNF containers) hosting VNFs. Via the Mininet adapter module, the orchestrator is able to start/stop VNFs on
demand. The interface with the remote procedure calls and data structures is described by our special YANG model.
Based on the YANG model, low-level instrumentation codes were implemented as NETCONF modules to hide the
infrastructure level details. This includes dynamic port creation in the switch of the containers, running Click
processes with given parameters, and connecting them via virtual Ethernet pairs, etc. It is worth noting that this
approach supports migration to other environments, such as Docker domains (only the instrumentation codes have
to be replaced).

ESCAPE supports recursive orchestration by implementing the Sl-Or interface at CA towards lower level domains.
This shows the benefits of our joint programmatic interface based on the NF-FG model. In this way, we need only a
single control interface. The Sl-Or interface supports integration of Universal Node domains as well as other Sl-Or
capable domains. We have for example combined our framework with an OpenStack (OS) data center with the
OpenDaylight (ODL) controller to form a multi-domain setup where multi-level orchestration could be performed.
The corresponding components of this complex framework are shown in the lower right part of Figure 7-1. Here,
ESCAPE is responsible for global orchestration on top of Mininet and OS/ODL domains while the latter has its own
local orchestrator connected by an Sl-Or interface. In OS/ODL domain, VNFs are deployed as virtual machines
(which run Click processes in our framework). An abstract view of the whole OS/ODL domain is exposed to ESCAPE
orchestrator by a virtualizer. In the simplest case, this virtualizer provides a BiS-BiS view, i.e., a VNF container with a
lot of resources and with local orchestrating capability. The global orchestrator is capable of partitioning an NF-FG
into multiple subgraphs which can be given to the OS/ODL domain for further decomposition and instantiation. The
local orchestrator of OS/ODL domain is based on OS components managing VMs (e.g., Nova) and ODL15 controlling
OpenFlow switches of the data center. These elements can be considered as traditional infrastructure controllers
with corresponding controller adapter modules responsible for low level technology dependent details, such as
creating ports dynamically, starting/stopping VMs, configuring network to steer traffic properly, etc. After successful
instantiation of the received NF-FG, the local orchestrator notifies the global orchestrator and provides necessary
access information.

15OS delegates network configuration requests to ODL via the Neutron REST API and ODL configures the internalswitches via OpenFlow.

111 Deliverable D3.2 18.06.2015

7.2 Orchestration of Radio and Transport Resources
Today a big fraction of Internet traffic is originated and/or terminated at wireless devices and end-points, and it is
predicted that in the future the wireless traffic will become the majority. Therefore, it is potentially important to
factor in the wireless networks’ resources in the orchestration process In particular, we need to understand how the
resource management in a wireless access network can be supported by the UNIFY architecture, and if including
new types of resources, i.e. radio resources, in the orchestration would have an impact in the designed architecture
and processes. For this purpose, we have designed and implemented a proof of concept (PoC) that includes radio
connectivity in an LTE networks and optical transport networks. The proof of concept has been developed in a joint
effort with the COMBO project [COMBO]. The PoC includes the infrastructure layer and the orchestration layer of the
UNIFY architecture.

7.2.1 Integrating Radio Resource Control into the Orchestration Architecture
Controlling wireless networks is a complicated task, partly due to the fluctuating nature of the wireless links, and its
large set of functions. These range from pure radio resources’ control to the radio network connectivity functions.
The control functions might also vary depending on the employed wireless technology. In our PoC, we consider an
LTE-based mobile broadband network with the centralized radio access network architecture. In this architecture
the baseband processing functions are decoupled from access points and pooled in one or more baseband
processing units (BBU) hotel. The control of such a network can be performed through a centralized domain-
specific controller, managing different aspects of the radio access network (RAN Controller). The main functionality
of the RAN Controller in the architecture is to configure and allocate BBU resources, i.e. physical network functions,
from the existing pools to the radio remote units (RRUs). This process is required for the activation of cells in a RAN
area. Also, the RAN Controller can be used to trigger users connected to an access point (RRU) to perform a
handover to a new access point, for example in case the former one needs to be deactivated. In addition, the RAN
Controller has access to monitoring functions within BBUs, which can provide higher layer controllers and
applications with up-to-date information about the performance of the RAN. This, for example, can be used to
monitor the throughput of an active cell in the RAN.

From the control architecture’s perspective there are several alternatives for integrating the RAN controller into the
UNIFY orchestration architecture. One possibility is to consider the RAN Controller as a client of the transport and
cloud resources’ orchestration. In that case, the RAN Controller receives an abstract view of the transport and cloud
resources via the RO, e.g. in form of a BiS-BiS abstraction, and performs resource allocation according to the
received abstract view. The benefit of this architecture will be simplicity of the orchestration layer, as it does not
need to integrate RAN resources. On the other hand, the resource allocations decisions of the RAN Controller might
not be globally optimized.

Another alternative, which we adopt, is to consider the RAN Controller as a domain-specific controller in the
Infrastructure Layer and at the same level as the network and compute controllers. A difference between the RAN

111 Deliverable D3.2 18.06.2015

7.2 Orchestration of Radio and Transport Resources
Today a big fraction of Internet traffic is originated and/or terminated at wireless devices and end-points, and it is
predicted that in the future the wireless traffic will become the majority. Therefore, it is potentially important to
factor in the wireless networks’ resources in the orchestration process In particular, we need to understand how the
resource management in a wireless access network can be supported by the UNIFY architecture, and if including
new types of resources, i.e. radio resources, in the orchestration would have an impact in the designed architecture
and processes. For this purpose, we have designed and implemented a proof of concept (PoC) that includes radio
connectivity in an LTE networks and optical transport networks. The proof of concept has been developed in a joint
effort with the COMBO project [COMBO]. The PoC includes the infrastructure layer and the orchestration layer of the
UNIFY architecture.

7.2.1 Integrating Radio Resource Control into the Orchestration Architecture
Controlling wireless networks is a complicated task, partly due to the fluctuating nature of the wireless links, and its
large set of functions. These range from pure radio resources’ control to the radio network connectivity functions.
The control functions might also vary depending on the employed wireless technology. In our PoC, we consider an
LTE-based mobile broadband network with the centralized radio access network architecture. In this architecture
the baseband processing functions are decoupled from access points and pooled in one or more baseband
processing units (BBU) hotel. The control of such a network can be performed through a centralized domain-
specific controller, managing different aspects of the radio access network (RAN Controller). The main functionality
of the RAN Controller in the architecture is to configure and allocate BBU resources, i.e. physical network functions,
from the existing pools to the radio remote units (RRUs). This process is required for the activation of cells in a RAN
area. Also, the RAN Controller can be used to trigger users connected to an access point (RRU) to perform a
handover to a new access point, for example in case the former one needs to be deactivated. In addition, the RAN
Controller has access to monitoring functions within BBUs, which can provide higher layer controllers and
applications with up-to-date information about the performance of the RAN. This, for example, can be used to
monitor the throughput of an active cell in the RAN.

From the control architecture’s perspective there are several alternatives for integrating the RAN controller into the
UNIFY orchestration architecture. One possibility is to consider the RAN Controller as a client of the transport and
cloud resources’ orchestration. In that case, the RAN Controller receives an abstract view of the transport and cloud
resources via the RO, e.g. in form of a BiS-BiS abstraction, and performs resource allocation according to the
received abstract view. The benefit of this architecture will be simplicity of the orchestration layer, as it does not
need to integrate RAN resources. On the other hand, the resource allocations decisions of the RAN Controller might
not be globally optimized.

Another alternative, which we adopt, is to consider the RAN Controller as a domain-specific controller in the
Infrastructure Layer and at the same level as the network and compute controllers. A difference between the RAN

111 Deliverable D3.2 18.06.2015

7.2 Orchestration of Radio and Transport Resources
Today a big fraction of Internet traffic is originated and/or terminated at wireless devices and end-points, and it is
predicted that in the future the wireless traffic will become the majority. Therefore, it is potentially important to
factor in the wireless networks’ resources in the orchestration process In particular, we need to understand how the
resource management in a wireless access network can be supported by the UNIFY architecture, and if including
new types of resources, i.e. radio resources, in the orchestration would have an impact in the designed architecture
and processes. For this purpose, we have designed and implemented a proof of concept (PoC) that includes radio
connectivity in an LTE networks and optical transport networks. The proof of concept has been developed in a joint
effort with the COMBO project [COMBO]. The PoC includes the infrastructure layer and the orchestration layer of the
UNIFY architecture.

7.2.1 Integrating Radio Resource Control into the Orchestration Architecture
Controlling wireless networks is a complicated task, partly due to the fluctuating nature of the wireless links, and its
large set of functions. These range from pure radio resources’ control to the radio network connectivity functions.
The control functions might also vary depending on the employed wireless technology. In our PoC, we consider an
LTE-based mobile broadband network with the centralized radio access network architecture. In this architecture
the baseband processing functions are decoupled from access points and pooled in one or more baseband
processing units (BBU) hotel. The control of such a network can be performed through a centralized domain-
specific controller, managing different aspects of the radio access network (RAN Controller). The main functionality
of the RAN Controller in the architecture is to configure and allocate BBU resources, i.e. physical network functions,
from the existing pools to the radio remote units (RRUs). This process is required for the activation of cells in a RAN
area. Also, the RAN Controller can be used to trigger users connected to an access point (RRU) to perform a
handover to a new access point, for example in case the former one needs to be deactivated. In addition, the RAN
Controller has access to monitoring functions within BBUs, which can provide higher layer controllers and
applications with up-to-date information about the performance of the RAN. This, for example, can be used to
monitor the throughput of an active cell in the RAN.

From the control architecture’s perspective there are several alternatives for integrating the RAN controller into the
UNIFY orchestration architecture. One possibility is to consider the RAN Controller as a client of the transport and
cloud resources’ orchestration. In that case, the RAN Controller receives an abstract view of the transport and cloud
resources via the RO, e.g. in form of a BiS-BiS abstraction, and performs resource allocation according to the
received abstract view. The benefit of this architecture will be simplicity of the orchestration layer, as it does not
need to integrate RAN resources. On the other hand, the resource allocations decisions of the RAN Controller might
not be globally optimized.

Another alternative, which we adopt, is to consider the RAN Controller as a domain-specific controller in the
Infrastructure Layer and at the same level as the network and compute controllers. A difference between the RAN

112 Deliverable D3.2 18.06.2015

Controller and the network and compute controllers would be that the former one operates only on the physical
resources, like BBU units.

The introduction of the RAN Controller at this level of the control hierarchy will also impact the orchestration layer.
First and foremost, the radio resources should be included in the abstract view of the resources presented towards
the service layer by the orchestration layer. More specifically, the Bis-Bis abstract view of the resources should be
extended with pools of physical resources, e.g., BBU units, connected to a virtualized view of networking and
processing resources. Also, the stringent requirements of the BBU-RRU association in terms of bandwidth and
latency need to be considered when mapping a service request to an abstract view of the resources containing
centralized RAN.

7.2.2 Proof of Concept Elements
Figure 7-2 depicts the high-level architecture of the proof of concept (PoC) for the radio and transport
orchestration. The PoC contains two domains: a Dense Wavelength Division Multiplexing (DWDM) centric transport
network and an LTE-based mobile broadband network.

The transport domain is a dynamic wavelength routed network and provides transport service at the wavelength
level. The domain is composed of optical DWDM switches, optical add/drop multiplexers (OADMs) and tuneable
optical transponders (TPs) at the edge of the network. The offered wavelength services are programmable through
an SDN controller that manages resource allocation in the domain. To realize the transport controller we utilized the
open-source OpenDaylight (ODL) as the basis, and extended it with several functions to optimize it for control of
large-scale DWDM networks. The first extension includes the design and implementation of southbound plugins for
control of existing DWDM network products (i.e., DWDM switches and TPs). Also, the ODL is extended to support the
circuit-switched types of services. Additionally, we have integrated an optical path computation element (PCE) into
the ODL. Finally, ODL is extended with an additional layer of transport abstraction/virtualization on its top, so that all
details of the DWDM layer are abstracted and hidden from higher-layers controllers (i.e., orchestration layer).
Specifically, the Orchestrator only sees a “big switch” representation of the whole transport domain, which makes
the service creation process simpler and more scalable.

The LTE-based mobile broadband domain provides broadband services to mobile users. The domain is composed of
LTE access points, deployed according to the centralized RAN architecture. In this architecture the common public
radio interface (CPRI) is used to interface between RRUs and BBUs. DWDM is the technology of choice for
transporting the CPRI, due to its high bandwidth as well as stringent latency/jitter requirements. Accordingly, this
domain employs wavelength services of the transport domain for CPRI transport (i.e., DWDM domain is used as
fronthaul). In our PoC, two wavelength channels are used to connect a pair of (BBU, RRU); one wavelength per
direction. For controlling the mobile domain we use an existing domain-specific controller that centrally controls the
RAN resources.

112 Deliverable D3.2 18.06.2015

Controller and the network and compute controllers would be that the former one operates only on the physical
resources, like BBU units.

The introduction of the RAN Controller at this level of the control hierarchy will also impact the orchestration layer.
First and foremost, the radio resources should be included in the abstract view of the resources presented towards
the service layer by the orchestration layer. More specifically, the Bis-Bis abstract view of the resources should be
extended with pools of physical resources, e.g., BBU units, connected to a virtualized view of networking and
processing resources. Also, the stringent requirements of the BBU-RRU association in terms of bandwidth and
latency need to be considered when mapping a service request to an abstract view of the resources containing
centralized RAN.

7.2.2 Proof of Concept Elements
Figure 7-2 depicts the high-level architecture of the proof of concept (PoC) for the radio and transport
orchestration. The PoC contains two domains: a Dense Wavelength Division Multiplexing (DWDM) centric transport
network and an LTE-based mobile broadband network.

The transport domain is a dynamic wavelength routed network and provides transport service at the wavelength
level. The domain is composed of optical DWDM switches, optical add/drop multiplexers (OADMs) and tuneable
optical transponders (TPs) at the edge of the network. The offered wavelength services are programmable through
an SDN controller that manages resource allocation in the domain. To realize the transport controller we utilized the
open-source OpenDaylight (ODL) as the basis, and extended it with several functions to optimize it for control of
large-scale DWDM networks. The first extension includes the design and implementation of southbound plugins for
control of existing DWDM network products (i.e., DWDM switches and TPs). Also, the ODL is extended to support the
circuit-switched types of services. Additionally, we have integrated an optical path computation element (PCE) into
the ODL. Finally, ODL is extended with an additional layer of transport abstraction/virtualization on its top, so that all
details of the DWDM layer are abstracted and hidden from higher-layers controllers (i.e., orchestration layer).
Specifically, the Orchestrator only sees a “big switch” representation of the whole transport domain, which makes
the service creation process simpler and more scalable.

The LTE-based mobile broadband domain provides broadband services to mobile users. The domain is composed of
LTE access points, deployed according to the centralized RAN architecture. In this architecture the common public
radio interface (CPRI) is used to interface between RRUs and BBUs. DWDM is the technology of choice for
transporting the CPRI, due to its high bandwidth as well as stringent latency/jitter requirements. Accordingly, this
domain employs wavelength services of the transport domain for CPRI transport (i.e., DWDM domain is used as
fronthaul). In our PoC, two wavelength channels are used to connect a pair of (BBU, RRU); one wavelength per
direction. For controlling the mobile domain we use an existing domain-specific controller that centrally controls the
RAN resources.

112 Deliverable D3.2 18.06.2015

Controller and the network and compute controllers would be that the former one operates only on the physical
resources, like BBU units.

The introduction of the RAN Controller at this level of the control hierarchy will also impact the orchestration layer.
First and foremost, the radio resources should be included in the abstract view of the resources presented towards
the service layer by the orchestration layer. More specifically, the Bis-Bis abstract view of the resources should be
extended with pools of physical resources, e.g., BBU units, connected to a virtualized view of networking and
processing resources. Also, the stringent requirements of the BBU-RRU association in terms of bandwidth and
latency need to be considered when mapping a service request to an abstract view of the resources containing
centralized RAN.

7.2.2 Proof of Concept Elements
Figure 7-2 depicts the high-level architecture of the proof of concept (PoC) for the radio and transport
orchestration. The PoC contains two domains: a Dense Wavelength Division Multiplexing (DWDM) centric transport
network and an LTE-based mobile broadband network.

The transport domain is a dynamic wavelength routed network and provides transport service at the wavelength
level. The domain is composed of optical DWDM switches, optical add/drop multiplexers (OADMs) and tuneable
optical transponders (TPs) at the edge of the network. The offered wavelength services are programmable through
an SDN controller that manages resource allocation in the domain. To realize the transport controller we utilized the
open-source OpenDaylight (ODL) as the basis, and extended it with several functions to optimize it for control of
large-scale DWDM networks. The first extension includes the design and implementation of southbound plugins for
control of existing DWDM network products (i.e., DWDM switches and TPs). Also, the ODL is extended to support the
circuit-switched types of services. Additionally, we have integrated an optical path computation element (PCE) into
the ODL. Finally, ODL is extended with an additional layer of transport abstraction/virtualization on its top, so that all
details of the DWDM layer are abstracted and hidden from higher-layers controllers (i.e., orchestration layer).
Specifically, the Orchestrator only sees a “big switch” representation of the whole transport domain, which makes
the service creation process simpler and more scalable.

The LTE-based mobile broadband domain provides broadband services to mobile users. The domain is composed of
LTE access points, deployed according to the centralized RAN architecture. In this architecture the common public
radio interface (CPRI) is used to interface between RRUs and BBUs. DWDM is the technology of choice for
transporting the CPRI, due to its high bandwidth as well as stringent latency/jitter requirements. Accordingly, this
domain employs wavelength services of the transport domain for CPRI transport (i.e., DWDM domain is used as
fronthaul). In our PoC, two wavelength channels are used to connect a pair of (BBU, RRU); one wavelength per
direction. For controlling the mobile domain we use an existing domain-specific controller that centrally controls the
RAN resources.

113 Deliverable D3.2 18.06.2015

Two general-purpose machines are used in our platform for running the control plane elements. Specifically, the
first machine is used for transport controller and the orchestration, and the second one is used for running the RAN
Controller and a Radio-Transport Optimization Application. The Optimization App. is developed and managed by a
mobile network operator (MNO), which utilizes the infrastructure for providing the mobile broadband service.

Figure 7-2: Radio-Transport Orchestration PoC

7.2.3 Elastic Mobile Broadband Services: The Orchestration Process
To demonstrate the benefits of the radio-transport orchestration, we have implemented a use-case called elastic
mobile broadband services (EMBS), where the service capacity is dynamically and automatically scaled up and
down—when and where needed. The EMBS service can be particularly beneficial for environments with dynamic
service demands like business/residential areas of cities at different times of the day. The EMBS operation requires
that the DWDM transport and radio resources are dynamically utilized in a coordinated manner. We have
implemented the EMBS in our PoC by creating a RAN with two areas: Area 1 and 2 (see Figure 7-2). Each RAN area is
equipped with two RRUs: a macro cell (M) and a small cell (S). While macro cells provide the coverage across the
areas, small cells are used for providing additional capacities in areas if needed. The total of 4 RRUs (across two
areas) are served by a BBU hotel with 3 BBUs. The service management logic is integrated into the Radio-Transport
Optimization App (Figure 7-2). The application receives an abstract view of the available radio and transport
resources (from the orchestrator), and continuously monitors the service demand in the RAN, through monitoring
the throughput of active cells (via the RAN Controller).

The state diagram of the EMBS operation is depicted in Figure 7-4. In the default operation mode (State 1), only the
two macro-cells are active for providing coverage in both areas. When extra demand is identified in an area by the
optimization application, the corresponding small cell is activated (State 2 or State 3). In our PoC, only one small cell
is activated at a time, to serve the area with a higher demand. This demonstrates dynamic (time-sharing) reuse of
resources where a 4-cells RAN requires only 3 pairs of WDM connections and 3 BBU resources, leading to a saving in

113 Deliverable D3.2 18.06.2015

Two general-purpose machines are used in our platform for running the control plane elements. Specifically, the
first machine is used for transport controller and the orchestration, and the second one is used for running the RAN
Controller and a Radio-Transport Optimization Application. The Optimization App. is developed and managed by a
mobile network operator (MNO), which utilizes the infrastructure for providing the mobile broadband service.

Figure 7-2: Radio-Transport Orchestration PoC

7.2.3 Elastic Mobile Broadband Services: The Orchestration Process
To demonstrate the benefits of the radio-transport orchestration, we have implemented a use-case called elastic
mobile broadband services (EMBS), where the service capacity is dynamically and automatically scaled up and
down—when and where needed. The EMBS service can be particularly beneficial for environments with dynamic
service demands like business/residential areas of cities at different times of the day. The EMBS operation requires
that the DWDM transport and radio resources are dynamically utilized in a coordinated manner. We have
implemented the EMBS in our PoC by creating a RAN with two areas: Area 1 and 2 (see Figure 7-2). Each RAN area is
equipped with two RRUs: a macro cell (M) and a small cell (S). While macro cells provide the coverage across the
areas, small cells are used for providing additional capacities in areas if needed. The total of 4 RRUs (across two
areas) are served by a BBU hotel with 3 BBUs. The service management logic is integrated into the Radio-Transport
Optimization App (Figure 7-2). The application receives an abstract view of the available radio and transport
resources (from the orchestrator), and continuously monitors the service demand in the RAN, through monitoring
the throughput of active cells (via the RAN Controller).

The state diagram of the EMBS operation is depicted in Figure 7-4. In the default operation mode (State 1), only the
two macro-cells are active for providing coverage in both areas. When extra demand is identified in an area by the
optimization application, the corresponding small cell is activated (State 2 or State 3). In our PoC, only one small cell
is activated at a time, to serve the area with a higher demand. This demonstrates dynamic (time-sharing) reuse of
resources where a 4-cells RAN requires only 3 pairs of WDM connections and 3 BBU resources, leading to a saving in

113 Deliverable D3.2 18.06.2015

Two general-purpose machines are used in our platform for running the control plane elements. Specifically, the
first machine is used for transport controller and the orchestration, and the second one is used for running the RAN
Controller and a Radio-Transport Optimization Application. The Optimization App. is developed and managed by a
mobile network operator (MNO), which utilizes the infrastructure for providing the mobile broadband service.

Figure 7-2: Radio-Transport Orchestration PoC

7.2.3 Elastic Mobile Broadband Services: The Orchestration Process
To demonstrate the benefits of the radio-transport orchestration, we have implemented a use-case called elastic
mobile broadband services (EMBS), where the service capacity is dynamically and automatically scaled up and
down—when and where needed. The EMBS service can be particularly beneficial for environments with dynamic
service demands like business/residential areas of cities at different times of the day. The EMBS operation requires
that the DWDM transport and radio resources are dynamically utilized in a coordinated manner. We have
implemented the EMBS in our PoC by creating a RAN with two areas: Area 1 and 2 (see Figure 7-2). Each RAN area is
equipped with two RRUs: a macro cell (M) and a small cell (S). While macro cells provide the coverage across the
areas, small cells are used for providing additional capacities in areas if needed. The total of 4 RRUs (across two
areas) are served by a BBU hotel with 3 BBUs. The service management logic is integrated into the Radio-Transport
Optimization App (Figure 7-2). The application receives an abstract view of the available radio and transport
resources (from the orchestrator), and continuously monitors the service demand in the RAN, through monitoring
the throughput of active cells (via the RAN Controller).

The state diagram of the EMBS operation is depicted in Figure 7-4. In the default operation mode (State 1), only the
two macro-cells are active for providing coverage in both areas. When extra demand is identified in an area by the
optimization application, the corresponding small cell is activated (State 2 or State 3). In our PoC, only one small cell
is activated at a time, to serve the area with a higher demand. This demonstrates dynamic (time-sharing) reuse of
resources where a 4-cells RAN requires only 3 pairs of WDM connections and 3 BBU resources, leading to a saving in

114 Deliverable D3.2 18.06.2015

terms of transport and radio resources. In a real deployment, obviously, there would be much more RRUs and BBUs
leading to a much larger saving.

The interactions among different control plane elements of the demo will be as follows. At the first step the control
plane connectivity is established and the MNO instantiates the optimization App. Then, the Optimization App can
request, from the Orchestrator, an abstract view of the network (“get resource info”), which is composed of a big
switch, representing the optical transport network, and 3 physical NFs (i.e., BBUs) connected to the ports of the big
switch.

Figure 7-3: State diagram of the EMBS operation

Then, the Optimization App. triggers the default operation of the MBBS, i.e., State 1 in Figure 7-3. This request is sent
to the RO, in form of an “instantiate NF-FG” over the Cf-Or interface. The requested NF-FG is composed of transport
resources (abstracted as point to point links) and BBUs, as depicted in Figure 7-4a. The RO translates the requested
NF-FG to the connectivity in the data-plane. In this case, the orchestration layer requests the transport controller to
provide two wavelength connections: TP7-TP6 for activation of macro cell in RAN Area 1, and TP4-TP1 for macro cell
in RAN Area 2 (see Figure 7-2). The Transport Controller performs the routing and wavelength assignment for the
two requested wavelengths and accordingly configures the optical network.

Over the lifetime of the EMBS service the Optimization App can trigger switching among states 1-3 depending on the
demands for service and the policy. For example, at some point in time the Optimization App might decide to switch
from state 1 to state 3. This will involve sending a “change NF-FG” request to the RO, again over the Cf-Or interface,
to add a new NF-FG, as shown in Figure 7-4b. The NF-FG change request will be translated by the RO into the
addition of new wavelength connectivity in the transport: TP5-TP2. Similarly, the Optimization App. might trigger
deactivation of the small cell in Area 2 and activation of small cell in Area 1 (i.e., switching from state 3 to state 2).

114 Deliverable D3.2 18.06.2015

terms of transport and radio resources. In a real deployment, obviously, there would be much more RRUs and BBUs
leading to a much larger saving.

The interactions among different control plane elements of the demo will be as follows. At the first step the control
plane connectivity is established and the MNO instantiates the optimization App. Then, the Optimization App can
request, from the Orchestrator, an abstract view of the network (“get resource info”), which is composed of a big
switch, representing the optical transport network, and 3 physical NFs (i.e., BBUs) connected to the ports of the big
switch.

Figure 7-3: State diagram of the EMBS operation

Then, the Optimization App. triggers the default operation of the MBBS, i.e., State 1 in Figure 7-3. This request is sent
to the RO, in form of an “instantiate NF-FG” over the Cf-Or interface. The requested NF-FG is composed of transport
resources (abstracted as point to point links) and BBUs, as depicted in Figure 7-4a. The RO translates the requested
NF-FG to the connectivity in the data-plane. In this case, the orchestration layer requests the transport controller to
provide two wavelength connections: TP7-TP6 for activation of macro cell in RAN Area 1, and TP4-TP1 for macro cell
in RAN Area 2 (see Figure 7-2). The Transport Controller performs the routing and wavelength assignment for the
two requested wavelengths and accordingly configures the optical network.

Over the lifetime of the EMBS service the Optimization App can trigger switching among states 1-3 depending on the
demands for service and the policy. For example, at some point in time the Optimization App might decide to switch
from state 1 to state 3. This will involve sending a “change NF-FG” request to the RO, again over the Cf-Or interface,
to add a new NF-FG, as shown in Figure 7-4b. The NF-FG change request will be translated by the RO into the
addition of new wavelength connectivity in the transport: TP5-TP2. Similarly, the Optimization App. might trigger
deactivation of the small cell in Area 2 and activation of small cell in Area 1 (i.e., switching from state 3 to state 2).

114 Deliverable D3.2 18.06.2015

terms of transport and radio resources. In a real deployment, obviously, there would be much more RRUs and BBUs
leading to a much larger saving.

The interactions among different control plane elements of the demo will be as follows. At the first step the control
plane connectivity is established and the MNO instantiates the optimization App. Then, the Optimization App can
request, from the Orchestrator, an abstract view of the network (“get resource info”), which is composed of a big
switch, representing the optical transport network, and 3 physical NFs (i.e., BBUs) connected to the ports of the big
switch.

Figure 7-3: State diagram of the EMBS operation

Then, the Optimization App. triggers the default operation of the MBBS, i.e., State 1 in Figure 7-3. This request is sent
to the RO, in form of an “instantiate NF-FG” over the Cf-Or interface. The requested NF-FG is composed of transport
resources (abstracted as point to point links) and BBUs, as depicted in Figure 7-4a. The RO translates the requested
NF-FG to the connectivity in the data-plane. In this case, the orchestration layer requests the transport controller to
provide two wavelength connections: TP7-TP6 for activation of macro cell in RAN Area 1, and TP4-TP1 for macro cell
in RAN Area 2 (see Figure 7-2). The Transport Controller performs the routing and wavelength assignment for the
two requested wavelengths and accordingly configures the optical network.

Over the lifetime of the EMBS service the Optimization App can trigger switching among states 1-3 depending on the
demands for service and the policy. For example, at some point in time the Optimization App might decide to switch
from state 1 to state 3. This will involve sending a “change NF-FG” request to the RO, again over the Cf-Or interface,
to add a new NF-FG, as shown in Figure 7-4b. The NF-FG change request will be translated by the RO into the
addition of new wavelength connectivity in the transport: TP5-TP2. Similarly, the Optimization App. might trigger
deactivation of the small cell in Area 2 and activation of small cell in Area 1 (i.e., switching from state 3 to state 2).

115 Deliverable D3.2 18.06.2015

Figure 7-4: Changes to the NF-FG during the lifetime of a EMBS. a) Default data path NF-FG is requested by the
Optimization App. (b) NF-FG request for switching from State 1 to State 3.

The Radio-Transport orchestration presented above highlights how the wireless networks’ and optical transport
networks’ resources can be integrated into the orchestration architecture of UNIFY. In summary, we observe that
wireless networks extend the UNIFY orchestration process with another dimension, namely the radio resources.
Specifically, the wireless network in the above example has particular network functions, which require a domain-
specific controller (i.e., RAN Controller) in the infrastructure layer, at the same level as the networking and
processing controllers. Consequently, this will influence the domain-wide resource abstraction and virtualization
performed at the Orchestration layer. For example, in our PoC the Centralized RAN network includes physical
network functions like BBU that cannot be supported with the BiS-BiS abstraction model. One possibility here would
be to extend the BiS-BiS model of resource abstraction to further include connected pools of physical resources, like
BBU pools. That is, a MNO on top of the UNIFY Orchestrator can get, over the Sl-Or, a view of the resources
composed of Big Switch, Big Software and one or more pools of physical resources.

115 Deliverable D3.2 18.06.2015

Figure 7-4: Changes to the NF-FG during the lifetime of a EMBS. a) Default data path NF-FG is requested by the
Optimization App. (b) NF-FG request for switching from State 1 to State 3.

The Radio-Transport orchestration presented above highlights how the wireless networks’ and optical transport
networks’ resources can be integrated into the orchestration architecture of UNIFY. In summary, we observe that
wireless networks extend the UNIFY orchestration process with another dimension, namely the radio resources.
Specifically, the wireless network in the above example has particular network functions, which require a domain-
specific controller (i.e., RAN Controller) in the infrastructure layer, at the same level as the networking and
processing controllers. Consequently, this will influence the domain-wide resource abstraction and virtualization
performed at the Orchestration layer. For example, in our PoC the Centralized RAN network includes physical
network functions like BBU that cannot be supported with the BiS-BiS abstraction model. One possibility here would
be to extend the BiS-BiS model of resource abstraction to further include connected pools of physical resources, like
BBU pools. That is, a MNO on top of the UNIFY Orchestrator can get, over the Sl-Or, a view of the resources
composed of Big Switch, Big Software and one or more pools of physical resources.

115 Deliverable D3.2 18.06.2015

Figure 7-4: Changes to the NF-FG during the lifetime of a EMBS. a) Default data path NF-FG is requested by the
Optimization App. (b) NF-FG request for switching from State 1 to State 3.

The Radio-Transport orchestration presented above highlights how the wireless networks’ and optical transport
networks’ resources can be integrated into the orchestration architecture of UNIFY. In summary, we observe that
wireless networks extend the UNIFY orchestration process with another dimension, namely the radio resources.
Specifically, the wireless network in the above example has particular network functions, which require a domain-
specific controller (i.e., RAN Controller) in the infrastructure layer, at the same level as the networking and
processing controllers. Consequently, this will influence the domain-wide resource abstraction and virtualization
performed at the Orchestration layer. For example, in our PoC the Centralized RAN network includes physical
network functions like BBU that cannot be supported with the BiS-BiS abstraction model. One possibility here would
be to extend the BiS-BiS model of resource abstraction to further include connected pools of physical resources, like
BBU pools. That is, a MNO on top of the UNIFY Orchestrator can get, over the Sl-Or, a view of the resources
composed of Big Switch, Big Software and one or more pools of physical resources.

116 Deliverable D3.2 18.06.2015

8 Conclusions

This deliverable has refined the service programmability framework documented in D3.1. The goal of service
programmability and orchestration functionality is to enable fast, on-demand, flexible and elastic deployment of
telecom services based on the interconnection of virtualized network functions. In this document we took a top-
down approach from the Service layer, through the Orchestration layer, and ended in the Infrastructure layer.
Through this we documented our findings in the key technical areas of service programming and orchestration in
each of the layers. In the Service layer the identified key technical issues are on providing service programming
interfaces and their associated data models. In the Orchestration layer we focused on the technical challenges of
performing scalable resource orchestration and dynamic decomposition of abstract network functions into specific
implementations. In the Infrastructure layer the main challenge is management of state, both inside the network
functions and the network elements providing connectivity between the functions. This deliverables summarizes
the advancements made corresponding to state of the art, by proposing concrete data models, algorithms,
implementations and/or evaluations of resulting performance.

Service programmability requires sound interfaces, languages, and most importantly underlying data models. The
NF-FG data model is at the heart of the UNIFY programming framework, specifying how services should be
deployed, what their requirements are and how they should be monitored. Due to the recursive nature of the UNIFY
orchestration framework, it must fully support the abstractions and virtualization steps in the architecture, adding
additional level of complexity when specifying it. We presented the two NF-FG modelling approaches that we are
evaluating, one service-centric and one based on the Virtualizer component. The first, service-centric, model has its
roots in the model initially specified in D3.1 which has since evolved based on feedback from prototyping efforts, an
updated architecture from WP2, developments in WP4 and the universal node prototype in WP5. The second NF-FG
model takes a different approach with the focus on modelling the Virtualizer component responsible for presenting
a virtual network view to higher layers. Here the configuration of the exposed virtualized resources defines the NF-
FG. At the same time parallel developments outside the project, such as OASIS TOSCA and OpenStack Heat have
been taken into account in the proposal of the two NF-FG YANG data models. These include modelling capabilities of
the exposed topology and resource model of the underlying (virtualized) infrastructure. Due to the recursive nature
of the UNIFY architecture, finding information regarding various NF-FGs, resources, and monitoring results become
non-trivial at higher layers as several virtualization and aggregation steps separate the higher layers from the
bottom layer infrastructure. To aid the higher layers in obtaining fresh information from lower layers a recursive
query language based on Datalog is proposed and under development. SLA assurance and associated monitoring
functionality is covered in the NF-FG model through the MEASURE framework detailed in WP4.

Service decomposition is the programmability concept which enables stepwise refinement of NF specifications
within the programmability process flow. The model-based service decomposition introduced in D3.1 and D2.2
naturally suits the recursive UNIFY architecture. This concept has been further clarified, highlighting the advantages
it has, its limitations, and when it could and should be applied. Furthermore, the concept of atomic blocks, the entity
on which decomposition terminates, has been refined. Several types of atomic blocks have been identified, from

116 Deliverable D3.2 18.06.2015

8 Conclusions

This deliverable has refined the service programmability framework documented in D3.1. The goal of service
programmability and orchestration functionality is to enable fast, on-demand, flexible and elastic deployment of
telecom services based on the interconnection of virtualized network functions. In this document we took a top-
down approach from the Service layer, through the Orchestration layer, and ended in the Infrastructure layer.
Through this we documented our findings in the key technical areas of service programming and orchestration in
each of the layers. In the Service layer the identified key technical issues are on providing service programming
interfaces and their associated data models. In the Orchestration layer we focused on the technical challenges of
performing scalable resource orchestration and dynamic decomposition of abstract network functions into specific
implementations. In the Infrastructure layer the main challenge is management of state, both inside the network
functions and the network elements providing connectivity between the functions. This deliverables summarizes
the advancements made corresponding to state of the art, by proposing concrete data models, algorithms,
implementations and/or evaluations of resulting performance.

Service programmability requires sound interfaces, languages, and most importantly underlying data models. The
NF-FG data model is at the heart of the UNIFY programming framework, specifying how services should be
deployed, what their requirements are and how they should be monitored. Due to the recursive nature of the UNIFY
orchestration framework, it must fully support the abstractions and virtualization steps in the architecture, adding
additional level of complexity when specifying it. We presented the two NF-FG modelling approaches that we are
evaluating, one service-centric and one based on the Virtualizer component. The first, service-centric, model has its
roots in the model initially specified in D3.1 which has since evolved based on feedback from prototyping efforts, an
updated architecture from WP2, developments in WP4 and the universal node prototype in WP5. The second NF-FG
model takes a different approach with the focus on modelling the Virtualizer component responsible for presenting
a virtual network view to higher layers. Here the configuration of the exposed virtualized resources defines the NF-
FG. At the same time parallel developments outside the project, such as OASIS TOSCA and OpenStack Heat have
been taken into account in the proposal of the two NF-FG YANG data models. These include modelling capabilities of
the exposed topology and resource model of the underlying (virtualized) infrastructure. Due to the recursive nature
of the UNIFY architecture, finding information regarding various NF-FGs, resources, and monitoring results become
non-trivial at higher layers as several virtualization and aggregation steps separate the higher layers from the
bottom layer infrastructure. To aid the higher layers in obtaining fresh information from lower layers a recursive
query language based on Datalog is proposed and under development. SLA assurance and associated monitoring
functionality is covered in the NF-FG model through the MEASURE framework detailed in WP4.

Service decomposition is the programmability concept which enables stepwise refinement of NF specifications
within the programmability process flow. The model-based service decomposition introduced in D3.1 and D2.2
naturally suits the recursive UNIFY architecture. This concept has been further clarified, highlighting the advantages
it has, its limitations, and when it could and should be applied. Furthermore, the concept of atomic blocks, the entity
on which decomposition terminates, has been refined. Several types of atomic blocks have been identified, from

116 Deliverable D3.2 18.06.2015

8 Conclusions

This deliverable has refined the service programmability framework documented in D3.1. The goal of service
programmability and orchestration functionality is to enable fast, on-demand, flexible and elastic deployment of
telecom services based on the interconnection of virtualized network functions. In this document we took a top-
down approach from the Service layer, through the Orchestration layer, and ended in the Infrastructure layer.
Through this we documented our findings in the key technical areas of service programming and orchestration in
each of the layers. In the Service layer the identified key technical issues are on providing service programming
interfaces and their associated data models. In the Orchestration layer we focused on the technical challenges of
performing scalable resource orchestration and dynamic decomposition of abstract network functions into specific
implementations. In the Infrastructure layer the main challenge is management of state, both inside the network
functions and the network elements providing connectivity between the functions. This deliverables summarizes
the advancements made corresponding to state of the art, by proposing concrete data models, algorithms,
implementations and/or evaluations of resulting performance.

Service programmability requires sound interfaces, languages, and most importantly underlying data models. The
NF-FG data model is at the heart of the UNIFY programming framework, specifying how services should be
deployed, what their requirements are and how they should be monitored. Due to the recursive nature of the UNIFY
orchestration framework, it must fully support the abstractions and virtualization steps in the architecture, adding
additional level of complexity when specifying it. We presented the two NF-FG modelling approaches that we are
evaluating, one service-centric and one based on the Virtualizer component. The first, service-centric, model has its
roots in the model initially specified in D3.1 which has since evolved based on feedback from prototyping efforts, an
updated architecture from WP2, developments in WP4 and the universal node prototype in WP5. The second NF-FG
model takes a different approach with the focus on modelling the Virtualizer component responsible for presenting
a virtual network view to higher layers. Here the configuration of the exposed virtualized resources defines the NF-
FG. At the same time parallel developments outside the project, such as OASIS TOSCA and OpenStack Heat have
been taken into account in the proposal of the two NF-FG YANG data models. These include modelling capabilities of
the exposed topology and resource model of the underlying (virtualized) infrastructure. Due to the recursive nature
of the UNIFY architecture, finding information regarding various NF-FGs, resources, and monitoring results become
non-trivial at higher layers as several virtualization and aggregation steps separate the higher layers from the
bottom layer infrastructure. To aid the higher layers in obtaining fresh information from lower layers a recursive
query language based on Datalog is proposed and under development. SLA assurance and associated monitoring
functionality is covered in the NF-FG model through the MEASURE framework detailed in WP4.

Service decomposition is the programmability concept which enables stepwise refinement of NF specifications
within the programmability process flow. The model-based service decomposition introduced in D3.1 and D2.2
naturally suits the recursive UNIFY architecture. This concept has been further clarified, highlighting the advantages
it has, its limitations, and when it could and should be applied. Furthermore, the concept of atomic blocks, the entity
on which decomposition terminates, has been refined. Several types of atomic blocks have been identified, from

117 Deliverable D3.2 18.06.2015

dedicated hardware NFs, to different granularities of software blocks that can be composed into a VNF function. For
the software based atomic blocks not only the software components themselves are important, but also the tools
necessary for packaging the components into a format that can easily be deployed. Here several tools have been
identified, such as virtual machines, containers, and the specialized ClickOS VMs for deploying Click scripts. Finally,
several examples of how these different tools and technologies can be combined to create new services have been
shown.

Resource orchestration, the process of mapping decomposed NF-FGs and their requirements to the lower layer
resources, has been discussed starting from a VNEP problem formulation. Here several advancements have been
made, both for “pure” VNEP mapping algorithms and algorithms that support decomposition of the NF-FG together
with the mapping of it. These are further split into on-line algorithms and off-line algorithms. Three algorithms for
“pure” VNEP mappings have been presented and evaluated. The first algorithm is an on-line algorithm to handle
service chain embedding in dense multi-edged topologies, in which forwarding elements can have multiple links to
each other. The second algorithm handles virtual cluster topologies, a star topology for server-to-server
communication over a central switch, this shows that the VNEP for virtual cluster topology is not NP-hard but can in
fact be solved in polynomic time. Finally an off-line Mixed-Integer-Programming algorithm that maps multiple NF-
FGs at the same time has been presented. It additionally allows for reconfigurations of existing embeddings and
elasticity. Two algorithms, one off-line and one on-line for service decomposition and mapping has been developed.
These show large benefits to taking the decomposition options into account when performing the resource
mapping. Finally, a framework for distributing on-line algorithm calculations over multiple nodes has been
prototyped and tested, using open source components.

To support the service elasticity and scalability promised by the NFV approach, the ability to dynamically add and
remove VNF components from an NF-FG is required. To be able to do this without interrupting or degrading the
service provided by the VNFs involved their internal state must be handled in unison with the network state. Here
we have analyzed a network function common in provider networks in terms of its internal state and how it should
be handled. We also improved on previous work on a VNF state management framework in order to lessen the
impact of state management both on the user traffic and the orchestration infrastructure, showing significant
improvements in both time and messaging overhead. The proposed schemes have been validated in an extension of
the state-of-the-art OpenNF emulation framework. Additionally, mechanisms for providing high availability to NFV
services through protection and recovery mechanisms have been characterized.

Supporting scalable VNFs alone is not enough without a scalable data plane to connect the VNFs and steer the user
traffic through them in an efficient and flexible manner. To provide this we described our initial findings on the
theoretical aspects of traffic steering and introduce the novel concept of Software-Defined Routing (SDR), which
allows placement of forwarding states at arbitrary levels in the network architecture. This study shows that the SDR
approach can significantly reduce the state in all forwarding tiers compared to the amount of state required with
“pure” forwarding paradigms.

117 Deliverable D3.2 18.06.2015

dedicated hardware NFs, to different granularities of software blocks that can be composed into a VNF function. For
the software based atomic blocks not only the software components themselves are important, but also the tools
necessary for packaging the components into a format that can easily be deployed. Here several tools have been
identified, such as virtual machines, containers, and the specialized ClickOS VMs for deploying Click scripts. Finally,
several examples of how these different tools and technologies can be combined to create new services have been
shown.

Resource orchestration, the process of mapping decomposed NF-FGs and their requirements to the lower layer
resources, has been discussed starting from a VNEP problem formulation. Here several advancements have been
made, both for “pure” VNEP mapping algorithms and algorithms that support decomposition of the NF-FG together
with the mapping of it. These are further split into on-line algorithms and off-line algorithms. Three algorithms for
“pure” VNEP mappings have been presented and evaluated. The first algorithm is an on-line algorithm to handle
service chain embedding in dense multi-edged topologies, in which forwarding elements can have multiple links to
each other. The second algorithm handles virtual cluster topologies, a star topology for server-to-server
communication over a central switch, this shows that the VNEP for virtual cluster topology is not NP-hard but can in
fact be solved in polynomic time. Finally an off-line Mixed-Integer-Programming algorithm that maps multiple NF-
FGs at the same time has been presented. It additionally allows for reconfigurations of existing embeddings and
elasticity. Two algorithms, one off-line and one on-line for service decomposition and mapping has been developed.
These show large benefits to taking the decomposition options into account when performing the resource
mapping. Finally, a framework for distributing on-line algorithm calculations over multiple nodes has been
prototyped and tested, using open source components.

To support the service elasticity and scalability promised by the NFV approach, the ability to dynamically add and
remove VNF components from an NF-FG is required. To be able to do this without interrupting or degrading the
service provided by the VNFs involved their internal state must be handled in unison with the network state. Here
we have analyzed a network function common in provider networks in terms of its internal state and how it should
be handled. We also improved on previous work on a VNF state management framework in order to lessen the
impact of state management both on the user traffic and the orchestration infrastructure, showing significant
improvements in both time and messaging overhead. The proposed schemes have been validated in an extension of
the state-of-the-art OpenNF emulation framework. Additionally, mechanisms for providing high availability to NFV
services through protection and recovery mechanisms have been characterized.

Supporting scalable VNFs alone is not enough without a scalable data plane to connect the VNFs and steer the user
traffic through them in an efficient and flexible manner. To provide this we described our initial findings on the
theoretical aspects of traffic steering and introduce the novel concept of Software-Defined Routing (SDR), which
allows placement of forwarding states at arbitrary levels in the network architecture. This study shows that the SDR
approach can significantly reduce the state in all forwarding tiers compared to the amount of state required with
“pure” forwarding paradigms.

117 Deliverable D3.2 18.06.2015

dedicated hardware NFs, to different granularities of software blocks that can be composed into a VNF function. For
the software based atomic blocks not only the software components themselves are important, but also the tools
necessary for packaging the components into a format that can easily be deployed. Here several tools have been
identified, such as virtual machines, containers, and the specialized ClickOS VMs for deploying Click scripts. Finally,
several examples of how these different tools and technologies can be combined to create new services have been
shown.

Resource orchestration, the process of mapping decomposed NF-FGs and their requirements to the lower layer
resources, has been discussed starting from a VNEP problem formulation. Here several advancements have been
made, both for “pure” VNEP mapping algorithms and algorithms that support decomposition of the NF-FG together
with the mapping of it. These are further split into on-line algorithms and off-line algorithms. Three algorithms for
“pure” VNEP mappings have been presented and evaluated. The first algorithm is an on-line algorithm to handle
service chain embedding in dense multi-edged topologies, in which forwarding elements can have multiple links to
each other. The second algorithm handles virtual cluster topologies, a star topology for server-to-server
communication over a central switch, this shows that the VNEP for virtual cluster topology is not NP-hard but can in
fact be solved in polynomic time. Finally an off-line Mixed-Integer-Programming algorithm that maps multiple NF-
FGs at the same time has been presented. It additionally allows for reconfigurations of existing embeddings and
elasticity. Two algorithms, one off-line and one on-line for service decomposition and mapping has been developed.
These show large benefits to taking the decomposition options into account when performing the resource
mapping. Finally, a framework for distributing on-line algorithm calculations over multiple nodes has been
prototyped and tested, using open source components.

To support the service elasticity and scalability promised by the NFV approach, the ability to dynamically add and
remove VNF components from an NF-FG is required. To be able to do this without interrupting or degrading the
service provided by the VNFs involved their internal state must be handled in unison with the network state. Here
we have analyzed a network function common in provider networks in terms of its internal state and how it should
be handled. We also improved on previous work on a VNF state management framework in order to lessen the
impact of state management both on the user traffic and the orchestration infrastructure, showing significant
improvements in both time and messaging overhead. The proposed schemes have been validated in an extension of
the state-of-the-art OpenNF emulation framework. Additionally, mechanisms for providing high availability to NFV
services through protection and recovery mechanisms have been characterized.

Supporting scalable VNFs alone is not enough without a scalable data plane to connect the VNFs and steer the user
traffic through them in an efficient and flexible manner. To provide this we described our initial findings on the
theoretical aspects of traffic steering and introduce the novel concept of Software-Defined Routing (SDR), which
allows placement of forwarding states at arbitrary levels in the network architecture. This study shows that the SDR
approach can significantly reduce the state in all forwarding tiers compared to the amount of state required with
“pure” forwarding paradigms.

118 Deliverable D3.2 18.06.2015

Concepts, algorithms and characterized components of the service programming and orchestration framework are
only able to show their true value if once they are integrated within proof-of-concept prototype(s), confronting
them with low-level technical aspects. The latter has been the goal of different prototypes, and particularly of the
ESCAPE emulator. The result of this continuous confrontation has led to a high-level functional description of the
next version of the prototyping environment ESCAPEv2. This environment supports operations with large SGs, RGs
and NF-FGs; pluggable VNEP algorithms; service decomposition; interactions with different technological domains,
and is easily integrated and extended. Finally, to support the large fraction of today’s internet traffic that terminates
in wireless environments, the radio resources has to be taken into account. We presented our approach to joint
orchestration of radio and optical transport resources, including a proof of concept demonstrator.

In summary, this deliverable provided refined view and trade-off analysis of service decomposition, concrete
proposals and evaluations of orchestration algorithms and state-migration functionality in realistic scenario’s, as well
as a detailed functional description of an proof-of-concept prototype of the complete programmability and
orchestration framework in ESCAPEv2. The companion document, D3.2a, provides a refined description of the NF-
FG data models related to UNIFY’s key programming interfaces.

118 Deliverable D3.2 18.06.2015

Concepts, algorithms and characterized components of the service programming and orchestration framework are
only able to show their true value if once they are integrated within proof-of-concept prototype(s), confronting
them with low-level technical aspects. The latter has been the goal of different prototypes, and particularly of the
ESCAPE emulator. The result of this continuous confrontation has led to a high-level functional description of the
next version of the prototyping environment ESCAPEv2. This environment supports operations with large SGs, RGs
and NF-FGs; pluggable VNEP algorithms; service decomposition; interactions with different technological domains,
and is easily integrated and extended. Finally, to support the large fraction of today’s internet traffic that terminates
in wireless environments, the radio resources has to be taken into account. We presented our approach to joint
orchestration of radio and optical transport resources, including a proof of concept demonstrator.

In summary, this deliverable provided refined view and trade-off analysis of service decomposition, concrete
proposals and evaluations of orchestration algorithms and state-migration functionality in realistic scenario’s, as well
as a detailed functional description of an proof-of-concept prototype of the complete programmability and
orchestration framework in ESCAPEv2. The companion document, D3.2a, provides a refined description of the NF-
FG data models related to UNIFY’s key programming interfaces.

118 Deliverable D3.2 18.06.2015

Concepts, algorithms and characterized components of the service programming and orchestration framework are
only able to show their true value if once they are integrated within proof-of-concept prototype(s), confronting
them with low-level technical aspects. The latter has been the goal of different prototypes, and particularly of the
ESCAPE emulator. The result of this continuous confrontation has led to a high-level functional description of the
next version of the prototyping environment ESCAPEv2. This environment supports operations with large SGs, RGs
and NF-FGs; pluggable VNEP algorithms; service decomposition; interactions with different technological domains,
and is easily integrated and extended. Finally, to support the large fraction of today’s internet traffic that terminates
in wireless environments, the radio resources has to be taken into account. We presented our approach to joint
orchestration of radio and optical transport resources, including a proof of concept demonstrator.

In summary, this deliverable provided refined view and trade-off analysis of service decomposition, concrete
proposals and evaluations of orchestration algorithms and state-migration functionality in realistic scenario’s, as well
as a detailed functional description of an proof-of-concept prototype of the complete programmability and
orchestration framework in ESCAPEv2. The companion document, D3.2a, provides a refined description of the NF-
FG data models related to UNIFY’s key programming interfaces.

119 Deliverable D3.2 18.06.2015

9 References

[Abley2007] J. Abley et al. “Deprecation of Type 0 Routing Headers in IPv6”. RFC5095, December 2007.

[Alex2010] Alex X. Liu, Chad R. Meiners, and Eric Torng. “TCAM Razor: A systematic approach towards minimizing
packet classifiers in TCAMs”. IEEE/ACM Trans. Netw., 18(2):490–500, April 2010.

[Anwer2013] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, and Jennifer Rexford. “A slick control
plane for network middleboxes”. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 147–148. ACM, 2013.

[Ashwood2013] P. Ashwood-Smith, M. Soliman, and T. Wan. “SDN state reduction”. draft-ashwood-sdnrg-state-
reduction-00.txt, February 2013.

[Ashwood2014] Ashwood-Smith. “Research challenges in Software-Defined Networking”. Infocom Panel, April 2014.

[Basta2014] Basta, Arsany, et al. ”Applying NFV and SDN to LTE mobile core gateways, the functions placement
problem.” Proceedings of the 4th workshop on All things cellular: operations, applications, & challenges. ACM. 2014.

[Basta 2013] Basta, Arsany, et al. "A Virtual SDN-enabled LTE EPC Architecture: a case study for S-/P-Gateways
functions." Future Networks and Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 2013.

[Bazilchuk2005] Bazilchuk, N., Mohagheghi, P.: “The Advantages of Reused Software Components” in ERCIM News
No. 60, January 2005, available: <http://www.ercim.eu/publication/Ercim_News/enw60/mohagheghi.html>

[Belbekkouche2012] Belbekkouche, A., Hasan, M. M., & Karmouch, A. (2012). “Resource Discovery and Allocation in
Network Virtualization.” IEEE Communications Surveys & Tutorials, 14(4), 1114–1128.
doi:10.1109/SURV.2011.122811.00060

[Bienkowsi2014] Bienkowski, M., Feldmann, A., Grassler, J., Schaffrath, G., and Schmid, S. “The Wide-Area Virtual
Service Migration Problem: A Competitive Analysis Approach”. IEEE/ACM Transactions on Networking, 22(1), 165–178,
2014.

[BIS] Department for Business Innovation & Skills, “Business population estimates for the UK and regions 2012”,
Accessed: 2015-04-27,
<https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/80247/bpe-2012-stats-
release-4.pdf>

[Bondan2014] Bondan, Lucas, Carlos Raniery Paula dos Santos, and Lisandro Zambenedetti Granville. "Management
Requirements for ClickOS-based Network Function Virtualization.", Network and Service Management (CNSM), 2014
10th International Conference on. IEEE, 2014.

119 Deliverable D3.2 18.06.2015

9 References

[Abley2007] J. Abley et al. “Deprecation of Type 0 Routing Headers in IPv6”. RFC5095, December 2007.

[Alex2010] Alex X. Liu, Chad R. Meiners, and Eric Torng. “TCAM Razor: A systematic approach towards minimizing
packet classifiers in TCAMs”. IEEE/ACM Trans. Netw., 18(2):490–500, April 2010.

[Anwer2013] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, and Jennifer Rexford. “A slick control
plane for network middleboxes”. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 147–148. ACM, 2013.

[Ashwood2013] P. Ashwood-Smith, M. Soliman, and T. Wan. “SDN state reduction”. draft-ashwood-sdnrg-state-
reduction-00.txt, February 2013.

[Ashwood2014] Ashwood-Smith. “Research challenges in Software-Defined Networking”. Infocom Panel, April 2014.

[Basta2014] Basta, Arsany, et al. ”Applying NFV and SDN to LTE mobile core gateways, the functions placement
problem.” Proceedings of the 4th workshop on All things cellular: operations, applications, & challenges. ACM. 2014.

[Basta 2013] Basta, Arsany, et al. "A Virtual SDN-enabled LTE EPC Architecture: a case study for S-/P-Gateways
functions." Future Networks and Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 2013.

[Bazilchuk2005] Bazilchuk, N., Mohagheghi, P.: “The Advantages of Reused Software Components” in ERCIM News
No. 60, January 2005, available: <http://www.ercim.eu/publication/Ercim_News/enw60/mohagheghi.html>

[Belbekkouche2012] Belbekkouche, A., Hasan, M. M., & Karmouch, A. (2012). “Resource Discovery and Allocation in
Network Virtualization.” IEEE Communications Surveys & Tutorials, 14(4), 1114–1128.
doi:10.1109/SURV.2011.122811.00060

[Bienkowsi2014] Bienkowski, M., Feldmann, A., Grassler, J., Schaffrath, G., and Schmid, S. “The Wide-Area Virtual
Service Migration Problem: A Competitive Analysis Approach”. IEEE/ACM Transactions on Networking, 22(1), 165–178,
2014.

[BIS] Department for Business Innovation & Skills, “Business population estimates for the UK and regions 2012”,
Accessed: 2015-04-27,
<https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/80247/bpe-2012-stats-
release-4.pdf>

[Bondan2014] Bondan, Lucas, Carlos Raniery Paula dos Santos, and Lisandro Zambenedetti Granville. "Management
Requirements for ClickOS-based Network Function Virtualization.", Network and Service Management (CNSM), 2014
10th International Conference on. IEEE, 2014.

119 Deliverable D3.2 18.06.2015

9 References

[Abley2007] J. Abley et al. “Deprecation of Type 0 Routing Headers in IPv6”. RFC5095, December 2007.

[Alex2010] Alex X. Liu, Chad R. Meiners, and Eric Torng. “TCAM Razor: A systematic approach towards minimizing
packet classifiers in TCAMs”. IEEE/ACM Trans. Netw., 18(2):490–500, April 2010.

[Anwer2013] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, and Jennifer Rexford. “A slick control
plane for network middleboxes”. In Proceedings of the second ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 147–148. ACM, 2013.

[Ashwood2013] P. Ashwood-Smith, M. Soliman, and T. Wan. “SDN state reduction”. draft-ashwood-sdnrg-state-
reduction-00.txt, February 2013.

[Ashwood2014] Ashwood-Smith. “Research challenges in Software-Defined Networking”. Infocom Panel, April 2014.

[Basta2014] Basta, Arsany, et al. ”Applying NFV and SDN to LTE mobile core gateways, the functions placement
problem.” Proceedings of the 4th workshop on All things cellular: operations, applications, & challenges. ACM. 2014.

[Basta 2013] Basta, Arsany, et al. "A Virtual SDN-enabled LTE EPC Architecture: a case study for S-/P-Gateways
functions." Future Networks and Services (SDN4FNS), 2013 IEEE SDN for. IEEE, 2013.

[Bazilchuk2005] Bazilchuk, N., Mohagheghi, P.: “The Advantages of Reused Software Components” in ERCIM News
No. 60, January 2005, available: <http://www.ercim.eu/publication/Ercim_News/enw60/mohagheghi.html>

[Belbekkouche2012] Belbekkouche, A., Hasan, M. M., & Karmouch, A. (2012). “Resource Discovery and Allocation in
Network Virtualization.” IEEE Communications Surveys & Tutorials, 14(4), 1114–1128.
doi:10.1109/SURV.2011.122811.00060

[Bienkowsi2014] Bienkowski, M., Feldmann, A., Grassler, J., Schaffrath, G., and Schmid, S. “The Wide-Area Virtual
Service Migration Problem: A Competitive Analysis Approach”. IEEE/ACM Transactions on Networking, 22(1), 165–178,
2014.

[BIS] Department for Business Innovation & Skills, “Business population estimates for the UK and regions 2012”,
Accessed: 2015-04-27,
<https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/80247/bpe-2012-stats-
release-4.pdf>

[Bondan2014] Bondan, Lucas, Carlos Raniery Paula dos Santos, and Lisandro Zambenedetti Granville. "Management
Requirements for ClickOS-based Network Function Virtualization.", Network and Service Management (CNSM), 2014
10th International Conference on. IEEE, 2014.

120 Deliverable D3.2 18.06.2015

[BT21CN] Kitz,”BT 21CN - Network Topology & Technology”, Accessed: 2015-04-27,
<http://www.kitz.co.uk/adsl/21cn_network.htm>

[Chiesa2014] Marco Chiesa, Gabriele Lospoto, Massimo Rimondini, and Giuseppe Di Battista. “Intra-domain routing
with pathlets”. Computer Communications, 46:76–86, 2014.

[Chowdhury2009] Chowdhury M, Rahman, & Boutaba, R. (2009). “Virtual network embedding with coordinated
node and link mapping”. In INFOCOM 2009, IEEE (pp.783–791).

[Clicky] “Clicky”. Accessed: 2015-04-27, <http://www.read.cs.ucla.edu/click/clicky>.

[COMBO] FP7 COMBO, “COMBO (COnvergence of fixed and Mobile BrOadband access/aggregation networks)”,
Accessed: 2015-05-26, <http://www.ict-combo.eu>

[Csoma2014] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, András Gulyás, Wouter Tavernier, Sahel
Sahhaf, ESCAPE: “Extensible Service ChAin Prototyping Environment using Mininet, Click, NETCONF and POX”. In
Proceedings of ACM SIGCOMM 2014, pp. 125-126, Chicago, Illinois, USA, August 2014.

[D2.1] “Deliverable 2.1:.Use Cases and initial architecture” Tech. rep. UNIFY Project, 2014.

[D2.1 a] “D2.1 Amendment: Stateful, Elastic Firewall use case.” Tech. rep. UNIFY Project, 2014.

[D2.2] “Deliverable 2.2: Functional Architecture” Tech. rep. UNIFY Project, 2014.

[D3.1] “Deliverable 3.1: Programmability framework”. Tech. rep. UNIFY Project, 2014.

[D3.2a] “Deliverable 3.2a: Network Function Forwarding Graph specification”, Tech. Rep. UNIFY Project 2015

[D5.2] “Deliverable 5.2: API and Universal Node software architecture”. Tech. rep. UNIFY Project, 2014.

[D5.4] “Deliverable 5.4: Initial Benchmarking documentation”. Tech. rep. UNIFY Project, 2014.

[DCMap], Data Center Map, “Colocation United Kingdom – Data Centers”, Accessed: 2015-04-27,
<http://www.datacentermap.com/united-kingdom/>

[DevoFlow] Curtis, Andrew R., et al. "DevoFlow: Scaling flow management for high-performance networks." ACM
SIGCOMM Computer Communication Review. Vol. 41. No. 4. ACM, 2011.

[Dietz2015] T. Dietz, R. Bifulco, F. Manco, J. Martins, HJ. Kolbe and F. Huici. “Enhancing the BRAS through
Virtualization” 1st IEEE Conference on Network Softwarization (NETSOFT 2015). IEEE, 2015

[Dilip2008] Joseph, Dilip A., Arsalan Tavakoli, and Ion Stoica. "A policy-aware switching layer for data centers." ACM
SIGCOMM Computer Communication Review 38.4 (2008): 51-62.

120 Deliverable D3.2 18.06.2015

[BT21CN] Kitz,”BT 21CN - Network Topology & Technology”, Accessed: 2015-04-27,
<http://www.kitz.co.uk/adsl/21cn_network.htm>

[Chiesa2014] Marco Chiesa, Gabriele Lospoto, Massimo Rimondini, and Giuseppe Di Battista. “Intra-domain routing
with pathlets”. Computer Communications, 46:76–86, 2014.

[Chowdhury2009] Chowdhury M, Rahman, & Boutaba, R. (2009). “Virtual network embedding with coordinated
node and link mapping”. In INFOCOM 2009, IEEE (pp.783–791).

[Clicky] “Clicky”. Accessed: 2015-04-27, <http://www.read.cs.ucla.edu/click/clicky>.

[COMBO] FP7 COMBO, “COMBO (COnvergence of fixed and Mobile BrOadband access/aggregation networks)”,
Accessed: 2015-05-26, <http://www.ict-combo.eu>

[Csoma2014] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, András Gulyás, Wouter Tavernier, Sahel
Sahhaf, ESCAPE: “Extensible Service ChAin Prototyping Environment using Mininet, Click, NETCONF and POX”. In
Proceedings of ACM SIGCOMM 2014, pp. 125-126, Chicago, Illinois, USA, August 2014.

[D2.1] “Deliverable 2.1:.Use Cases and initial architecture” Tech. rep. UNIFY Project, 2014.

[D2.1 a] “D2.1 Amendment: Stateful, Elastic Firewall use case.” Tech. rep. UNIFY Project, 2014.

[D2.2] “Deliverable 2.2: Functional Architecture” Tech. rep. UNIFY Project, 2014.

[D3.1] “Deliverable 3.1: Programmability framework”. Tech. rep. UNIFY Project, 2014.

[D3.2a] “Deliverable 3.2a: Network Function Forwarding Graph specification”, Tech. Rep. UNIFY Project 2015

[D5.2] “Deliverable 5.2: API and Universal Node software architecture”. Tech. rep. UNIFY Project, 2014.

[D5.4] “Deliverable 5.4: Initial Benchmarking documentation”. Tech. rep. UNIFY Project, 2014.

[DCMap], Data Center Map, “Colocation United Kingdom – Data Centers”, Accessed: 2015-04-27,
<http://www.datacentermap.com/united-kingdom/>

[DevoFlow] Curtis, Andrew R., et al. "DevoFlow: Scaling flow management for high-performance networks." ACM
SIGCOMM Computer Communication Review. Vol. 41. No. 4. ACM, 2011.

[Dietz2015] T. Dietz, R. Bifulco, F. Manco, J. Martins, HJ. Kolbe and F. Huici. “Enhancing the BRAS through
Virtualization” 1st IEEE Conference on Network Softwarization (NETSOFT 2015). IEEE, 2015

[Dilip2008] Joseph, Dilip A., Arsalan Tavakoli, and Ion Stoica. "A policy-aware switching layer for data centers." ACM
SIGCOMM Computer Communication Review 38.4 (2008): 51-62.

120 Deliverable D3.2 18.06.2015

[BT21CN] Kitz,”BT 21CN - Network Topology & Technology”, Accessed: 2015-04-27,
<http://www.kitz.co.uk/adsl/21cn_network.htm>

[Chiesa2014] Marco Chiesa, Gabriele Lospoto, Massimo Rimondini, and Giuseppe Di Battista. “Intra-domain routing
with pathlets”. Computer Communications, 46:76–86, 2014.

[Chowdhury2009] Chowdhury M, Rahman, & Boutaba, R. (2009). “Virtual network embedding with coordinated
node and link mapping”. In INFOCOM 2009, IEEE (pp.783–791).

[Clicky] “Clicky”. Accessed: 2015-04-27, <http://www.read.cs.ucla.edu/click/clicky>.

[COMBO] FP7 COMBO, “COMBO (COnvergence of fixed and Mobile BrOadband access/aggregation networks)”,
Accessed: 2015-05-26, <http://www.ict-combo.eu>

[Csoma2014] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, András Gulyás, Wouter Tavernier, Sahel
Sahhaf, ESCAPE: “Extensible Service ChAin Prototyping Environment using Mininet, Click, NETCONF and POX”. In
Proceedings of ACM SIGCOMM 2014, pp. 125-126, Chicago, Illinois, USA, August 2014.

[D2.1] “Deliverable 2.1:.Use Cases and initial architecture” Tech. rep. UNIFY Project, 2014.

[D2.1 a] “D2.1 Amendment: Stateful, Elastic Firewall use case.” Tech. rep. UNIFY Project, 2014.

[D2.2] “Deliverable 2.2: Functional Architecture” Tech. rep. UNIFY Project, 2014.

[D3.1] “Deliverable 3.1: Programmability framework”. Tech. rep. UNIFY Project, 2014.

[D3.2a] “Deliverable 3.2a: Network Function Forwarding Graph specification”, Tech. Rep. UNIFY Project 2015

[D5.2] “Deliverable 5.2: API and Universal Node software architecture”. Tech. rep. UNIFY Project, 2014.

[D5.4] “Deliverable 5.4: Initial Benchmarking documentation”. Tech. rep. UNIFY Project, 2014.

[DCMap], Data Center Map, “Colocation United Kingdom – Data Centers”, Accessed: 2015-04-27,
<http://www.datacentermap.com/united-kingdom/>

[DevoFlow] Curtis, Andrew R., et al. "DevoFlow: Scaling flow management for high-performance networks." ACM
SIGCOMM Computer Communication Review. Vol. 41. No. 4. ACM, 2011.

[Dietz2015] T. Dietz, R. Bifulco, F. Manco, J. Martins, HJ. Kolbe and F. Huici. “Enhancing the BRAS through
Virtualization” 1st IEEE Conference on Network Softwarization (NETSOFT 2015). IEEE, 2015

[Dilip2008] Joseph, Dilip A., Arsalan Tavakoli, and Ion Stoica. "A policy-aware switching layer for data centers." ACM
SIGCOMM Computer Communication Review 38.4 (2008): 51-62.

121 Deliverable D3.2 18.06.2015

[Docker] Docker, Inc. ”Docker - Build, Ship and Run Any App, Anywhere.”Accessed: 2015-04-27. Docker homepage.
<http://www.docker.com>.

[DockerComp] Docker Inc. ”Docker Compose – Docker documentation”. Accessed: 2015-04-27. Docker homepage.
<http://docs.docker.com/compose/>.

[Esposito2014] Esposito, F., & Matta, I. (2014). “A decomposition-based architecture for distributed virtual network
embedding”. In Proceedings of the 2014 ACM SIGCOMM workshop on Distributed cloud computing - DCC ’14 (pp. 53–
58). New York, New York, USA: ACM Press. doi:10.1145/2627566.2627569

[ETSI NFV Use case] ETSI GS NFV 001, “Network Functions Virtualisation (NFV); Use Cases”,
Accessed 2015-05-07, <http://www.etsi.org/deliver/etsi_gs/nfv/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf>

[Even2012] Even, G., Medina, M., Schaffrath, G., & Schmid, S. (2012). “Competitive and deterministic embeddings of
virtual networks”. Distributed Computing and Networking, pp. 106–121.

[Fischer2013] Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., & Hesselbach, X. (2013).”Virtual Network Embedding: A
Survey”. IEEE Communications Surveys & Tutorials, 15(4), 1888–1906. doi:10.1109/SURV.2013.013013.00155

[Fischetti2004] Fischetti, Matteo, Carlo Polo, & Massimo Scantamburlo. “A local branching heuristic for
mixed‐integer programs with 2‐level variables, with an application to a telecommunication network design
problem.” Networks 44.2 (2004): 61-72.

[Flocker] ClusterHQ Inc. “Docker container data & volume management”, Accessed 2015-04-27,
<http://clusterhq.com>

[FlowNAC] Matias, Jon, et al. "FlowNAC: Flow-based Network Access Control." Third European Workshop on
Software Defined Networks. 2014.

[Foster2011] Foster, Nate, et al. "Frenetic: A network programming language", ACM SIGPLAN Notices. Vol. 46. No. 9.
ACM, 2011. <http://www.frenetic-lang.org/overview.php>

[Garroppo2010] Garroppo , R., Iordano , S., & Tavanti , L. A “Survey on Multi-constrained Optimal Path Computation:
Exact and Approximate Algorithms”. Computation Networks. 54, 17 (2010), 3081–3107.

[Gember-Jacobson2013]Gember-Jacobson, Aaron, et al. "Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds." arXiv preprint arXiv:1305.0209 (2013).

[Gember-Jacobson2014] Gember-Jacobson, Aaron, et al. "OpenNF: Enabling innovation in network function
control." Proceedings of the 2014 ACM conference on SIGCOMM. ACM, 2014.

[Godfrey2009] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. “Pathlet routing”. In ACM SIGCOMM
2009, pages 111–122, 2009.

121 Deliverable D3.2 18.06.2015

[Docker] Docker, Inc. ”Docker - Build, Ship and Run Any App, Anywhere.”Accessed: 2015-04-27. Docker homepage.
<http://www.docker.com>.

[DockerComp] Docker Inc. ”Docker Compose – Docker documentation”. Accessed: 2015-04-27. Docker homepage.
<http://docs.docker.com/compose/>.

[Esposito2014] Esposito, F., & Matta, I. (2014). “A decomposition-based architecture for distributed virtual network
embedding”. In Proceedings of the 2014 ACM SIGCOMM workshop on Distributed cloud computing - DCC ’14 (pp. 53–
58). New York, New York, USA: ACM Press. doi:10.1145/2627566.2627569

[ETSI NFV Use case] ETSI GS NFV 001, “Network Functions Virtualisation (NFV); Use Cases”,
Accessed 2015-05-07, <http://www.etsi.org/deliver/etsi_gs/nfv/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf>

[Even2012] Even, G., Medina, M., Schaffrath, G., & Schmid, S. (2012). “Competitive and deterministic embeddings of
virtual networks”. Distributed Computing and Networking, pp. 106–121.

[Fischer2013] Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., & Hesselbach, X. (2013).”Virtual Network Embedding: A
Survey”. IEEE Communications Surveys & Tutorials, 15(4), 1888–1906. doi:10.1109/SURV.2013.013013.00155

[Fischetti2004] Fischetti, Matteo, Carlo Polo, & Massimo Scantamburlo. “A local branching heuristic for
mixed‐integer programs with 2‐level variables, with an application to a telecommunication network design
problem.” Networks 44.2 (2004): 61-72.

[Flocker] ClusterHQ Inc. “Docker container data & volume management”, Accessed 2015-04-27,
<http://clusterhq.com>

[FlowNAC] Matias, Jon, et al. "FlowNAC: Flow-based Network Access Control." Third European Workshop on
Software Defined Networks. 2014.

[Foster2011] Foster, Nate, et al. "Frenetic: A network programming language", ACM SIGPLAN Notices. Vol. 46. No. 9.
ACM, 2011. <http://www.frenetic-lang.org/overview.php>

[Garroppo2010] Garroppo , R., Iordano , S., & Tavanti , L. A “Survey on Multi-constrained Optimal Path Computation:
Exact and Approximate Algorithms”. Computation Networks. 54, 17 (2010), 3081–3107.

[Gember-Jacobson2013]Gember-Jacobson, Aaron, et al. "Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds." arXiv preprint arXiv:1305.0209 (2013).

[Gember-Jacobson2014] Gember-Jacobson, Aaron, et al. "OpenNF: Enabling innovation in network function
control." Proceedings of the 2014 ACM conference on SIGCOMM. ACM, 2014.

[Godfrey2009] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. “Pathlet routing”. In ACM SIGCOMM
2009, pages 111–122, 2009.

121 Deliverable D3.2 18.06.2015

[Docker] Docker, Inc. ”Docker - Build, Ship and Run Any App, Anywhere.”Accessed: 2015-04-27. Docker homepage.
<http://www.docker.com>.

[DockerComp] Docker Inc. ”Docker Compose – Docker documentation”. Accessed: 2015-04-27. Docker homepage.
<http://docs.docker.com/compose/>.

[Esposito2014] Esposito, F., & Matta, I. (2014). “A decomposition-based architecture for distributed virtual network
embedding”. In Proceedings of the 2014 ACM SIGCOMM workshop on Distributed cloud computing - DCC ’14 (pp. 53–
58). New York, New York, USA: ACM Press. doi:10.1145/2627566.2627569

[ETSI NFV Use case] ETSI GS NFV 001, “Network Functions Virtualisation (NFV); Use Cases”,
Accessed 2015-05-07, <http://www.etsi.org/deliver/etsi_gs/nfv/001_099/001/01.01.01_60/gs_nfv001v010101p.pdf>

[Even2012] Even, G., Medina, M., Schaffrath, G., & Schmid, S. (2012). “Competitive and deterministic embeddings of
virtual networks”. Distributed Computing and Networking, pp. 106–121.

[Fischer2013] Fischer, A., Botero, J. F., Beck, M. T., de Meer, H., & Hesselbach, X. (2013).”Virtual Network Embedding: A
Survey”. IEEE Communications Surveys & Tutorials, 15(4), 1888–1906. doi:10.1109/SURV.2013.013013.00155

[Fischetti2004] Fischetti, Matteo, Carlo Polo, & Massimo Scantamburlo. “A local branching heuristic for
mixed‐integer programs with 2‐level variables, with an application to a telecommunication network design
problem.” Networks 44.2 (2004): 61-72.

[Flocker] ClusterHQ Inc. “Docker container data & volume management”, Accessed 2015-04-27,
<http://clusterhq.com>

[FlowNAC] Matias, Jon, et al. "FlowNAC: Flow-based Network Access Control." Third European Workshop on
Software Defined Networks. 2014.

[Foster2011] Foster, Nate, et al. "Frenetic: A network programming language", ACM SIGPLAN Notices. Vol. 46. No. 9.
ACM, 2011. <http://www.frenetic-lang.org/overview.php>

[Garroppo2010] Garroppo , R., Iordano , S., & Tavanti , L. A “Survey on Multi-constrained Optimal Path Computation:
Exact and Approximate Algorithms”. Computation Networks. 54, 17 (2010), 3081–3107.

[Gember-Jacobson2013]Gember-Jacobson, Aaron, et al. "Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds." arXiv preprint arXiv:1305.0209 (2013).

[Gember-Jacobson2014] Gember-Jacobson, Aaron, et al. "OpenNF: Enabling innovation in network function
control." Proceedings of the 2014 ACM conference on SIGCOMM. ACM, 2014.

[Godfrey2009] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica. “Pathlet routing”. In ACM SIGCOMM
2009, pages 111–122, 2009.

122 Deliverable D3.2 18.06.2015

[GStreamer] “GStreamer: open source multimedia framework”, Accessed 2015-05-07,
<http://gstreamer.freedesktop.org/>

[Gupta1999] Pankaj Gupta and Nick McKeown.”Packet classification on multiple fields”. In ACM SIGCOMM 1999, pages
147–160, 1999.,

[Gurobi2015] Gurobi Optimization, Inc., "Gurobi Optimizer Reference Manual", retrieved 2015 from
<http://www.gurobi.com>

[Hahn2015] Hahn, Wolfgang, and Borislava Gajic. "GW elasticity in data centers: Options to adapt to changing traffic
profiles in control and user plane." Intelligence in Next Generation Networks (ICIN), 2015 18th International
Conference on. IEEE, 2015.

[Handley2005] Handley, Mark, et al. "Designing extensible IP router software." Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2. USENIX Association, 2005.

[Hazelcast] “Hazelcast.org – The Leading Open Source In-Memory Data Grid”, Accessed: 2015-04-27,
<http://hazelcast.org>

[Hemminger2005] Hemminger, Stephen. "Network emulation with NetEm." Linux conf au. 2005

[Houidi2011] Houidi, I., Louati, W., Ben Ameur, W., & Zeghlache, D. (2011). “Virtual network provisioning across multiple
substrate networks”. Computer Networks, 55(4), 1011–1023. doi:10.1016/j.comnet.2010.12.011

[ISPreview] ISPreview.co.uk, “ISP BT Top 6.28M Broadband Customers as FTTC Passes 10M UK Homes”, Accessed:
2015-04-27, <http://www.ispreview.co.uk/index.php/2012/05/isp-bt-top-6-28m-broadband-customers-as-fttc-
reaches-10m-uk-homes.html>

[JSONComp] “Comparing various aspects of Serialization libraries”, Accessed: 2015-04-27,
<https://code.google.com/p/thrift-protobuf-compare/wiki/BenchmarkingV2>

[Kanada2015] Kanada, Y. “High-Level Portable Programming Language for Optimized Memory Use of Network
Processors”, Communications and Network, 7, 55-69. (2015) doi: 10.4236/cn.2015.71006.

[Kang2013] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. “Optimizing the "One Big Switch"
abstraction in Software-defined Networks”. In Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages 13–24, 2013.

[Kanizo2013] Yossi Kanizo, David Hay, and Isaac Keslassy. “Palette: Distributing tables in software-defined networks”.
In INFOCOM, pages 545–549, 2013.

[Kao2015]CN. Kao, S.SI, NF.Huang, I. Liao, RT. Liu and HW.Hung . “Fast Proxyless Stream-Based Anti-Virus for
Network Function Virtualization”. 1st IEEE Conference on Network Softwarization (NETSOFT 2015). IEEE, 2015

122 Deliverable D3.2 18.06.2015

[GStreamer] “GStreamer: open source multimedia framework”, Accessed 2015-05-07,
<http://gstreamer.freedesktop.org/>

[Gupta1999] Pankaj Gupta and Nick McKeown.”Packet classification on multiple fields”. In ACM SIGCOMM 1999, pages
147–160, 1999.,

[Gurobi2015] Gurobi Optimization, Inc., "Gurobi Optimizer Reference Manual", retrieved 2015 from
<http://www.gurobi.com>

[Hahn2015] Hahn, Wolfgang, and Borislava Gajic. "GW elasticity in data centers: Options to adapt to changing traffic
profiles in control and user plane." Intelligence in Next Generation Networks (ICIN), 2015 18th International
Conference on. IEEE, 2015.

[Handley2005] Handley, Mark, et al. "Designing extensible IP router software." Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2. USENIX Association, 2005.

[Hazelcast] “Hazelcast.org – The Leading Open Source In-Memory Data Grid”, Accessed: 2015-04-27,
<http://hazelcast.org>

[Hemminger2005] Hemminger, Stephen. "Network emulation with NetEm." Linux conf au. 2005

[Houidi2011] Houidi, I., Louati, W., Ben Ameur, W., & Zeghlache, D. (2011). “Virtual network provisioning across multiple
substrate networks”. Computer Networks, 55(4), 1011–1023. doi:10.1016/j.comnet.2010.12.011

[ISPreview] ISPreview.co.uk, “ISP BT Top 6.28M Broadband Customers as FTTC Passes 10M UK Homes”, Accessed:
2015-04-27, <http://www.ispreview.co.uk/index.php/2012/05/isp-bt-top-6-28m-broadband-customers-as-fttc-
reaches-10m-uk-homes.html>

[JSONComp] “Comparing various aspects of Serialization libraries”, Accessed: 2015-04-27,
<https://code.google.com/p/thrift-protobuf-compare/wiki/BenchmarkingV2>

[Kanada2015] Kanada, Y. “High-Level Portable Programming Language for Optimized Memory Use of Network
Processors”, Communications and Network, 7, 55-69. (2015) doi: 10.4236/cn.2015.71006.

[Kang2013] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. “Optimizing the "One Big Switch"
abstraction in Software-defined Networks”. In Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages 13–24, 2013.

[Kanizo2013] Yossi Kanizo, David Hay, and Isaac Keslassy. “Palette: Distributing tables in software-defined networks”.
In INFOCOM, pages 545–549, 2013.

[Kao2015]CN. Kao, S.SI, NF.Huang, I. Liao, RT. Liu and HW.Hung . “Fast Proxyless Stream-Based Anti-Virus for
Network Function Virtualization”. 1st IEEE Conference on Network Softwarization (NETSOFT 2015). IEEE, 2015

122 Deliverable D3.2 18.06.2015

[GStreamer] “GStreamer: open source multimedia framework”, Accessed 2015-05-07,
<http://gstreamer.freedesktop.org/>

[Gupta1999] Pankaj Gupta and Nick McKeown.”Packet classification on multiple fields”. In ACM SIGCOMM 1999, pages
147–160, 1999.,

[Gurobi2015] Gurobi Optimization, Inc., "Gurobi Optimizer Reference Manual", retrieved 2015 from
<http://www.gurobi.com>

[Hahn2015] Hahn, Wolfgang, and Borislava Gajic. "GW elasticity in data centers: Options to adapt to changing traffic
profiles in control and user plane." Intelligence in Next Generation Networks (ICIN), 2015 18th International
Conference on. IEEE, 2015.

[Handley2005] Handley, Mark, et al. "Designing extensible IP router software." Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2. USENIX Association, 2005.

[Hazelcast] “Hazelcast.org – The Leading Open Source In-Memory Data Grid”, Accessed: 2015-04-27,
<http://hazelcast.org>

[Hemminger2005] Hemminger, Stephen. "Network emulation with NetEm." Linux conf au. 2005

[Houidi2011] Houidi, I., Louati, W., Ben Ameur, W., & Zeghlache, D. (2011). “Virtual network provisioning across multiple
substrate networks”. Computer Networks, 55(4), 1011–1023. doi:10.1016/j.comnet.2010.12.011

[ISPreview] ISPreview.co.uk, “ISP BT Top 6.28M Broadband Customers as FTTC Passes 10M UK Homes”, Accessed:
2015-04-27, <http://www.ispreview.co.uk/index.php/2012/05/isp-bt-top-6-28m-broadband-customers-as-fttc-
reaches-10m-uk-homes.html>

[JSONComp] “Comparing various aspects of Serialization libraries”, Accessed: 2015-04-27,
<https://code.google.com/p/thrift-protobuf-compare/wiki/BenchmarkingV2>

[Kanada2015] Kanada, Y. “High-Level Portable Programming Language for Optimized Memory Use of Network
Processors”, Communications and Network, 7, 55-69. (2015) doi: 10.4236/cn.2015.71006.

[Kang2013] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker. “Optimizing the "One Big Switch"
abstraction in Software-defined Networks”. In Proceedings of the Ninth ACM Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’13, pages 13–24, 2013.

[Kanizo2013] Yossi Kanizo, David Hay, and Isaac Keslassy. “Palette: Distributing tables in software-defined networks”.
In INFOCOM, pages 545–549, 2013.

[Kao2015]CN. Kao, S.SI, NF.Huang, I. Liao, RT. Liu and HW.Hung . “Fast Proxyless Stream-Based Anti-Virus for
Network Function Virtualization”. 1st IEEE Conference on Network Softwarization (NETSOFT 2015). IEEE, 2015

123 Deliverable D3.2 18.06.2015

[Kohler2000] E. Kohler et al., “The Click Modular Router”, ACM Trans. Computer Systems, vol. 18, no. 3, Aug. 2000,
pp. 263-297. <http://www.read.cs.ucla.edu/click/click>

[Kolias2014] Christos Kolias. “Bundling NFV and SDN for Open Networking and a call for NFV research”. Stanford
University Networking Seminar, May 2014.

[Kolomicenko2013] Kolomicenko, V. “Analysis and Experimental Comparison of Graph Databases”, Master thesis,
<http://www.ksi.mff.cuni.cz/~holubova/dp/Kolomicenko.pdf>

[Koponen2011] Teemu Koponen, Scott Shenker, Hari Balakrishnan, Nick Feamster, Igor Ganichev, Ali Ghodsi, P
Godfrey, Nick McKeown, Guru Parulkar, Barath Raghavan, et al. “Architecting for innovation”. ACM SIGCOMM
Computer Communication Review, 41(3):24–36, 2011.

[Korkmaz2001] Korkmaz, T., and Krunz, M. “A randomized algorithm for finding a path subject to multiple QoS
requirements” Computer Networks, 36(2-3), 251–268, 2001.

[Krishna2004] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M. Levy, and David Wetherall.
“Improving the reliability of Internet paths with one-hop source routing”. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation, OSDI’04, pages 13–13, 2004.

[Kubernetes] Google Inc. “Kubernetes by Google”. Accessed 2015-04-27, <http://kubernetes.io>

[Kuzinar2014] Kuzniar, Maciej, Peter Peresini, and Dejan Kostic. “What you need to know about SDN control and data
planes”. No. EPFL-REPORT-199497. 2014.

[Lei2008] Lei, P., Ong, L., Tüxen, M., & Dreibholz, T. (2008). “An overview of reliable server pooling protocols.” IETF,
Informational RFC, 5351, 2070-1721.

[Leonard2015b] Nobach, Leonhard och David Hausheer. ”Open, elastic provisioning of hardware acceleration in NFV
environments.” 2015 International Conference and Workshops on Networked Systems (NetSys). IEEE, 2015. 1-5.

[LINCX] FlowForwarding community, “LINCX – OpenFlow software switch”, Accessed: 2015-05-22,
<http://flowforwarding.github.io/lincx/>

[Martins2014] Martins, Joao, et al. "ClickOS and the art of network function virtualization." Proc. USENIX NSDI. 2014.
<http://cnp.neclab.eu/clickos/>

[McColl2014] McColl, Robert Campbell, et al. "A performance evaluation of open source graph
databases."Proceedings of the first workshop on Parallel programming for analytics applications. ACM, 2014.
<http://www.stingergraph.com/data/uploads/papers/ppaa2014.pdf>

[MEF23.1] Metro Ethernet Forum, (2012). “Implementation Agreement MEF 23.1. Carrier Ethernet Class of Service –
Phase 2.”

123 Deliverable D3.2 18.06.2015

[Kohler2000] E. Kohler et al., “The Click Modular Router”, ACM Trans. Computer Systems, vol. 18, no. 3, Aug. 2000,
pp. 263-297. <http://www.read.cs.ucla.edu/click/click>

[Kolias2014] Christos Kolias. “Bundling NFV and SDN for Open Networking and a call for NFV research”. Stanford
University Networking Seminar, May 2014.

[Kolomicenko2013] Kolomicenko, V. “Analysis and Experimental Comparison of Graph Databases”, Master thesis,
<http://www.ksi.mff.cuni.cz/~holubova/dp/Kolomicenko.pdf>

[Koponen2011] Teemu Koponen, Scott Shenker, Hari Balakrishnan, Nick Feamster, Igor Ganichev, Ali Ghodsi, P
Godfrey, Nick McKeown, Guru Parulkar, Barath Raghavan, et al. “Architecting for innovation”. ACM SIGCOMM
Computer Communication Review, 41(3):24–36, 2011.

[Korkmaz2001] Korkmaz, T., and Krunz, M. “A randomized algorithm for finding a path subject to multiple QoS
requirements” Computer Networks, 36(2-3), 251–268, 2001.

[Krishna2004] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M. Levy, and David Wetherall.
“Improving the reliability of Internet paths with one-hop source routing”. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation, OSDI’04, pages 13–13, 2004.

[Kubernetes] Google Inc. “Kubernetes by Google”. Accessed 2015-04-27, <http://kubernetes.io>

[Kuzinar2014] Kuzniar, Maciej, Peter Peresini, and Dejan Kostic. “What you need to know about SDN control and data
planes”. No. EPFL-REPORT-199497. 2014.

[Lei2008] Lei, P., Ong, L., Tüxen, M., & Dreibholz, T. (2008). “An overview of reliable server pooling protocols.” IETF,
Informational RFC, 5351, 2070-1721.

[Leonard2015b] Nobach, Leonhard och David Hausheer. ”Open, elastic provisioning of hardware acceleration in NFV
environments.” 2015 International Conference and Workshops on Networked Systems (NetSys). IEEE, 2015. 1-5.

[LINCX] FlowForwarding community, “LINCX – OpenFlow software switch”, Accessed: 2015-05-22,
<http://flowforwarding.github.io/lincx/>

[Martins2014] Martins, Joao, et al. "ClickOS and the art of network function virtualization." Proc. USENIX NSDI. 2014.
<http://cnp.neclab.eu/clickos/>

[McColl2014] McColl, Robert Campbell, et al. "A performance evaluation of open source graph
databases."Proceedings of the first workshop on Parallel programming for analytics applications. ACM, 2014.
<http://www.stingergraph.com/data/uploads/papers/ppaa2014.pdf>

[MEF23.1] Metro Ethernet Forum, (2012). “Implementation Agreement MEF 23.1. Carrier Ethernet Class of Service –
Phase 2.”

123 Deliverable D3.2 18.06.2015

[Kohler2000] E. Kohler et al., “The Click Modular Router”, ACM Trans. Computer Systems, vol. 18, no. 3, Aug. 2000,
pp. 263-297. <http://www.read.cs.ucla.edu/click/click>

[Kolias2014] Christos Kolias. “Bundling NFV and SDN for Open Networking and a call for NFV research”. Stanford
University Networking Seminar, May 2014.

[Kolomicenko2013] Kolomicenko, V. “Analysis and Experimental Comparison of Graph Databases”, Master thesis,
<http://www.ksi.mff.cuni.cz/~holubova/dp/Kolomicenko.pdf>

[Koponen2011] Teemu Koponen, Scott Shenker, Hari Balakrishnan, Nick Feamster, Igor Ganichev, Ali Ghodsi, P
Godfrey, Nick McKeown, Guru Parulkar, Barath Raghavan, et al. “Architecting for innovation”. ACM SIGCOMM
Computer Communication Review, 41(3):24–36, 2011.

[Korkmaz2001] Korkmaz, T., and Krunz, M. “A randomized algorithm for finding a path subject to multiple QoS
requirements” Computer Networks, 36(2-3), 251–268, 2001.

[Krishna2004] Krishna P. Gummadi, Harsha V. Madhyastha, Steven D. Gribble, Henry M. Levy, and David Wetherall.
“Improving the reliability of Internet paths with one-hop source routing”. In Proceedings of the 6th Conference on
Symposium on Operating Systems Design & Implementation, OSDI’04, pages 13–13, 2004.

[Kubernetes] Google Inc. “Kubernetes by Google”. Accessed 2015-04-27, <http://kubernetes.io>

[Kuzinar2014] Kuzniar, Maciej, Peter Peresini, and Dejan Kostic. “What you need to know about SDN control and data
planes”. No. EPFL-REPORT-199497. 2014.

[Lei2008] Lei, P., Ong, L., Tüxen, M., & Dreibholz, T. (2008). “An overview of reliable server pooling protocols.” IETF,
Informational RFC, 5351, 2070-1721.

[Leonard2015b] Nobach, Leonhard och David Hausheer. ”Open, elastic provisioning of hardware acceleration in NFV
environments.” 2015 International Conference and Workshops on Networked Systems (NetSys). IEEE, 2015. 1-5.

[LINCX] FlowForwarding community, “LINCX – OpenFlow software switch”, Accessed: 2015-05-22,
<http://flowforwarding.github.io/lincx/>

[Martins2014] Martins, Joao, et al. "ClickOS and the art of network function virtualization." Proc. USENIX NSDI. 2014.
<http://cnp.neclab.eu/clickos/>

[McColl2014] McColl, Robert Campbell, et al. "A performance evaluation of open source graph
databases."Proceedings of the first workshop on Parallel programming for analytics applications. ACM, 2014.
<http://www.stingergraph.com/data/uploads/papers/ppaa2014.pdf>

[MEF23.1] Metro Ethernet Forum, (2012). “Implementation Agreement MEF 23.1. Carrier Ethernet Class of Service –
Phase 2.”

124 Deliverable D3.2 18.06.2015

[Mehdi2010] D. Medhi. “Network Routing: Algorithms, Protocols, and Architectures”. The Morgan Kaufmann Series in
Networking. Elsevier Science, 2010.

[Melo2013] Melo, M., Sargento, S., Killat, U., Timm-Giel, A., & Carapinha, J. (2013). “Optimal Virtual Network
Embedding: Node-Link Formulation”, 10(4), 356–368. Retrieved from
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6616685>

[Menage2015], Paul. ”CGROUPS.” Accessed: 2015-04-27. Linux Kernel Documentation.
<http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt>.

[Mininet] Mininet Team, “Mininet An Instant Virtual Network on your Laptop (or other PC)”, Accessed: 2015-04-27,
<http://mininet.org>

[Monteleone2013] Monteleone, Giuseppe, and Pietro Paglierani. "Session Border Controller Virtualization Towards"
Service-Defined" Networks Based on NFV and SDN."Future Networks and Services (SDN4FNS), 2013 IEEE SDN for.
IEEE, 2013.

[Mouradian2015] Mouradian, Carla, et al. "NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case
Study." arXiv preprint arXiv:1503.05280 (2015).

[Nascimento2011] Nascimento, Marcelo R., et al. "Virtual routers as a service: the routeflow approach leveraging
software-defined networks.", Proceedings of the 6th International Conference on Future Internet Technologies.
ACM, 2011. <https://sites.google.com/site/routeflow/>

[Neo4j] “Neo4j, The world’s leading graph database”, Accessed: 2015-04-27, <http://www.neo4j.com>

[NETMAP] The netmap project, “netmap – the fast packet I/O framework”, Accessed: 2015-05-22,
<http://info.iet.unipi.it/~luigi/netmap/>

[Nobach2015] Nobach, Leonhard, Hausheer, David. "Open, elastic provisioning of hardware acceleration in NFV
environments.” Networked Systems (NetSys), 2015 International Conference and Workshops on. IEEE, 2015.

[OrientDB] “OrientDB Multi-Model NoSQL Database”, Accessed: 2015-04-27,<http://orientdb.com>

[POX] NOXRepo, “About POX | NOXrepo”, Accessed: 2015-04-27, < http://www.noxrepo.org/site/about/>

[Previdi2014a] S. Previdi et al. “IPv6 Segment Routing Header”. draft-previdi-6man-segment-routing-header-01,
December 2014.

[Previdi2014b] S. Previdi et al. “SPRING Problem Statement and Requirements”. draft-previdi-spring-problem-
statement-00.txt, August 2014.

124 Deliverable D3.2 18.06.2015

[Mehdi2010] D. Medhi. “Network Routing: Algorithms, Protocols, and Architectures”. The Morgan Kaufmann Series in
Networking. Elsevier Science, 2010.

[Melo2013] Melo, M., Sargento, S., Killat, U., Timm-Giel, A., & Carapinha, J. (2013). “Optimal Virtual Network
Embedding: Node-Link Formulation”, 10(4), 356–368. Retrieved from
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6616685>

[Menage2015], Paul. ”CGROUPS.” Accessed: 2015-04-27. Linux Kernel Documentation.
<http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt>.

[Mininet] Mininet Team, “Mininet An Instant Virtual Network on your Laptop (or other PC)”, Accessed: 2015-04-27,
<http://mininet.org>

[Monteleone2013] Monteleone, Giuseppe, and Pietro Paglierani. "Session Border Controller Virtualization Towards"
Service-Defined" Networks Based on NFV and SDN."Future Networks and Services (SDN4FNS), 2013 IEEE SDN for.
IEEE, 2013.

[Mouradian2015] Mouradian, Carla, et al. "NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case
Study." arXiv preprint arXiv:1503.05280 (2015).

[Nascimento2011] Nascimento, Marcelo R., et al. "Virtual routers as a service: the routeflow approach leveraging
software-defined networks.", Proceedings of the 6th International Conference on Future Internet Technologies.
ACM, 2011. <https://sites.google.com/site/routeflow/>

[Neo4j] “Neo4j, The world’s leading graph database”, Accessed: 2015-04-27, <http://www.neo4j.com>

[NETMAP] The netmap project, “netmap – the fast packet I/O framework”, Accessed: 2015-05-22,
<http://info.iet.unipi.it/~luigi/netmap/>

[Nobach2015] Nobach, Leonhard, Hausheer, David. "Open, elastic provisioning of hardware acceleration in NFV
environments.” Networked Systems (NetSys), 2015 International Conference and Workshops on. IEEE, 2015.

[OrientDB] “OrientDB Multi-Model NoSQL Database”, Accessed: 2015-04-27,<http://orientdb.com>

[POX] NOXRepo, “About POX | NOXrepo”, Accessed: 2015-04-27, < http://www.noxrepo.org/site/about/>

[Previdi2014a] S. Previdi et al. “IPv6 Segment Routing Header”. draft-previdi-6man-segment-routing-header-01,
December 2014.

[Previdi2014b] S. Previdi et al. “SPRING Problem Statement and Requirements”. draft-previdi-spring-problem-
statement-00.txt, August 2014.

124 Deliverable D3.2 18.06.2015

[Mehdi2010] D. Medhi. “Network Routing: Algorithms, Protocols, and Architectures”. The Morgan Kaufmann Series in
Networking. Elsevier Science, 2010.

[Melo2013] Melo, M., Sargento, S., Killat, U., Timm-Giel, A., & Carapinha, J. (2013). “Optimal Virtual Network
Embedding: Node-Link Formulation”, 10(4), 356–368. Retrieved from
<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6616685>

[Menage2015], Paul. ”CGROUPS.” Accessed: 2015-04-27. Linux Kernel Documentation.
<http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt>.

[Mininet] Mininet Team, “Mininet An Instant Virtual Network on your Laptop (or other PC)”, Accessed: 2015-04-27,
<http://mininet.org>

[Monteleone2013] Monteleone, Giuseppe, and Pietro Paglierani. "Session Border Controller Virtualization Towards"
Service-Defined" Networks Based on NFV and SDN."Future Networks and Services (SDN4FNS), 2013 IEEE SDN for.
IEEE, 2013.

[Mouradian2015] Mouradian, Carla, et al. "NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case
Study." arXiv preprint arXiv:1503.05280 (2015).

[Nascimento2011] Nascimento, Marcelo R., et al. "Virtual routers as a service: the routeflow approach leveraging
software-defined networks.", Proceedings of the 6th International Conference on Future Internet Technologies.
ACM, 2011. <https://sites.google.com/site/routeflow/>

[Neo4j] “Neo4j, The world’s leading graph database”, Accessed: 2015-04-27, <http://www.neo4j.com>

[NETMAP] The netmap project, “netmap – the fast packet I/O framework”, Accessed: 2015-05-22,
<http://info.iet.unipi.it/~luigi/netmap/>

[Nobach2015] Nobach, Leonhard, Hausheer, David. "Open, elastic provisioning of hardware acceleration in NFV
environments.” Networked Systems (NetSys), 2015 International Conference and Workshops on. IEEE, 2015.

[OrientDB] “OrientDB Multi-Model NoSQL Database”, Accessed: 2015-04-27,<http://orientdb.com>

[POX] NOXRepo, “About POX | NOXrepo”, Accessed: 2015-04-27, < http://www.noxrepo.org/site/about/>

[Previdi2014a] S. Previdi et al. “IPv6 Segment Routing Header”. draft-previdi-6man-segment-routing-header-01,
December 2014.

[Previdi2014b] S. Previdi et al. “SPRING Problem Statement and Requirements”. draft-previdi-spring-problem-
statement-00.txt, August 2014.

125 Deliverable D3.2 18.06.2015

[Protobuf] Google Inc, “Protocol Buffers – Google’s data interchange format”, Accessed: 2015-05-23,
<https://github.com/google/protobuf>

[Qazi2013] Qazi, Zafar Ayyub, et al. "SIMPLE-fying middlebox policy enforcement using SDN." ACM SIGCOMM
Computer Communication Review. Vol. 43. No. 4. ACM, 2013.

[Quagga] “Quagga Routing Suite” Accessed: 2015-04-27,<http://www.quagga.net/>.

[Raghavan2012] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi, and Scott Shenker.
“Software-defined internet architecture: decoupling architecture from infrastructure”. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, pages 43–48. ACM, 2012.

[Rajagopalan2013a] Rajagopalan, Shriram, et al. "Split/Merge: System Support for Elastic Execution in Virtual
Middleboxes." NSDI. 2013

[Rajagopalan2013b] Rajagopalan, Shriram, Dan Williams, and Hani Jamjoom. "Pico Replication: A high availability
framework for middleboxes." Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013

[Retvari2013] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András Majdán, and Zalán Heszberger. “Compressing IP
forwarding tables: towards entropy bounds and beyond”. In ACM SIGCOMM 2013, pages 111–122, 2013.

[Ricci2003] Ricci, R., Alfeld, C., & Lepreau, J. (2003). “A solver for the network testbed mapping problem”. ACM
SIGCOMM Computer Communication Review, 33(2), 65–81.

[Rost2014] Rost, M., Schmid, S., & Feldmann, A. (2014). “It’s About Time: On Optimal Virtual Network Embeddings
under Temporal Flexibilities”. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium (pp. 17–
26). IEEE. doi:10.1109/IPDPS.2014.14

[Rottenstreich2013] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram
Revah, and Avinatan Hassidim. “Compressing forwarding tables”. In INFOCOM, pages 1231–1239, 2013.

[Sahhaf2015a] Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, “Network Service chaining with efficient
network function mapping based on service decompositions”, NetSoft 2015.

[Sahhaf2015b] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, Piet
Demeester, “Network service chaining with optimized network function embedding supporting service
decompositions”, submitted to Computer Networks.

[Salim2013] Jouili, Salim, and Valentin Vansteenberghe. "An empirical comparison of graph databases." Social
Computing (SocialCom), 2013 International Conference on. IEEE, 2013.
<http://euranova.eu/upl_docs/publications/an-empirical-comparison-of-graph-databases.pdf>

125 Deliverable D3.2 18.06.2015

[Protobuf] Google Inc, “Protocol Buffers – Google’s data interchange format”, Accessed: 2015-05-23,
<https://github.com/google/protobuf>

[Qazi2013] Qazi, Zafar Ayyub, et al. "SIMPLE-fying middlebox policy enforcement using SDN." ACM SIGCOMM
Computer Communication Review. Vol. 43. No. 4. ACM, 2013.

[Quagga] “Quagga Routing Suite” Accessed: 2015-04-27,<http://www.quagga.net/>.

[Raghavan2012] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi, and Scott Shenker.
“Software-defined internet architecture: decoupling architecture from infrastructure”. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, pages 43–48. ACM, 2012.

[Rajagopalan2013a] Rajagopalan, Shriram, et al. "Split/Merge: System Support for Elastic Execution in Virtual
Middleboxes." NSDI. 2013

[Rajagopalan2013b] Rajagopalan, Shriram, Dan Williams, and Hani Jamjoom. "Pico Replication: A high availability
framework for middleboxes." Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013

[Retvari2013] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András Majdán, and Zalán Heszberger. “Compressing IP
forwarding tables: towards entropy bounds and beyond”. In ACM SIGCOMM 2013, pages 111–122, 2013.

[Ricci2003] Ricci, R., Alfeld, C., & Lepreau, J. (2003). “A solver for the network testbed mapping problem”. ACM
SIGCOMM Computer Communication Review, 33(2), 65–81.

[Rost2014] Rost, M., Schmid, S., & Feldmann, A. (2014). “It’s About Time: On Optimal Virtual Network Embeddings
under Temporal Flexibilities”. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium (pp. 17–
26). IEEE. doi:10.1109/IPDPS.2014.14

[Rottenstreich2013] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram
Revah, and Avinatan Hassidim. “Compressing forwarding tables”. In INFOCOM, pages 1231–1239, 2013.

[Sahhaf2015a] Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, “Network Service chaining with efficient
network function mapping based on service decompositions”, NetSoft 2015.

[Sahhaf2015b] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, Piet
Demeester, “Network service chaining with optimized network function embedding supporting service
decompositions”, submitted to Computer Networks.

[Salim2013] Jouili, Salim, and Valentin Vansteenberghe. "An empirical comparison of graph databases." Social
Computing (SocialCom), 2013 International Conference on. IEEE, 2013.
<http://euranova.eu/upl_docs/publications/an-empirical-comparison-of-graph-databases.pdf>

125 Deliverable D3.2 18.06.2015

[Protobuf] Google Inc, “Protocol Buffers – Google’s data interchange format”, Accessed: 2015-05-23,
<https://github.com/google/protobuf>

[Qazi2013] Qazi, Zafar Ayyub, et al. "SIMPLE-fying middlebox policy enforcement using SDN." ACM SIGCOMM
Computer Communication Review. Vol. 43. No. 4. ACM, 2013.

[Quagga] “Quagga Routing Suite” Accessed: 2015-04-27,<http://www.quagga.net/>.

[Raghavan2012] Barath Raghavan, Martín Casado, Teemu Koponen, Sylvia Ratnasamy, Ali Ghodsi, and Scott Shenker.
“Software-defined internet architecture: decoupling architecture from infrastructure”. In Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, pages 43–48. ACM, 2012.

[Rajagopalan2013a] Rajagopalan, Shriram, et al. "Split/Merge: System Support for Elastic Execution in Virtual
Middleboxes." NSDI. 2013

[Rajagopalan2013b] Rajagopalan, Shriram, Dan Williams, and Hani Jamjoom. "Pico Replication: A high availability
framework for middleboxes." Proceedings of the 4th annual Symposium on Cloud Computing. ACM, 2013

[Retvari2013] Gábor Rétvári, János Tapolcai, Attila Kőrösi, András Majdán, and Zalán Heszberger. “Compressing IP
forwarding tables: towards entropy bounds and beyond”. In ACM SIGCOMM 2013, pages 111–122, 2013.

[Ricci2003] Ricci, R., Alfeld, C., & Lepreau, J. (2003). “A solver for the network testbed mapping problem”. ACM
SIGCOMM Computer Communication Review, 33(2), 65–81.

[Rost2014] Rost, M., Schmid, S., & Feldmann, A. (2014). “It’s About Time: On Optimal Virtual Network Embeddings
under Temporal Flexibilities”. In 2014 IEEE 28th International Parallel and Distributed Processing Symposium (pp. 17–
26). IEEE. doi:10.1109/IPDPS.2014.14

[Rottenstreich2013] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal Mizrahi, Yoram
Revah, and Avinatan Hassidim. “Compressing forwarding tables”. In INFOCOM, pages 1231–1239, 2013.

[Sahhaf2015a] Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet, “Network Service chaining with efficient
network function mapping based on service decompositions”, NetSoft 2015.

[Sahhaf2015b] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario Pickavet, Piet
Demeester, “Network service chaining with optimized network function embedding supporting service
decompositions”, submitted to Computer Networks.

[Salim2013] Jouili, Salim, and Valentin Vansteenberghe. "An empirical comparison of graph databases." Social
Computing (SocialCom), 2013 International Conference on. IEEE, 2013.
<http://euranova.eu/upl_docs/publications/an-empirical-comparison-of-graph-databases.pdf>

126 Deliverable D3.2 18.06.2015

[Schaffrath2012] Schaffrath, G., Schmid, S., Vaishnavi, I., Khan, A., & Feldmann, A, “A Resource Description Language
with Vagueness Support for Multi-Provider Cloud Networks”. In Computer Communications and Networks (ICCCN),
2012.

[Shah2004] N., Plishker, W., Ravindran, K. and Keutzer, K. (2004) “NP-Click: A Productive Software Development
Approach for Network Processors”. IEEE Micro, 24, 45-54 <http://dx.doi.org/10.1109/mm.2004.53>

[SPARCD2.1] SPARC D2.1, “Initial Definition of use cases and carrier requirements”. Accessed 2015-05-20,
<http://www.fp7-sparc.eu/assets/deliverables/
SPARC_D2.1_Initial_Defintion_of_use_cases_and_carrier_requirements_v3.0.pdf>

[SocketPlane] SocketPlane Inc. “socketplane”, Accessed: 2015-04-27, SocketPlane homepage,
<http://socketplane.io/>

[Soulé2013] Soulé, R., Basu, S., & Kleinberg, R. (2013). “Managing the network with Merlin”. Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, pp. 1–7.

[Swarm] Docker Inc. “Docker Swarm – Docker documentation”. Accessed 2015-04-27,
<https://docs.docker.com/swarm/>

[Tapolcai2012] János Tapolcai, András Gulyás, Zalán Heszberger, József Bíró, Péter Babarczi, and Dirk Trossen.
“Stateless multi-stage dissemination of information: Source routing revisited”. In GLOBECOM, pages 2797–2802,
2012.

[Tcpr] “Tcpreplay: Pcap editing and replay tools for *nix”, Accessed: 2015-04-27.< http://tcpreplay.synfin.net>

[Titan] “Titan: Distributed graph database”, Accessed: 2015-04-27, <http://thinkaurelius.github.io/titan/>

[Tonse] Tonse Telecom Pvt. Ltd., “Service Provider Profile – British Telecom”, Accessed: 2015-04-27,
<http://www.tonsetelecom.com/Downloads/Tonse_British%20Telecom_Operator%20Profile.pdf>

[Topology] “The Internet Topology Zoo”, Accessed: 2015-04-27, <http://www.topology-zoo.org>

[UBM] UBM Tech, “BT Increases Profits, Broadband Market Share”, Accessed: 2015-04-27,
<http://www.informationweek.com/business/bt-increases-profits-broadband-market-share/d/d-id/1109901>

[Vasseur2004] Vasseur, J. P., Pickavet, M., & Demeester, P. (2004). ”Network recovery: Protection and Restoration of
Optical, SONET-SDH, IP, and MPLS.”, Elsevier.

[Wang2001] Yufei Wang, Zheng Wang, and Leah Zhang. “Internet Traffic Engineering without full mesh overlaying”.
In INFOCOM, pages 565–571, 2001.

126 Deliverable D3.2 18.06.2015

[Schaffrath2012] Schaffrath, G., Schmid, S., Vaishnavi, I., Khan, A., & Feldmann, A, “A Resource Description Language
with Vagueness Support for Multi-Provider Cloud Networks”. In Computer Communications and Networks (ICCCN),
2012.

[Shah2004] N., Plishker, W., Ravindran, K. and Keutzer, K. (2004) “NP-Click: A Productive Software Development
Approach for Network Processors”. IEEE Micro, 24, 45-54 <http://dx.doi.org/10.1109/mm.2004.53>

[SPARCD2.1] SPARC D2.1, “Initial Definition of use cases and carrier requirements”. Accessed 2015-05-20,
<http://www.fp7-sparc.eu/assets/deliverables/
SPARC_D2.1_Initial_Defintion_of_use_cases_and_carrier_requirements_v3.0.pdf>

[SocketPlane] SocketPlane Inc. “socketplane”, Accessed: 2015-04-27, SocketPlane homepage,
<http://socketplane.io/>

[Soulé2013] Soulé, R., Basu, S., & Kleinberg, R. (2013). “Managing the network with Merlin”. Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, pp. 1–7.

[Swarm] Docker Inc. “Docker Swarm – Docker documentation”. Accessed 2015-04-27,
<https://docs.docker.com/swarm/>

[Tapolcai2012] János Tapolcai, András Gulyás, Zalán Heszberger, József Bíró, Péter Babarczi, and Dirk Trossen.
“Stateless multi-stage dissemination of information: Source routing revisited”. In GLOBECOM, pages 2797–2802,
2012.

[Tcpr] “Tcpreplay: Pcap editing and replay tools for *nix”, Accessed: 2015-04-27.< http://tcpreplay.synfin.net>

[Titan] “Titan: Distributed graph database”, Accessed: 2015-04-27, <http://thinkaurelius.github.io/titan/>

[Tonse] Tonse Telecom Pvt. Ltd., “Service Provider Profile – British Telecom”, Accessed: 2015-04-27,
<http://www.tonsetelecom.com/Downloads/Tonse_British%20Telecom_Operator%20Profile.pdf>

[Topology] “The Internet Topology Zoo”, Accessed: 2015-04-27, <http://www.topology-zoo.org>

[UBM] UBM Tech, “BT Increases Profits, Broadband Market Share”, Accessed: 2015-04-27,
<http://www.informationweek.com/business/bt-increases-profits-broadband-market-share/d/d-id/1109901>

[Vasseur2004] Vasseur, J. P., Pickavet, M., & Demeester, P. (2004). ”Network recovery: Protection and Restoration of
Optical, SONET-SDH, IP, and MPLS.”, Elsevier.

[Wang2001] Yufei Wang, Zheng Wang, and Leah Zhang. “Internet Traffic Engineering without full mesh overlaying”.
In INFOCOM, pages 565–571, 2001.

126 Deliverable D3.2 18.06.2015

[Schaffrath2012] Schaffrath, G., Schmid, S., Vaishnavi, I., Khan, A., & Feldmann, A, “A Resource Description Language
with Vagueness Support for Multi-Provider Cloud Networks”. In Computer Communications and Networks (ICCCN),
2012.

[Shah2004] N., Plishker, W., Ravindran, K. and Keutzer, K. (2004) “NP-Click: A Productive Software Development
Approach for Network Processors”. IEEE Micro, 24, 45-54 <http://dx.doi.org/10.1109/mm.2004.53>

[SPARCD2.1] SPARC D2.1, “Initial Definition of use cases and carrier requirements”. Accessed 2015-05-20,
<http://www.fp7-sparc.eu/assets/deliverables/
SPARC_D2.1_Initial_Defintion_of_use_cases_and_carrier_requirements_v3.0.pdf>

[SocketPlane] SocketPlane Inc. “socketplane”, Accessed: 2015-04-27, SocketPlane homepage,
<http://socketplane.io/>

[Soulé2013] Soulé, R., Basu, S., & Kleinberg, R. (2013). “Managing the network with Merlin”. Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, pp. 1–7.

[Swarm] Docker Inc. “Docker Swarm – Docker documentation”. Accessed 2015-04-27,
<https://docs.docker.com/swarm/>

[Tapolcai2012] János Tapolcai, András Gulyás, Zalán Heszberger, József Bíró, Péter Babarczi, and Dirk Trossen.
“Stateless multi-stage dissemination of information: Source routing revisited”. In GLOBECOM, pages 2797–2802,
2012.

[Tcpr] “Tcpreplay: Pcap editing and replay tools for *nix”, Accessed: 2015-04-27.< http://tcpreplay.synfin.net>

[Titan] “Titan: Distributed graph database”, Accessed: 2015-04-27, <http://thinkaurelius.github.io/titan/>

[Tonse] Tonse Telecom Pvt. Ltd., “Service Provider Profile – British Telecom”, Accessed: 2015-04-27,
<http://www.tonsetelecom.com/Downloads/Tonse_British%20Telecom_Operator%20Profile.pdf>

[Topology] “The Internet Topology Zoo”, Accessed: 2015-04-27, <http://www.topology-zoo.org>

[UBM] UBM Tech, “BT Increases Profits, Broadband Market Share”, Accessed: 2015-04-27,
<http://www.informationweek.com/business/bt-increases-profits-broadband-market-share/d/d-id/1109901>

[Vasseur2004] Vasseur, J. P., Pickavet, M., & Demeester, P. (2004). ”Network recovery: Protection and Restoration of
Optical, SONET-SDH, IP, and MPLS.”, Elsevier.

[Wang2001] Yufei Wang, Zheng Wang, and Leah Zhang. “Internet Traffic Engineering without full mesh overlaying”.
In INFOCOM, pages 565–571, 2001.

127 Deliverable D3.2 18.06.2015

[Wang2014] Wang, An, et al. "Scotch: Elastically Scaling up SDN Control-Plane using vSwitch based Overlay.”,
Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies.
ACM, 2014.

[Yin2012] Yin, Qin, and Timothy Roscoe. "VF2x: fast, efficient virtual network mapping for real testbed
workloads." Testbeds and Research Infrastructure. Development of Networks and Communities. Springer Berlin
Heidelberg, 2012. 271-286.

[Yu2010] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. “Scalable flow-based networking with
DIFANE”. In ACM SIGCOMM 2010, pages 351–362, 2010.

[Zawawy2014a] El-Zawawy, Mohamed A., and Adel I. AlSalem. "ImNet: An Imperative Network Programming
Language.", arXiv preprint arXiv:1403.8028 (2014).

[Zawawy2014b] El-Zawawy, Mohamed A. "ConNet: A Network Programming Language with Concurrency.",
Computational Science and Its Applications (ICCSA), 2014 14th International Conference on. IEEE, 2014.

127 Deliverable D3.2 18.06.2015

[Wang2014] Wang, An, et al. "Scotch: Elastically Scaling up SDN Control-Plane using vSwitch based Overlay.”,
Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies.
ACM, 2014.

[Yin2012] Yin, Qin, and Timothy Roscoe. "VF2x: fast, efficient virtual network mapping for real testbed
workloads." Testbeds and Research Infrastructure. Development of Networks and Communities. Springer Berlin
Heidelberg, 2012. 271-286.

[Yu2010] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. “Scalable flow-based networking with
DIFANE”. In ACM SIGCOMM 2010, pages 351–362, 2010.

[Zawawy2014a] El-Zawawy, Mohamed A., and Adel I. AlSalem. "ImNet: An Imperative Network Programming
Language.", arXiv preprint arXiv:1403.8028 (2014).

[Zawawy2014b] El-Zawawy, Mohamed A. "ConNet: A Network Programming Language with Concurrency.",
Computational Science and Its Applications (ICCSA), 2014 14th International Conference on. IEEE, 2014.

127 Deliverable D3.2 18.06.2015

[Wang2014] Wang, An, et al. "Scotch: Elastically Scaling up SDN Control-Plane using vSwitch based Overlay.”,
Proceedings of the 10th ACM International on Conference on emerging Networking Experiments and Technologies.
ACM, 2014.

[Yin2012] Yin, Qin, and Timothy Roscoe. "VF2x: fast, efficient virtual network mapping for real testbed
workloads." Testbeds and Research Infrastructure. Development of Networks and Communities. Springer Berlin
Heidelberg, 2012. 271-286.

[Yu2010] Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. “Scalable flow-based networking with
DIFANE”. In ACM SIGCOMM 2010, pages 351–362, 2010.

[Zawawy2014a] El-Zawawy, Mohamed A., and Adel I. AlSalem. "ImNet: An Imperative Network Programming
Language.", arXiv preprint arXiv:1403.8028 (2014).

[Zawawy2014b] El-Zawawy, Mohamed A. "ConNet: A Network Programming Language with Concurrency.",
Computational Science and Its Applications (ICCSA), 2014 14th International Conference on. IEEE, 2014.

128 Deliverable D3.2 18.06.2015

Annex 1 Main components of ESCAPEv2

This annex introduces a more-detailed description of the latest version of ESCAPE, called ESCAPEv2. The
architecture of the former framework was reconsidered and redesigned to match the distinct system components
to the layers of the final UNIFY architecture more accurately and ensure a generalized and easily replaceable way
for communication between the loosely coupled components. Due to the modular design, loosely coupled
communication approach and well-defined interfaces based on Virtualizer elements, ESCAPEv2 allows for adapting
custom architecture parts and algorithms seamlessly to maximally benefit from the scalable, recursively layered
UNIFY architecture. The functionalities of ESCAPEv2 framework was separated into three different components
following the sublayers of UNIFY’s Service and Orchestration layers. More exactly, we have defined Service,
Orchestration and Adaptation modules, respectively. The following subsections give details on these components (or
modules as called in the context of POX). First, the static architectural model of a given module will be presented
with the class structure of the internal building elements. Second, the cooperation of the previously introduced
architectural parts and the interaction steps between them will be described through a specific case study. This
example will show the top-down process of a UNIFY Service Request and the main steps. The process is divided in
three large parts following the logical structure of ESCAPEv2 sublayers.

A.1.1 Static model of Service module
The Service component represents the Service (Graph) Adaptation Sublayer (SAS) of UNIFY’s Service layer
described in [D2.2]. In order to focus on the core Service Chaining Mapping process, the ESCAPEv2 framework is
without the supplementary management part of the Service layer called Service Management Sublayer. However,
the SAS additionally contains a REST API on top of the layer for unified communication with upper components such
as UNIFY actors via a GUI or other standalone applications. The static class structure of this main module is shown in
Figure 9-1.

One of the main logical parts of Service module is the REST API. The REST API is responsible for offer a unified
interface based on the HTTP protocol and the REST design approach. The RESTServer class encompasses this
functionality by run a self-implemented HTTP server in a different thread and initialize the ServiceRequestHandler
class which defines the interface of the relevant UNIFY reference point (namely the U– Sl interface). The class
consists of entirely the abstract UNIFY interface functions therefore it can be replaced without the need to replace
or modify other components.

128 Deliverable D3.2 18.06.2015

Annex 1 Main components of ESCAPEv2

This annex introduces a more-detailed description of the latest version of ESCAPE, called ESCAPEv2. The
architecture of the former framework was reconsidered and redesigned to match the distinct system components
to the layers of the final UNIFY architecture more accurately and ensure a generalized and easily replaceable way
for communication between the loosely coupled components. Due to the modular design, loosely coupled
communication approach and well-defined interfaces based on Virtualizer elements, ESCAPEv2 allows for adapting
custom architecture parts and algorithms seamlessly to maximally benefit from the scalable, recursively layered
UNIFY architecture. The functionalities of ESCAPEv2 framework was separated into three different components
following the sublayers of UNIFY’s Service and Orchestration layers. More exactly, we have defined Service,
Orchestration and Adaptation modules, respectively. The following subsections give details on these components (or
modules as called in the context of POX). First, the static architectural model of a given module will be presented
with the class structure of the internal building elements. Second, the cooperation of the previously introduced
architectural parts and the interaction steps between them will be described through a specific case study. This
example will show the top-down process of a UNIFY Service Request and the main steps. The process is divided in
three large parts following the logical structure of ESCAPEv2 sublayers.

A.1.1 Static model of Service module
The Service component represents the Service (Graph) Adaptation Sublayer (SAS) of UNIFY’s Service layer
described in [D2.2]. In order to focus on the core Service Chaining Mapping process, the ESCAPEv2 framework is
without the supplementary management part of the Service layer called Service Management Sublayer. However,
the SAS additionally contains a REST API on top of the layer for unified communication with upper components such
as UNIFY actors via a GUI or other standalone applications. The static class structure of this main module is shown in
Figure 9-1.

One of the main logical parts of Service module is the REST API. The REST API is responsible for offer a unified
interface based on the HTTP protocol and the REST design approach. The RESTServer class encompasses this
functionality by run a self-implemented HTTP server in a different thread and initialize the ServiceRequestHandler
class which defines the interface of the relevant UNIFY reference point (namely the U– Sl interface). The class
consists of entirely the abstract UNIFY interface functions therefore it can be replaced without the need to replace
or modify other components.

128 Deliverable D3.2 18.06.2015

Annex 1 Main components of ESCAPEv2

This annex introduces a more-detailed description of the latest version of ESCAPE, called ESCAPEv2. The
architecture of the former framework was reconsidered and redesigned to match the distinct system components
to the layers of the final UNIFY architecture more accurately and ensure a generalized and easily replaceable way
for communication between the loosely coupled components. Due to the modular design, loosely coupled
communication approach and well-defined interfaces based on Virtualizer elements, ESCAPEv2 allows for adapting
custom architecture parts and algorithms seamlessly to maximally benefit from the scalable, recursively layered
UNIFY architecture. The functionalities of ESCAPEv2 framework was separated into three different components
following the sublayers of UNIFY’s Service and Orchestration layers. More exactly, we have defined Service,
Orchestration and Adaptation modules, respectively. The following subsections give details on these components (or
modules as called in the context of POX). First, the static architectural model of a given module will be presented
with the class structure of the internal building elements. Second, the cooperation of the previously introduced
architectural parts and the interaction steps between them will be described through a specific case study. This
example will show the top-down process of a UNIFY Service Request and the main steps. The process is divided in
three large parts following the logical structure of ESCAPEv2 sublayers.

A.1.1 Static model of Service module
The Service component represents the Service (Graph) Adaptation Sublayer (SAS) of UNIFY’s Service layer
described in [D2.2]. In order to focus on the core Service Chaining Mapping process, the ESCAPEv2 framework is
without the supplementary management part of the Service layer called Service Management Sublayer. However,
the SAS additionally contains a REST API on top of the layer for unified communication with upper components such
as UNIFY actors via a GUI or other standalone applications. The static class structure of this main module is shown in
Figure 9-1.

One of the main logical parts of Service module is the REST API. The REST API is responsible for offer a unified
interface based on the HTTP protocol and the REST design approach. The RESTServer class encompasses this
functionality by run a self-implemented HTTP server in a different thread and initialize the ServiceRequestHandler
class which defines the interface of the relevant UNIFY reference point (namely the U– Sl interface). The class
consists of entirely the abstract UNIFY interface functions therefore it can be replaced without the need to replace
or modify other components.

129 Deliverable D3.2 18.06.2015

Figure 9-1: Class diagram of the Service module

129 Deliverable D3.2 18.06.2015

Figure 9-1: Class diagram of the Service module

129 Deliverable D3.2 18.06.2015

Figure 9-1: Class diagram of the Service module

130 Deliverable D3.2 18.06.2015

In order to separate the UNIFY’s API from the REST behaviour the general functionality of HTTP request handling is
defined in an abstract class called AbstractRequestHandler. This class contains the basic common functions which

 parse the HTTP requests,

 split and interpret the URLs according to the REST approach to determine the UNIFY API function need to
be called,

 parse the optional HTTP body as the parameter with respect to security requirements,

 and delegate the request process to the actual module-level API function with the processed parameters in
a common form (as an NF-FG).

The other main part of Service module represents the Service Adaptation Sublayer. The main entry and exit point is
the ServiceLayerAPI class. This element realizes the actual interface of the SAS sublayer and proceeds the calls
comes from external source (e.g. REST API, file, other modules) to the appropriate subcomponents.

The general behaviour for each ESCAPEv2 top-layer module is defined in the AbstractAPI class. This class contains
the

 basic and general steps related to the control of module’s life cycle,

 definition of dependencies on other components,

 initiation and tear down of internal elements,

 general interface for interaction with other modules and external actors,

 and the management of communication between internal elements.

According to these functions the role of the actual API classes derived from AbstractAPI is threefold. First, it hides
the implementation and behaviour of POX to make the modules’ implementation more portable and easily
changeable. Second, it handles the module dependencies to grant a consistent initialization process.

Third, it handles the event-driven communication between modules so internal elements only have to know and
use the common functions of the derived AbstractAPI class defined in each top-level module. Furthermore, with
these functionalities provided by the AbstractAPI base class the main layer modules of ESCAPEv2 can achieve a
loosely coupled, transparent communication and easily adjustable module structure.

The central point of the Service layer is the ServiceOrchestrator class. It initializes, contains and handles the internal
elements which are involved in the top part of the UNIFY Service Chaining process. This class also supervises the
supplementary functions related to the Service orchestration such as managing, storing and handling Service
Graphs, handling virtual resource information and choosing the algorithm for service-level mapping.

130 Deliverable D3.2 18.06.2015

In order to separate the UNIFY’s API from the REST behaviour the general functionality of HTTP request handling is
defined in an abstract class called AbstractRequestHandler. This class contains the basic common functions which

 parse the HTTP requests,

 split and interpret the URLs according to the REST approach to determine the UNIFY API function need to
be called,

 parse the optional HTTP body as the parameter with respect to security requirements,

 and delegate the request process to the actual module-level API function with the processed parameters in
a common form (as an NF-FG).

The other main part of Service module represents the Service Adaptation Sublayer. The main entry and exit point is
the ServiceLayerAPI class. This element realizes the actual interface of the SAS sublayer and proceeds the calls
comes from external source (e.g. REST API, file, other modules) to the appropriate subcomponents.

The general behaviour for each ESCAPEv2 top-layer module is defined in the AbstractAPI class. This class contains
the

 basic and general steps related to the control of module’s life cycle,

 definition of dependencies on other components,

 initiation and tear down of internal elements,

 general interface for interaction with other modules and external actors,

 and the management of communication between internal elements.

According to these functions the role of the actual API classes derived from AbstractAPI is threefold. First, it hides
the implementation and behaviour of POX to make the modules’ implementation more portable and easily
changeable. Second, it handles the module dependencies to grant a consistent initialization process.

Third, it handles the event-driven communication between modules so internal elements only have to know and
use the common functions of the derived AbstractAPI class defined in each top-level module. Furthermore, with
these functionalities provided by the AbstractAPI base class the main layer modules of ESCAPEv2 can achieve a
loosely coupled, transparent communication and easily adjustable module structure.

The central point of the Service layer is the ServiceOrchestrator class. It initializes, contains and handles the internal
elements which are involved in the top part of the UNIFY Service Chaining process. This class also supervises the
supplementary functions related to the Service orchestration such as managing, storing and handling Service
Graphs, handling virtual resource information and choosing the algorithm for service-level mapping.

130 Deliverable D3.2 18.06.2015

In order to separate the UNIFY’s API from the REST behaviour the general functionality of HTTP request handling is
defined in an abstract class called AbstractRequestHandler. This class contains the basic common functions which

 parse the HTTP requests,

 split and interpret the URLs according to the REST approach to determine the UNIFY API function need to
be called,

 parse the optional HTTP body as the parameter with respect to security requirements,

 and delegate the request process to the actual module-level API function with the processed parameters in
a common form (as an NF-FG).

The other main part of Service module represents the Service Adaptation Sublayer. The main entry and exit point is
the ServiceLayerAPI class. This element realizes the actual interface of the SAS sublayer and proceeds the calls
comes from external source (e.g. REST API, file, other modules) to the appropriate subcomponents.

The general behaviour for each ESCAPEv2 top-layer module is defined in the AbstractAPI class. This class contains
the

 basic and general steps related to the control of module’s life cycle,

 definition of dependencies on other components,

 initiation and tear down of internal elements,

 general interface for interaction with other modules and external actors,

 and the management of communication between internal elements.

According to these functions the role of the actual API classes derived from AbstractAPI is threefold. First, it hides
the implementation and behaviour of POX to make the modules’ implementation more portable and easily
changeable. Second, it handles the module dependencies to grant a consistent initialization process.

Third, it handles the event-driven communication between modules so internal elements only have to know and
use the common functions of the derived AbstractAPI class defined in each top-level module. Furthermore, with
these functionalities provided by the AbstractAPI base class the main layer modules of ESCAPEv2 can achieve a
loosely coupled, transparent communication and easily adjustable module structure.

The central point of the Service layer is the ServiceOrchestrator class. It initializes, contains and handles the internal
elements which are involved in the top part of the UNIFY Service Chaining process. This class also supervises the
supplementary functions related to the Service orchestration such as managing, storing and handling Service
Graphs, handling virtual resource information and choosing the algorithm for service-level mapping.

131 Deliverable D3.2 18.06.2015

The Service Graph managing functionality is realized by the SGManager wrapper element which offers a common
interface for handling and storing Service Graphs in a platform and technology independent way. The format in
which the Service Graphs are stored is a multipurpose NF-FG container class, called NFFG. Moreover, every graph
representation, e.g. NF-FGs, Service Graphs and resource information is stored and used for algorithms with the
help of this wrapper class.

The VirtualResourceManager class handles the virtual resource information assigned to the Service module in the
same way as the SGManager for Service Graphs. In the background the resource information is not stored in NFFG.
Instead of the Manager class have a reference to a dedicated Virtualizer element, which can generate the resource
information on the fly. Due to the wrapper classes the storing format can be modified easily to use only NFFG
representation and a fully separated module design can be achieved. This manager class as all Manager classes in
ESCAPEv2 hides the actual format of the stored resources and provides the opportunity to change its
implementation transparently.

The orchestration steps are encompassed by the ServiceGraphMapper class, which pre-processes and verifies the
given information and provide it in the appropriate format for the mapping algorithm.

The mapping algorithm is defined in a separate element for simplicity and clarity. The trivial service-level mapping
algorithm, which use a simple BiS-BiS view as the abstract resource information is contained by the
DefaultServiceMappingStrategy class. The general interfaces for the mapper and strategy classes are defined in the
AbstractMapper and AbstractStrategy classes.

The communication between the elements inside the modules is based on events. The Event classes in the layer
components represent the different stages during the ESCAPEv2 processes. The event-driven communications
relies on POX’s own event handling mechanism, but every communication primitive is attached to well-defined
functions for the purpose of supporting other asynchronous communication forms, e.g. different implementations
of event-driven communication based on Observer design pattern, Asynchronous Queuing or Message Bus
architecture based on ZeroMQ.

A.1.2 Dynamic model of Service module
The first part of the Service Requesting example is shown in Figure 9-2.

1. The Service Request is provided via the REST API in a HTTP message. The function is defined in the URL
(the general sg function along with POST HTTP verb) with a formatted body as an NF-FG in JSON format.

2. The message is processed; the optional parameters are parsed and converted concerning the HTTP verb
and delegated to the sg() function which is part of the UNIFY U – Sl API representation in the
ServiceRequestHandler class.

131 Deliverable D3.2 18.06.2015

The Service Graph managing functionality is realized by the SGManager wrapper element which offers a common
interface for handling and storing Service Graphs in a platform and technology independent way. The format in
which the Service Graphs are stored is a multipurpose NF-FG container class, called NFFG. Moreover, every graph
representation, e.g. NF-FGs, Service Graphs and resource information is stored and used for algorithms with the
help of this wrapper class.

The VirtualResourceManager class handles the virtual resource information assigned to the Service module in the
same way as the SGManager for Service Graphs. In the background the resource information is not stored in NFFG.
Instead of the Manager class have a reference to a dedicated Virtualizer element, which can generate the resource
information on the fly. Due to the wrapper classes the storing format can be modified easily to use only NFFG
representation and a fully separated module design can be achieved. This manager class as all Manager classes in
ESCAPEv2 hides the actual format of the stored resources and provides the opportunity to change its
implementation transparently.

The orchestration steps are encompassed by the ServiceGraphMapper class, which pre-processes and verifies the
given information and provide it in the appropriate format for the mapping algorithm.

The mapping algorithm is defined in a separate element for simplicity and clarity. The trivial service-level mapping
algorithm, which use a simple BiS-BiS view as the abstract resource information is contained by the
DefaultServiceMappingStrategy class. The general interfaces for the mapper and strategy classes are defined in the
AbstractMapper and AbstractStrategy classes.

The communication between the elements inside the modules is based on events. The Event classes in the layer
components represent the different stages during the ESCAPEv2 processes. The event-driven communications
relies on POX’s own event handling mechanism, but every communication primitive is attached to well-defined
functions for the purpose of supporting other asynchronous communication forms, e.g. different implementations
of event-driven communication based on Observer design pattern, Asynchronous Queuing or Message Bus
architecture based on ZeroMQ.

A.1.2 Dynamic model of Service module
The first part of the Service Requesting example is shown in Figure 9-2.

1. The Service Request is provided via the REST API in a HTTP message. The function is defined in the URL
(the general sg function along with POST HTTP verb) with a formatted body as an NF-FG in JSON format.

2. The message is processed; the optional parameters are parsed and converted concerning the HTTP verb
and delegated to the sg() function which is part of the UNIFY U – Sl API representation in the
ServiceRequestHandler class.

131 Deliverable D3.2 18.06.2015

The Service Graph managing functionality is realized by the SGManager wrapper element which offers a common
interface for handling and storing Service Graphs in a platform and technology independent way. The format in
which the Service Graphs are stored is a multipurpose NF-FG container class, called NFFG. Moreover, every graph
representation, e.g. NF-FGs, Service Graphs and resource information is stored and used for algorithms with the
help of this wrapper class.

The VirtualResourceManager class handles the virtual resource information assigned to the Service module in the
same way as the SGManager for Service Graphs. In the background the resource information is not stored in NFFG.
Instead of the Manager class have a reference to a dedicated Virtualizer element, which can generate the resource
information on the fly. Due to the wrapper classes the storing format can be modified easily to use only NFFG
representation and a fully separated module design can be achieved. This manager class as all Manager classes in
ESCAPEv2 hides the actual format of the stored resources and provides the opportunity to change its
implementation transparently.

The orchestration steps are encompassed by the ServiceGraphMapper class, which pre-processes and verifies the
given information and provide it in the appropriate format for the mapping algorithm.

The mapping algorithm is defined in a separate element for simplicity and clarity. The trivial service-level mapping
algorithm, which use a simple BiS-BiS view as the abstract resource information is contained by the
DefaultServiceMappingStrategy class. The general interfaces for the mapper and strategy classes are defined in the
AbstractMapper and AbstractStrategy classes.

The communication between the elements inside the modules is based on events. The Event classes in the layer
components represent the different stages during the ESCAPEv2 processes. The event-driven communications
relies on POX’s own event handling mechanism, but every communication primitive is attached to well-defined
functions for the purpose of supporting other asynchronous communication forms, e.g. different implementations
of event-driven communication based on Observer design pattern, Asynchronous Queuing or Message Bus
architecture based on ZeroMQ.

A.1.2 Dynamic model of Service module
The first part of the Service Requesting example is shown in Figure 9-2.

1. The Service Request is provided via the REST API in a HTTP message. The function is defined in the URL
(the general sg function along with POST HTTP verb) with a formatted body as an NF-FG in JSON format.

2. The message is processed; the optional parameters are parsed and converted concerning the HTTP verb
and delegated to the sg() function which is part of the UNIFY U – Sl API representation in the
ServiceRequestHandler class.

132 Deliverable D3.2 18.06.2015

3. The main ServiceLayerAPI class receives the UNIFY API call and forwards to the central ServiceOrchestrator
element.

4. The orchestrator saves the generated Service Graph in the SGManager with internal NFFG format, obtains
the resource information via the VirtualResourceManager and invokes the SGMapper in order to start the
Service graph mapping process.

5. The SGMapper requests the resource information from the given ESCAPEVirtualizer in the NFFG format,
validates the Service Graph against the resource info in respect of sanity and syntax and invokes the actual
mapping algorithm of the DefaultServiceMappingStrategy.

6. After the mapping process is finished, the actual Strategy element returns the outcome in a
SGMappingFinished event, which is processed by the module API class and proceeds the given NF-FG to the
lower layer for instantiation via a general function. The instantiation notification is performed via the
InstantiateNFFGEvent class.

132 Deliverable D3.2 18.06.2015

3. The main ServiceLayerAPI class receives the UNIFY API call and forwards to the central ServiceOrchestrator
element.

4. The orchestrator saves the generated Service Graph in the SGManager with internal NFFG format, obtains
the resource information via the VirtualResourceManager and invokes the SGMapper in order to start the
Service graph mapping process.

5. The SGMapper requests the resource information from the given ESCAPEVirtualizer in the NFFG format,
validates the Service Graph against the resource info in respect of sanity and syntax and invokes the actual
mapping algorithm of the DefaultServiceMappingStrategy.

6. After the mapping process is finished, the actual Strategy element returns the outcome in a
SGMappingFinished event, which is processed by the module API class and proceeds the given NF-FG to the
lower layer for instantiation via a general function. The instantiation notification is performed via the
InstantiateNFFGEvent class.

132 Deliverable D3.2 18.06.2015

3. The main ServiceLayerAPI class receives the UNIFY API call and forwards to the central ServiceOrchestrator
element.

4. The orchestrator saves the generated Service Graph in the SGManager with internal NFFG format, obtains
the resource information via the VirtualResourceManager and invokes the SGMapper in order to start the
Service graph mapping process.

5. The SGMapper requests the resource information from the given ESCAPEVirtualizer in the NFFG format,
validates the Service Graph against the resource info in respect of sanity and syntax and invokes the actual
mapping algorithm of the DefaultServiceMappingStrategy.

6. After the mapping process is finished, the actual Strategy element returns the outcome in a
SGMappingFinished event, which is processed by the module API class and proceeds the given NF-FG to the
lower layer for instantiation via a general function. The instantiation notification is performed via the
InstantiateNFFGEvent class.

133 Deliverable D3.2 18.06.2015

Figure 9-2: Interaction steps during a Service Request in the Service module

133 Deliverable D3.2 18.06.2015

Figure 9-2: Interaction steps during a Service Request in the Service module

133 Deliverable D3.2 18.06.2015

Figure 9-2: Interaction steps during a Service Request in the Service module

134 Deliverable D3.2 18.06.2015

A.1.3 Static model of Orchestration module
The Orchestration component represents the Resource Orchestration Sublayer (ROS) of UNIFY’s Orchestration layer.
The communication with the upper and lower layer is managed by the POX event mechanism as in the case of the
Service module component. The static class structure of this main module is shown in Figure 9-3.The structure of
this module, the separation of internal component and its connections to each other are designed in compliance
with the Service module as precisely as possible in order to support the transparency and consistency of the
ESCAPEv2 architecture.

The main interface of the Orchestration module is realized by the ResourceOrchestrationAPI class. Its function and
responsibility are identical to the ServiceLayerAPI in the previous section, namely managing the module’s life cycle,
handling internal and external communications and translate calls from events to class functions, etc. Based on the
external event-driven communication the ResourceOrchestrationAPI realizes the relevant Sl – Or interface of UNIFY
functional architecture.

The central component of this module is the ResourceOrchestrator responsible for orchestration at the level of
global domain view. It initializes, contains and controls internal module elements and gathers needed information
similarly to the ServiceOrchestrator class.

The management of requested and already installed NF-FG instances is performed by the NFFGManager class. The
manager class uses the NFFG wrapper as the storage format.

The orchestration steps are encompassed by the ResourceOrchestrationMapper class which have the same
responsibilities as the Mapper class inherited from the AbstractMapper base class in the Service module. The layer-
level mapping algorithm which do the actual mapping using the generated NF-FG and actual resource information is
defined in a derived AbstractStrategy class, namely in the ESCAPEMappingStrategy similarly as before. The network
function descriptions can be requested via a wrapper class, i.e., the NFIBManager, which hides the implementation
characteristics and offers a platform-independent interface. This manager class is provided for the orchestration-
level mapping algorithm by default.

The only major difference from the Service module appears on the handling of the virtual resources views. The
orchestration module is responsible for the creation, assignment and storing of virtual resource views. The
functionality of these virtual views is encompassed by the AbstractVirtualizer base class. This class offers a general
interface for the interaction with the actual Virtualizers and contains the common functions such as generating the
virtual resource information into the internal NFFG representation. The derived classes of the AbstractVirtualizer
represents the different kind of Virtualizers defined in the UNIFY architecture and contains the metadata for the
resource information filtering. The ESCAPEVirtualizer class represents the Virtualizer component assigned to the
upper layer(s). The DomainVirtualizer (DoV) class represents the abstract global resource view, which is created by
and requested from the lower layer. The Virtualizer instances are managed and created by the VirtualizerManager

134 Deliverable D3.2 18.06.2015

A.1.3 Static model of Orchestration module
The Orchestration component represents the Resource Orchestration Sublayer (ROS) of UNIFY’s Orchestration layer.
The communication with the upper and lower layer is managed by the POX event mechanism as in the case of the
Service module component. The static class structure of this main module is shown in Figure 9-3.The structure of
this module, the separation of internal component and its connections to each other are designed in compliance
with the Service module as precisely as possible in order to support the transparency and consistency of the
ESCAPEv2 architecture.

The main interface of the Orchestration module is realized by the ResourceOrchestrationAPI class. Its function and
responsibility are identical to the ServiceLayerAPI in the previous section, namely managing the module’s life cycle,
handling internal and external communications and translate calls from events to class functions, etc. Based on the
external event-driven communication the ResourceOrchestrationAPI realizes the relevant Sl – Or interface of UNIFY
functional architecture.

The central component of this module is the ResourceOrchestrator responsible for orchestration at the level of
global domain view. It initializes, contains and controls internal module elements and gathers needed information
similarly to the ServiceOrchestrator class.

The management of requested and already installed NF-FG instances is performed by the NFFGManager class. The
manager class uses the NFFG wrapper as the storage format.

The orchestration steps are encompassed by the ResourceOrchestrationMapper class which have the same
responsibilities as the Mapper class inherited from the AbstractMapper base class in the Service module. The layer-
level mapping algorithm which do the actual mapping using the generated NF-FG and actual resource information is
defined in a derived AbstractStrategy class, namely in the ESCAPEMappingStrategy similarly as before. The network
function descriptions can be requested via a wrapper class, i.e., the NFIBManager, which hides the implementation
characteristics and offers a platform-independent interface. This manager class is provided for the orchestration-
level mapping algorithm by default.

The only major difference from the Service module appears on the handling of the virtual resources views. The
orchestration module is responsible for the creation, assignment and storing of virtual resource views. The
functionality of these virtual views is encompassed by the AbstractVirtualizer base class. This class offers a general
interface for the interaction with the actual Virtualizers and contains the common functions such as generating the
virtual resource information into the internal NFFG representation. The derived classes of the AbstractVirtualizer
represents the different kind of Virtualizers defined in the UNIFY architecture and contains the metadata for the
resource information filtering. The ESCAPEVirtualizer class represents the Virtualizer component assigned to the
upper layer(s). The DomainVirtualizer (DoV) class represents the abstract global resource view, which is created by
and requested from the lower layer. The Virtualizer instances are managed and created by the VirtualizerManager

134 Deliverable D3.2 18.06.2015

A.1.3 Static model of Orchestration module
The Orchestration component represents the Resource Orchestration Sublayer (ROS) of UNIFY’s Orchestration layer.
The communication with the upper and lower layer is managed by the POX event mechanism as in the case of the
Service module component. The static class structure of this main module is shown in Figure 9-3.The structure of
this module, the separation of internal component and its connections to each other are designed in compliance
with the Service module as precisely as possible in order to support the transparency and consistency of the
ESCAPEv2 architecture.

The main interface of the Orchestration module is realized by the ResourceOrchestrationAPI class. Its function and
responsibility are identical to the ServiceLayerAPI in the previous section, namely managing the module’s life cycle,
handling internal and external communications and translate calls from events to class functions, etc. Based on the
external event-driven communication the ResourceOrchestrationAPI realizes the relevant Sl – Or interface of UNIFY
functional architecture.

The central component of this module is the ResourceOrchestrator responsible for orchestration at the level of
global domain view. It initializes, contains and controls internal module elements and gathers needed information
similarly to the ServiceOrchestrator class.

The management of requested and already installed NF-FG instances is performed by the NFFGManager class. The
manager class uses the NFFG wrapper as the storage format.

The orchestration steps are encompassed by the ResourceOrchestrationMapper class which have the same
responsibilities as the Mapper class inherited from the AbstractMapper base class in the Service module. The layer-
level mapping algorithm which do the actual mapping using the generated NF-FG and actual resource information is
defined in a derived AbstractStrategy class, namely in the ESCAPEMappingStrategy similarly as before. The network
function descriptions can be requested via a wrapper class, i.e., the NFIBManager, which hides the implementation
characteristics and offers a platform-independent interface. This manager class is provided for the orchestration-
level mapping algorithm by default.

The only major difference from the Service module appears on the handling of the virtual resources views. The
orchestration module is responsible for the creation, assignment and storing of virtual resource views. The
functionality of these virtual views is encompassed by the AbstractVirtualizer base class. This class offers a general
interface for the interaction with the actual Virtualizers and contains the common functions such as generating the
virtual resource information into the internal NFFG representation. The derived classes of the AbstractVirtualizer
represents the different kind of Virtualizers defined in the UNIFY architecture and contains the metadata for the
resource information filtering. The ESCAPEVirtualizer class represents the Virtualizer component assigned to the
upper layer(s). The DomainVirtualizer (DoV) class represents the abstract global resource view, which is created by
and requested from the lower layer. The Virtualizer instances are managed and created by the VirtualizerManager

135 Deliverable D3.2 18.06.2015

class. This manager class also stores the DomainVirtualizer instance which is used for the creation of the virtual
views.

The policy enforcement functions which are closely related to the Virtualizers are defined in the PolicyEnforcement
class. This class consists of entirely the enforcement and checking functions. In every case when a derived
AbstractVirtualizer instance is created the PolicyEnforcement class is attached to that Virtualizer in order to set up
the policy related functionality automatically. The attachment is performed by the PolicyEnforcementMetaClass. The
policy enforcement functionality which realized by the previous classes follows the Filter Chain approach associated
with the functions of the Virtualizers. That design allows defining and attaching a checking or enforcing function
before and/or after the involved function of a Virtualizer is invoked by other internal module components.

135 Deliverable D3.2 18.06.2015

class. This manager class also stores the DomainVirtualizer instance which is used for the creation of the virtual
views.

The policy enforcement functions which are closely related to the Virtualizers are defined in the PolicyEnforcement
class. This class consists of entirely the enforcement and checking functions. In every case when a derived
AbstractVirtualizer instance is created the PolicyEnforcement class is attached to that Virtualizer in order to set up
the policy related functionality automatically. The attachment is performed by the PolicyEnforcementMetaClass. The
policy enforcement functionality which realized by the previous classes follows the Filter Chain approach associated
with the functions of the Virtualizers. That design allows defining and attaching a checking or enforcing function
before and/or after the involved function of a Virtualizer is invoked by other internal module components.

135 Deliverable D3.2 18.06.2015

class. This manager class also stores the DomainVirtualizer instance which is used for the creation of the virtual
views.

The policy enforcement functions which are closely related to the Virtualizers are defined in the PolicyEnforcement
class. This class consists of entirely the enforcement and checking functions. In every case when a derived
AbstractVirtualizer instance is created the PolicyEnforcement class is attached to that Virtualizer in order to set up
the policy related functionality automatically. The attachment is performed by the PolicyEnforcementMetaClass. The
policy enforcement functionality which realized by the previous classes follows the Filter Chain approach associated
with the functions of the Virtualizers. That design allows defining and attaching a checking or enforcing function
before and/or after the involved function of a Virtualizer is invoked by other internal module components.

136 Deliverable D3.2 18.06.2015

Figure 9-3: Class diagram of the Orchestration module

136 Deliverable D3.2 18.06.2015

Figure 9-3: Class diagram of the Orchestration module

136 Deliverable D3.2 18.06.2015

Figure 9-3: Class diagram of the Orchestration module

137 Deliverable D3.2 18.06.2015

A.1.4 Dynamic model of Orchestration module
The second part of the Service Requesting process is shown in Figure 9-4.The input parameter is the event which is
raised by the ServiceLayerAPI in the end of the previous dynamic model.

1. The triggering event called InstantiateNFFGEvent is handled by the ResourceOrchestrationAPI class which
is the communication point between the internal components and other top modules. The event contains
the NF-FG generated by the Service module. Based on the type of the event a dedicated event handler is
invoked. These handlers in the actual top module class represent the UNIFY Sl-Or API.

2. The request is delegated to the central ResourceOrchestrator via the corresponding API function. In case of
this Service Request example the invoked function is instantiate_nffg().

3. The orchestrator saves the generated NF-FG using the NFFGManager wrapper (in the trivial format of the
internal NFFG); obtains the global resource view as a DomainVirtualizer by invoking the VirtualizerManager
class.

4. After the ResourceOrchestrator did the preparations, it invokes the orchestration() function of the
ResourceOrchestrationMapper class in order to initiate the NF-FG mapping process.

5. The orchestration process requests the global resource information via the DomainVirtualizer and invokes
the actual mapping algorithm of the ESCAPEMappingStrategy. The validation of the inputs of the mapping
algorithm can be performed by the ResourceOrchestrator also.

6. The ESCAPEMappingStrategy uses the NFIBManager to run the algorithm and returns with the mapped NF-
FG in the common NFFG format in an asynchronous way with the help of the NFFGMappingFinishedEvent.

7. The event is handled by the ResourceOrchestrationAPI class and it proceeds the on-going Service Request
by invoking a general communication function.

8. The mapped NF-FG is forwarded to the lower layer via the InstallNFFGEvent.

137 Deliverable D3.2 18.06.2015

A.1.4 Dynamic model of Orchestration module
The second part of the Service Requesting process is shown in Figure 9-4.The input parameter is the event which is
raised by the ServiceLayerAPI in the end of the previous dynamic model.

1. The triggering event called InstantiateNFFGEvent is handled by the ResourceOrchestrationAPI class which
is the communication point between the internal components and other top modules. The event contains
the NF-FG generated by the Service module. Based on the type of the event a dedicated event handler is
invoked. These handlers in the actual top module class represent the UNIFY Sl-Or API.

2. The request is delegated to the central ResourceOrchestrator via the corresponding API function. In case of
this Service Request example the invoked function is instantiate_nffg().

3. The orchestrator saves the generated NF-FG using the NFFGManager wrapper (in the trivial format of the
internal NFFG); obtains the global resource view as a DomainVirtualizer by invoking the VirtualizerManager
class.

4. After the ResourceOrchestrator did the preparations, it invokes the orchestration() function of the
ResourceOrchestrationMapper class in order to initiate the NF-FG mapping process.

5. The orchestration process requests the global resource information via the DomainVirtualizer and invokes
the actual mapping algorithm of the ESCAPEMappingStrategy. The validation of the inputs of the mapping
algorithm can be performed by the ResourceOrchestrator also.

6. The ESCAPEMappingStrategy uses the NFIBManager to run the algorithm and returns with the mapped NF-
FG in the common NFFG format in an asynchronous way with the help of the NFFGMappingFinishedEvent.

7. The event is handled by the ResourceOrchestrationAPI class and it proceeds the on-going Service Request
by invoking a general communication function.

8. The mapped NF-FG is forwarded to the lower layer via the InstallNFFGEvent.

137 Deliverable D3.2 18.06.2015

A.1.4 Dynamic model of Orchestration module
The second part of the Service Requesting process is shown in Figure 9-4.The input parameter is the event which is
raised by the ServiceLayerAPI in the end of the previous dynamic model.

1. The triggering event called InstantiateNFFGEvent is handled by the ResourceOrchestrationAPI class which
is the communication point between the internal components and other top modules. The event contains
the NF-FG generated by the Service module. Based on the type of the event a dedicated event handler is
invoked. These handlers in the actual top module class represent the UNIFY Sl-Or API.

2. The request is delegated to the central ResourceOrchestrator via the corresponding API function. In case of
this Service Request example the invoked function is instantiate_nffg().

3. The orchestrator saves the generated NF-FG using the NFFGManager wrapper (in the trivial format of the
internal NFFG); obtains the global resource view as a DomainVirtualizer by invoking the VirtualizerManager
class.

4. After the ResourceOrchestrator did the preparations, it invokes the orchestration() function of the
ResourceOrchestrationMapper class in order to initiate the NF-FG mapping process.

5. The orchestration process requests the global resource information via the DomainVirtualizer and invokes
the actual mapping algorithm of the ESCAPEMappingStrategy. The validation of the inputs of the mapping
algorithm can be performed by the ResourceOrchestrator also.

6. The ESCAPEMappingStrategy uses the NFIBManager to run the algorithm and returns with the mapped NF-
FG in the common NFFG format in an asynchronous way with the help of the NFFGMappingFinishedEvent.

7. The event is handled by the ResourceOrchestrationAPI class and it proceeds the on-going Service Request
by invoking a general communication function.

8. The mapped NF-FG is forwarded to the lower layer via the InstallNFFGEvent.

138 Deliverable D3.2 18.06.2015

Figure 9-4: Interaction steps during a Service Request in the Orchestration module

138 Deliverable D3.2 18.06.2015

Figure 9-4: Interaction steps during a Service Request in the Orchestration module

138 Deliverable D3.2 18.06.2015

Figure 9-4: Interaction steps during a Service Request in the Orchestration module

139 Deliverable D3.2 18.06.2015

A.1.5 Static model of Adaptation module
The Adaptation component represents the Controller Adaptation Sublayer (CAS) of UNIFY’s Orchestration layer. This
module contains no other dedicated auxiliary component. The communication with upper layer is managed by the
POX event mechanism as in the case of the Service module and Orchestration module, respectively. The static class
structure of the Adaptation module is shown in Figure 9-5. The structure of this module is similar in the main lines
with the previously mentioned top API modules.

The main interface of the Adaptation module is realized by the ControllerAdaptationAPI. Its functions and
responsibilities are identical to the other top API classes derived from AbstractAPI. As the ResourceOrchestrationAPI
class (in the context of the Orchestration module) this top API class also realizes the corresponding UNIFY reference
point functions (namely the Or-Ca interface).

The central component of this module is the ControllerAdapter. It initializes, contains and handles the internal
module elements. The purpose of the ControllerAdapter can be split into two major parts:

First, it handles the incoming NF-FG instances which are mapped and send down by the upper Orchestration
module. For this task, the ControllerAdapter contains the functions for processing the mapped NF-FG instances,
splitting into subsets of NF-FG descriptions based on the initiated domain adapters and controlling the installation of
the subparts per domain. The graph representation in this module is also managed in the internal NFFG format.

Second, it handles the domain changes originated from lower layer which represents the UNIFY Infrastructure layer.
For this task, the ControllerAdapter initiates and manages arbitrary domain adapters derived from the
AbstractDomainAdapter base class. These adapters implement their controller managing function in an
implementation-agnostic way, e.g. using a REST API, NETCONF protocol, etc. This base class defines the common
management functionality and also offers a general interface for the ControllerAdapter. ESCAPEv2 providently
defines three adapter skeletons:

 POXAdapter which is a simple adapter to the POX core functionality and to the OpenFlow controller
implemented inside the POX. In this context the POXAdapter realizes the UNIFY Ca – Co interface in a built-
in way.

 MininetAdapter for interacting with an SDN network (as the infrastructure layer) emulated by the Mininet
tool.

 OpenStackAdapter for interacting with the cloud infrastructure managed by OpenStack.

The domain / topology information from the lower layers is stored via the DomainResourceManager wrapper class
which managed by the ControllerAdapter too. The ControllerAdapter means the connection between the domain
adapters and the domain resource database.

139 Deliverable D3.2 18.06.2015

A.1.5 Static model of Adaptation module
The Adaptation component represents the Controller Adaptation Sublayer (CAS) of UNIFY’s Orchestration layer. This
module contains no other dedicated auxiliary component. The communication with upper layer is managed by the
POX event mechanism as in the case of the Service module and Orchestration module, respectively. The static class
structure of the Adaptation module is shown in Figure 9-5. The structure of this module is similar in the main lines
with the previously mentioned top API modules.

The main interface of the Adaptation module is realized by the ControllerAdaptationAPI. Its functions and
responsibilities are identical to the other top API classes derived from AbstractAPI. As the ResourceOrchestrationAPI
class (in the context of the Orchestration module) this top API class also realizes the corresponding UNIFY reference
point functions (namely the Or-Ca interface).

The central component of this module is the ControllerAdapter. It initializes, contains and handles the internal
module elements. The purpose of the ControllerAdapter can be split into two major parts:

First, it handles the incoming NF-FG instances which are mapped and send down by the upper Orchestration
module. For this task, the ControllerAdapter contains the functions for processing the mapped NF-FG instances,
splitting into subsets of NF-FG descriptions based on the initiated domain adapters and controlling the installation of
the subparts per domain. The graph representation in this module is also managed in the internal NFFG format.

Second, it handles the domain changes originated from lower layer which represents the UNIFY Infrastructure layer.
For this task, the ControllerAdapter initiates and manages arbitrary domain adapters derived from the
AbstractDomainAdapter base class. These adapters implement their controller managing function in an
implementation-agnostic way, e.g. using a REST API, NETCONF protocol, etc. This base class defines the common
management functionality and also offers a general interface for the ControllerAdapter. ESCAPEv2 providently
defines three adapter skeletons:

 POXAdapter which is a simple adapter to the POX core functionality and to the OpenFlow controller
implemented inside the POX. In this context the POXAdapter realizes the UNIFY Ca – Co interface in a built-
in way.

 MininetAdapter for interacting with an SDN network (as the infrastructure layer) emulated by the Mininet
tool.

 OpenStackAdapter for interacting with the cloud infrastructure managed by OpenStack.

The domain / topology information from the lower layers is stored via the DomainResourceManager wrapper class
which managed by the ControllerAdapter too. The ControllerAdapter means the connection between the domain
adapters and the domain resource database.

139 Deliverable D3.2 18.06.2015

A.1.5 Static model of Adaptation module
The Adaptation component represents the Controller Adaptation Sublayer (CAS) of UNIFY’s Orchestration layer. This
module contains no other dedicated auxiliary component. The communication with upper layer is managed by the
POX event mechanism as in the case of the Service module and Orchestration module, respectively. The static class
structure of the Adaptation module is shown in Figure 9-5. The structure of this module is similar in the main lines
with the previously mentioned top API modules.

The main interface of the Adaptation module is realized by the ControllerAdaptationAPI. Its functions and
responsibilities are identical to the other top API classes derived from AbstractAPI. As the ResourceOrchestrationAPI
class (in the context of the Orchestration module) this top API class also realizes the corresponding UNIFY reference
point functions (namely the Or-Ca interface).

The central component of this module is the ControllerAdapter. It initializes, contains and handles the internal
module elements. The purpose of the ControllerAdapter can be split into two major parts:

First, it handles the incoming NF-FG instances which are mapped and send down by the upper Orchestration
module. For this task, the ControllerAdapter contains the functions for processing the mapped NF-FG instances,
splitting into subsets of NF-FG descriptions based on the initiated domain adapters and controlling the installation of
the subparts per domain. The graph representation in this module is also managed in the internal NFFG format.

Second, it handles the domain changes originated from lower layer which represents the UNIFY Infrastructure layer.
For this task, the ControllerAdapter initiates and manages arbitrary domain adapters derived from the
AbstractDomainAdapter base class. These adapters implement their controller managing function in an
implementation-agnostic way, e.g. using a REST API, NETCONF protocol, etc. This base class defines the common
management functionality and also offers a general interface for the ControllerAdapter. ESCAPEv2 providently
defines three adapter skeletons:

 POXAdapter which is a simple adapter to the POX core functionality and to the OpenFlow controller
implemented inside the POX. In this context the POXAdapter realizes the UNIFY Ca – Co interface in a built-
in way.

 MininetAdapter for interacting with an SDN network (as the infrastructure layer) emulated by the Mininet
tool.

 OpenStackAdapter for interacting with the cloud infrastructure managed by OpenStack.

The domain / topology information from the lower layers is stored via the DomainResourceManager wrapper class
which managed by the ControllerAdapter too. The ControllerAdapter means the connection between the domain
adapters and the domain resource database.

140 Deliverable D3.2 18.06.2015

The DomainResourceManager class offers an abstract global view of the provisioned elements hiding the physical
characteristics via the DomainVirtualizer class. The DomainVirtualizer is inherited from the AbstractVirtualizer
therefore the common Virtualizer interface can be used to interact with that element. The abstract global resource
information is generated by DomainVirtualizer on the fly.

Figure 9-5: Class diagram of the Adaptation module

140 Deliverable D3.2 18.06.2015

The DomainResourceManager class offers an abstract global view of the provisioned elements hiding the physical
characteristics via the DomainVirtualizer class. The DomainVirtualizer is inherited from the AbstractVirtualizer
therefore the common Virtualizer interface can be used to interact with that element. The abstract global resource
information is generated by DomainVirtualizer on the fly.

Figure 9-5: Class diagram of the Adaptation module

140 Deliverable D3.2 18.06.2015

The DomainResourceManager class offers an abstract global view of the provisioned elements hiding the physical
characteristics via the DomainVirtualizer class. The DomainVirtualizer is inherited from the AbstractVirtualizer
therefore the common Virtualizer interface can be used to interact with that element. The abstract global resource
information is generated by DomainVirtualizer on the fly.

Figure 9-5: Class diagram of the Adaptation module

141 Deliverable D3.2 18.06.2015

A.1.6 Dynamic model of Adaption module
The final part of the Service Requesting process is shown in Figure 9-6. The input parameter is the event which is
raised by the ResourceOrchestrationAPI in the end of the previous dynamic model.

1. The triggering event called InstallNFFGEvent is handled by the ControllerAdaptationAPI class. The event
contains the mapped NF-FG generated by the Orchestration module. Based on the type of the event, a
dedicated event handler is invoked (i.e. UNIFY Or-Ca interface).

2. The request is delegated to the corresponding function of the central ControllerAdapter class.

3. The ControllerAdapter performs the parsing, slicing and distributing process and invokes the dedicated
domain adapter classes.

4. After the adapters perform their tasks the global resource view is updated by the DomainResourceManager
and an InstallationFinishedEvent is raised by the top API class to notify the upper layers about the
successful Service Request process.

141 Deliverable D3.2 18.06.2015

A.1.6 Dynamic model of Adaption module
The final part of the Service Requesting process is shown in Figure 9-6. The input parameter is the event which is
raised by the ResourceOrchestrationAPI in the end of the previous dynamic model.

1. The triggering event called InstallNFFGEvent is handled by the ControllerAdaptationAPI class. The event
contains the mapped NF-FG generated by the Orchestration module. Based on the type of the event, a
dedicated event handler is invoked (i.e. UNIFY Or-Ca interface).

2. The request is delegated to the corresponding function of the central ControllerAdapter class.

3. The ControllerAdapter performs the parsing, slicing and distributing process and invokes the dedicated
domain adapter classes.

4. After the adapters perform their tasks the global resource view is updated by the DomainResourceManager
and an InstallationFinishedEvent is raised by the top API class to notify the upper layers about the
successful Service Request process.

141 Deliverable D3.2 18.06.2015

A.1.6 Dynamic model of Adaption module
The final part of the Service Requesting process is shown in Figure 9-6. The input parameter is the event which is
raised by the ResourceOrchestrationAPI in the end of the previous dynamic model.

1. The triggering event called InstallNFFGEvent is handled by the ControllerAdaptationAPI class. The event
contains the mapped NF-FG generated by the Orchestration module. Based on the type of the event, a
dedicated event handler is invoked (i.e. UNIFY Or-Ca interface).

2. The request is delegated to the corresponding function of the central ControllerAdapter class.

3. The ControllerAdapter performs the parsing, slicing and distributing process and invokes the dedicated
domain adapter classes.

4. After the adapters perform their tasks the global resource view is updated by the DomainResourceManager
and an InstallationFinishedEvent is raised by the top API class to notify the upper layers about the
successful Service Request process.

142 Deliverable D3.2 18.06.2015

Figure 9-6: Interaction steps during a Service Request in the Adaptation module

142 Deliverable D3.2 18.06.2015

Figure 9-6: Interaction steps during a Service Request in the Adaptation module

142 Deliverable D3.2 18.06.2015

Figure 9-6: Interaction steps during a Service Request in the Adaptation module

143 Deliverable D3.2 18.06.2015

The changes of the distinct domains are propagated upwards via the Virtualizer instances with the help of the
DomainChangedEvent which is raised by the actual domain adapter classes. If a top module doesn’t possess a
dedicated Virtualizer a specific event is raised to request the missing Virtualizer. These steps are shown in Figure
9-7.

1. If an ESCAPEVirtualizer is missing in the VirtualResourceManager in the Service module a
MissingVirtualViewEvent is raised which is forwarded to the Resource module via the ServiceLayerAPI.

2. The ResourceOrchestrationAPI receives the event and applies for an ESCAPEVirtualizer in contribution of the
VirtualizerManager.

3. If the needed Virtualizer doesn’t exist yet, the ESCAPEVirtualizer is generated by the VirtualizerManager using
the DomainVirtualizer.

4. If the DomainVirtualizer is not available for the VirtualizerManager a GetGlobalResInfoEvent is raised to request
the missing DoV.

5. The event is forwarded to the ControllerAdaptationAPI which responds the requested DomainVirtualizer in a
GlobalResInfoEvent.

6. The event is handled by the ResourceOrchestrationAPI; the DomainVirtualizer is extracted from the event and
set into the VirtualizerManager.

7. The requested ESCAPEVirtualizer is generated by the VirtualizerManager using the DomainVirtualizer and
returned via a VirtResInfoEvent to the ServiceLayerAPI which set the Virtualizer into the
VirtualResourceManager.

143 Deliverable D3.2 18.06.2015

The changes of the distinct domains are propagated upwards via the Virtualizer instances with the help of the
DomainChangedEvent which is raised by the actual domain adapter classes. If a top module doesn’t possess a
dedicated Virtualizer a specific event is raised to request the missing Virtualizer. These steps are shown in Figure
9-7.

1. If an ESCAPEVirtualizer is missing in the VirtualResourceManager in the Service module a
MissingVirtualViewEvent is raised which is forwarded to the Resource module via the ServiceLayerAPI.

2. The ResourceOrchestrationAPI receives the event and applies for an ESCAPEVirtualizer in contribution of the
VirtualizerManager.

3. If the needed Virtualizer doesn’t exist yet, the ESCAPEVirtualizer is generated by the VirtualizerManager using
the DomainVirtualizer.

4. If the DomainVirtualizer is not available for the VirtualizerManager a GetGlobalResInfoEvent is raised to request
the missing DoV.

5. The event is forwarded to the ControllerAdaptationAPI which responds the requested DomainVirtualizer in a
GlobalResInfoEvent.

6. The event is handled by the ResourceOrchestrationAPI; the DomainVirtualizer is extracted from the event and
set into the VirtualizerManager.

7. The requested ESCAPEVirtualizer is generated by the VirtualizerManager using the DomainVirtualizer and
returned via a VirtResInfoEvent to the ServiceLayerAPI which set the Virtualizer into the
VirtualResourceManager.

143 Deliverable D3.2 18.06.2015

The changes of the distinct domains are propagated upwards via the Virtualizer instances with the help of the
DomainChangedEvent which is raised by the actual domain adapter classes. If a top module doesn’t possess a
dedicated Virtualizer a specific event is raised to request the missing Virtualizer. These steps are shown in Figure
9-7.

1. If an ESCAPEVirtualizer is missing in the VirtualResourceManager in the Service module a
MissingVirtualViewEvent is raised which is forwarded to the Resource module via the ServiceLayerAPI.

2. The ResourceOrchestrationAPI receives the event and applies for an ESCAPEVirtualizer in contribution of the
VirtualizerManager.

3. If the needed Virtualizer doesn’t exist yet, the ESCAPEVirtualizer is generated by the VirtualizerManager using
the DomainVirtualizer.

4. If the DomainVirtualizer is not available for the VirtualizerManager a GetGlobalResInfoEvent is raised to request
the missing DoV.

5. The event is forwarded to the ControllerAdaptationAPI which responds the requested DomainVirtualizer in a
GlobalResInfoEvent.

6. The event is handled by the ResourceOrchestrationAPI; the DomainVirtualizer is extracted from the event and
set into the VirtualizerManager.

7. The requested ESCAPEVirtualizer is generated by the VirtualizerManager using the DomainVirtualizer and
returned via a VirtResInfoEvent to the ServiceLayerAPI which set the Virtualizer into the
VirtualResourceManager.

144 Deliverable D3.2 18.06.2015

Figure 9-7: Interaction steps during a request of missing Virtualizers

144 Deliverable D3.2 18.06.2015

Figure 9-7: Interaction steps during a request of missing Virtualizers

144 Deliverable D3.2 18.06.2015

Figure 9-7: Interaction steps during a request of missing Virtualizers

145 Deliverable D3.2 18.06.2015

A.1.7 Integration issues
One of the main design goals of ESCAPEv2 is the support of easy integration with different components. Here, we
highlight the main modules which can easily be changed or extended as we go further with the implementation of
the prototypes.

 Communication interfaces
o We use an event based communication between the main layers which is based on POX internal

events. This approach supports the incorporation of other implementations of event-driven
communication such as the Double Decker architecture based on ZeroMQ. This enables the integration
with the monitoring framework established by WP4.

o NETCONF based communication between the main elements can easily be introduced.
 Embedding/mapping algorithms

o Strategy design pattern is used to enable different mapping algorithms (which follow the high level
interfaces)

 NF-IB, NF-FG and resource databases
o Abstract database interfaces and wrappers enable different types of catalogues and databases.
o Neo4j based graph databases can easily be integrated.

 NF-FG class/library
o This library providing helper functions can be used in different parts of the framework.

 Virtualizers, policy enforcement
o These modules can be implemented in parallel.

145 Deliverable D3.2 18.06.2015

A.1.7 Integration issues
One of the main design goals of ESCAPEv2 is the support of easy integration with different components. Here, we
highlight the main modules which can easily be changed or extended as we go further with the implementation of
the prototypes.

 Communication interfaces
o We use an event based communication between the main layers which is based on POX internal

events. This approach supports the incorporation of other implementations of event-driven
communication such as the Double Decker architecture based on ZeroMQ. This enables the integration
with the monitoring framework established by WP4.

o NETCONF based communication between the main elements can easily be introduced.
 Embedding/mapping algorithms

o Strategy design pattern is used to enable different mapping algorithms (which follow the high level
interfaces)

 NF-IB, NF-FG and resource databases
o Abstract database interfaces and wrappers enable different types of catalogues and databases.
o Neo4j based graph databases can easily be integrated.

 NF-FG class/library
o This library providing helper functions can be used in different parts of the framework.

 Virtualizers, policy enforcement
o These modules can be implemented in parallel.

145 Deliverable D3.2 18.06.2015

A.1.7 Integration issues
One of the main design goals of ESCAPEv2 is the support of easy integration with different components. Here, we
highlight the main modules which can easily be changed or extended as we go further with the implementation of
the prototypes.

 Communication interfaces
o We use an event based communication between the main layers which is based on POX internal

events. This approach supports the incorporation of other implementations of event-driven
communication such as the Double Decker architecture based on ZeroMQ. This enables the integration
with the monitoring framework established by WP4.

o NETCONF based communication between the main elements can easily be introduced.
 Embedding/mapping algorithms

o Strategy design pattern is used to enable different mapping algorithms (which follow the high level
interfaces)

 NF-IB, NF-FG and resource databases
o Abstract database interfaces and wrappers enable different types of catalogues and databases.
o Neo4j based graph databases can easily be integrated.

 NF-FG class/library
o This library providing helper functions can be used in different parts of the framework.

 Virtualizers, policy enforcement
o These modules can be implemented in parallel.

