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Summary 

This deliverable documents the service programmability framework for the UNIFY 

architecture. This framework will detail relevant process flows, interfaces, information 

models and orchestration functionality in support of service programming in UNIFY. In 

order to make sure that the characterization of the programmability framework does not 

occur in isolation of existing work in the research, open source initiatives or 

standardization, an extensive related work overview and corresponding gap analysis has 

been made (Annex 2 and Section 5). In addition, this work has been performed in 

continuous (re-)alignment with the UNIFY architecture defined by WP2, the monitoring 

processes defined by WP4, and the universal node design defined by WP5. Annex 1 of this 

deliverable lists the WP3 objectives. These are referred to as OBJ-x in this summary in 

order clarify the relationship of the performed work to the goals of work package 3. 

Network service programmability is related to many aspects problem spaces. A first 

dimension of programmability relates to the definition and decomposition of different 

components and traffic flows in order to compose a network service (referring to the 

concept of a Service Graph), and the mapping of these components to physical resources 

(Orchestration challenges). Another dimension is concerned about the programming and 

configuration of these components itself. More complexity is involved when services need 

to be programmed for tackling dynamic events, involving monitoring metrics and 

appropriate reactions such as scaling in or out. At last, all of these dimensions need to be 

aligned such that they can be triggered in an automated way initiated by clients (referring 

to SDN-control). In the proposed framework we progressively tackle these challenges in the 

following parts.  

The first part of the programmability framework is about the characterization of the 

interfaces, their requirements and the identification of re-usable technologies 

corresponding to the defined reference points between different layers: 1) User and 

Service Layer, 2) Service-Resource Orchestration, 3) Resource-Orchestration-Controller 

Adaptation, 4) Control Function-Resource Orchestration and 5) Controller Adaptation-

Infrastructure. The most significant gaps with respect to the requirements for these 

interfaces (Section 4) and existing work (Annex 2) are identified on the interfaces 2, 3 and 

4. For this reason, programmability in UNIFY focuses on these interfaces. Two information 

models are crucial in this context: the Service Graph (Section 6.3) and the Network-

Function Forwarding Graph (NF-FG, Section 6.4). The Service Graph refers to the service 

request made by the user to the Service Layer, while the role of the NF-FG is two-fold: i) it 

acts as the main information model to describe the service request in sufficient detail to 

enable resource orchestration, and ii) it enables resource Orchestrators to interact with 

each other in a recursive manner by delegating NF-FG requests (top-down) to the 

responsibility of other resource Orchestrators (e.g., to the local  Orchestrator of a UN, but 
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also to the Orchestrator of other domains). The interface to the Universal Node has been 

investigated in more detail in WP5 and summarized in this document (Section 7). 

A second component of the programmability framework is about the high-level provisioning 

process flow and the involved information models which are exchanged across different 

reference points (OBJ-3). The provisioning process is characterized around two flows (see 

Section 6.1): i) a top-down Service Invocation Flow, and ii) a bottom-up Service 

Confirmation Flow. The first is initiated by a service request by the user which initiates a 

cascade of interactions between components at different layers down to the physical 

infrastructure. The second flow reflects the way in which infrastructure resource 

information as well as instantiated Service- and Network Function information is 

propagated from the Infrastructure Layer via the Orchestration Layer towards the Service 

Layer. 

Because of the important and particular role of the NF-FG in the UNIFY architecture, an 

initial formal information model is defined for the NF-FG within WP3 (OBJ-6). The core 

primitives of this model (Section 6.4) are endpoints, Network Functions, network elements 

and monitoring parameters. While the first two primitives are rather self-explanatory in 

this context, the introduction of network elements enable a range of abstraction 

possibilities enabling network abstraction with different degrees of transparency (e.g. Big 

Switch abstraction). We build further on the ETSI MANO VNF-FG characterization for the 

Service Graph model. The characterization of monitoring functionality as well as required 

reaction in response to events might be programmed within the NF-FG itself using 

constructs from the MEASURE language documented in Section 6.7.4.5. 

The role of service decomposition is important to enable multi-stage service programming 

(Section 6.6). In many cases, a user is less concerned about particular implementations of 

desired service functionality. For example an Intrusion Detection Service (IDS) can be 

implemented in different ways using more or fewer Network Functions of different kinds. A 

service decomposition framework enables decomposition at the appropriate stages of the 

orchestration process. We consider white-box decompositions guided by exposed rules 

(e.g., an IDS might be decomposed  using a Firewall and a Deep Packet Inspection 

component, a Firewall might be implemented by an Open vSwitch FW, etc.). These rules 

might be given by the Service Layer and stored in a Network Function Information Base 

(NF-IB). A second type of decomposition might be steered by particular control Network 

Functions. The latter enable dynamic decomposition according to application-specific logic 

(e.g., dynamic decomposition into multiple NFs based on an internal learning algorithm). 

A crucial part in service programming is centred on the role of orchestration functionality 

(Section 6.7). The main goal of resource orchestration is to map the components of NF-FGs 

on infrastructure resources. This process is referred as (virtual network) embedding. 

Several existing approaches for optimizing this process and remaining challenges have 

identified and documented in this document (OBJ-1, OBJ-2 and OBJ-4). When combining 
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the infrastructure resources of both cloud and network providers, orchestration processes 

must scale to support tens of thousands of elements, with dynamic changes that in some 

cases put strict timing requirements on the embedding, scaling, and failure handling 

systems.  In complement to the possibility of recursively stacking Orchestration Layers as 

enabled by the defined architecture, abstraction and decomposition mechanisms, in 

combination to the multi-domain considerations are described in the context of this 

document to reach this goal (OBJ-5). In order to support scalability at the service or 

Network Function level, an initial set of scale-in and –out mechanisms are documented. 

The latter is closely related to interaction with monitoring functionality at different layers 

in the architecture, as for example, detected performance degradation might trigger these 

scaling processes. A range of required functionalities in the context of these dynamic 

processes have been identified and listed.  

Several concepts and processes of the proposed programmability framework can be 

brought together in the application of concrete use cases (Section 8). For this purpose, 

scaling in and out of an elastic router has been taken as example.  In addition, a more 

advanced use case focusing on video content services has been investigated. These act as a 

starting point for initial integrated prototyping work and components based on the already 

available prototyping efforts. 

Future work in WP3 service programming will focus on further formalizing developed 

information models and corresponding interface protocols, as well as fine-tuning the 

required components for dynamic orchestration.  
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1 Introduction 

The UNIFY project targets flexible service creation, provisioning, and programmability in 

heterogeneous network environments from home to enterprise networks, through 

aggregation and core networks to data centres. One of the crucial enablers to support this 

process is the definition of open interfaces (application programming interfaces - API’s) 

between all possible layers of the control and data plane architecture and their interacting 

users. Open API’s enable programmatic control of available functionality in a range of 

components.  

Flexible service definition and creation start by formalizing the definition a service into 

the concept of a Service Graph (SG) and subsequently a Network-Function Forwarding 

Graph (NF-FG) as described in D2.1. These graphs represent the way in which customer end 

points are interconnected to desired Network Functionalities such as firewalling, load 

balancing, and other functionalities represented in the use cases documented in the above 

mentioned document. Service Graph representations form the input for the UNIFY control 

and orchestration framework which is responsible for mapping these service requirements 

to specific physical resources in the network. Open data plane interfaces enable the 

effective provisioning of these mappings in the physical devices. 

 

Figure 1.1: Core parts of the programmability framework 

The goal of this document is to design a coherent set of processes, mechanisms, interfaces 

and information models serving as a programmability framework for network services. The 

architectural basis for this framework is the result from WP2 which consists of a Service 

Layer, an Orchestration Layer and an Infrastructure Layer. Rather than explicitly including 
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a terminology section in this document, we refer to the Annex A of D2.2 which includes a 

full overview of terminology used in the UNIFY project.  

Section 2 introduces abbreviations and definitions which are not yet introduced in D2.1 or 

D2.2. Next, in Section 3, a brief architecture view is given, recapitulating the reference 

points resulting from this layered architecture which are important with respect to service 

programming, as well as the relevant actors for service programming.  

In Section 4, the programmability requirements are fine-tuned in relation to the reference 

points in order have a clear understanding on what is required from the framework. 

Section 5 identifies the gaps in the fulfilment of these requirements with respect to 

applicable existing technologies and protocols documented in Annex 2. 

The core of the proposed framework is documented in Section 6. The latter contains 

subsections on the core programmability aspects: 

● Programmability process flows with a focus on provisioning 

● Overview of programmability Information Models (and flows) 

● Specification of the Service Graph model 

● Specification of the Network Function-Forwarding Graph 

● Structure of the Network Function-Information Base 

● Characterization of the service decomposition framework 

● Detailing orchestration processes related to programmability 

● Refinement of abstract interface definitions 

● Overview of multi-domain considerations. 

Section 7 zooms in on the interface with the Universal Node in relation to the work of WP5. 

Two use cases are selected: an Elastic Network Function and a Video Content Service in 

order to apply the proposed models and mechanisms. Finally, Section 8 will conclude the 

document with lessons learned and directions for future work. 
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2 Abbreviations and definitions 

2.1 Abbreviations 

Abbreviation Meaning 

API Application Programming Interface 

BGP Border Gateway Protocol 

BFD Bidirectional Forwarding Detection 

BSS/OSS Business Support System/Operations Support System 

CLI Command Line Interface 

CNF Compound Network Function 

DPI Deep Packet Inspection 

ENF Elemental Network Function 

FIB Forwarding Information Base 

KPI Key Performance Indicator 

KQI Key Quality Indicator 

MPLS Multiprotocol Label Switching 

MIB Management Information Base 

NBI NorthBound Interface 

NF Network Function 

NF-FG Network Function Forwarding Graph 

NSC Network Service Chaining 

ODL OpenDayLight 

OP Observation Point 

OTT Over The Top 

OVS-DB Open vSwitch Database Management Protocol 

PBB Provider Backbone Bridge 

PBB-UCA Provider Backbone Bridge - Use Customer Address 

QoS Quality of Service 

RIB Routing Information Base 

SA Service Availability 

SG Service Graph 

SAP Service Access Point 

SBI Southbound Interface 

SG Service Graph 

SLA Service Level Agreement 

SLS Service Level Specification 

SW SoftWare 

TCAM Ternary Content-Addressable Memory 

UN Universal Node 

VM Virtual Machine 

VNF Virtual Network Function 
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2.2 Definitions 

For definitions not included in this document, we refer to Section 2.2 of D2.2. Here we 

focus on the additional concepts specific to the programmability framework. 

Control Application or CtrlApp (also VNF CP or Control NF) is a Network Function which 

has the ability to interact directly with the resource orchestration (through the Cf-Or 

interface), enabling instantiated services to dynamically change the NF-FG request with 

respect to NFs, their interconnection or required resources, through a programmatic 

interface. 

Service decomposition is the process of transforming a NF-FG containing abstract NF(s) to 

NF-FG(s) containing less abstract, more implementation-close NF(s).  This can also include 

dividing the functionality of a complex NF to more, less complex NFs. In UNIFY, we have a 

generic concept of UNIFY(ed) service decomposition, and two realization options, the NF-

IB-based (aka white-box) and the CtrlApp based (aka black-box) decomposition as 

described in Section 6.6. 
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3 Architecture overview 

The design of the UNIFY architecture is described in three incremental steps in 

deliverables of WP2. The first (i.e., overarching architecture) and the second (i.e., 

functional architecture) design steps are documented in Deliverable 2.1 (D2.1) and the 

third design step (i.e., system architecture) is currently in progress and will be 

documented in Deliverable 2.2 (D2.2).  

The overarching architecture defines the high level design principles such as layers (i.e., 

Service Layer, Orchestration Layer, and Infrastructure Layer) and main interfaces between 

the layers  (i.e., U-Sl, Sl-Or, Or-Ca, Ca-Co, Co-Rm, and Cf-Or) as described in deliverable 

D2.1. The functional architecture illustrates subspecialized elements of the layers and 

specifies the interaction between the elements within one layer or across different layers.  

With regard to designing the architecture, WP4 contributes to the UNIFY framework by 

identifying the narrow-waist that meets following principles: 

● The narrow-waist harmonizes and unifies all the operations performed below it 

● The narrow-waist offers a generic resource provisioning service 

● The narrow-waist component must work on abstract resources and capabilities 

types, virtual resources corresponding to network, compute and storage virtualization 

● The narrow-waist component must not understand any higher layer logic, function, 

configuration, etc. 

Figure 3.1 depicts a three layered model that the UNIFY framework follows. The narrow-

waist is shown at the resource orchestration point in the figure. Note that the architecture 

represents a user plane that is shown separately from the service provider in the figure, 

thus it is not considered part of the three layered model. 

The Service Layer is connected to the application layer through its northbound interface 

and communicating with users, e.g., end user, retail provider, OTT provider, content 

provider, and a service provider. The service request from the user turns into consumable 

services on this layer by defining and managing service logics and by establishing 

programmability interface to users. The service is described by a chain of high-level 

Network Functions and pre-defined parameters which is generally referred to as a Service 

Graph (a.k.a., Network Service Chaining) all through the UNIFY framework. The Service 

Layer also interacts with the Orchestration Layer via its southbound interface and provides 

further detailed description of the service chain as a form of Network Function Forwarding 

Graph (NF-FG). 
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Figure 3.1: The three layered UNIFY architecture 

The Orchestration Layer maintains a global view of the network and bridges between the 

Service Layer and the Infrastructure Layer, thus it is the core of the UNIFY system. The 

Orchestration Layer is designed to provide a unified representation of all underlying 

resources and capabilities. For this, the Orchestration Layer receives a logical chain of the 

service (in an NF-FG form) from the Service Layer via its northbound interface and maps 

physical/virtual resources into the logical service chain. The architecture also considers an 

eastbound interface (Cf-Or depicted in Figure 3.1) for receiving updates from the deployed 

Service itself interfacing with the Resource Orchestrator through a CtrlApp or Virtual 

Network Function Control Plane component. Based on this mapping, the Orchestration 

Layer reserves and configures resources and management functions (e.g., monitoring and 

troubleshooting) through its southbound interface towards the Infrastructure Layer. 

Moreover, the Orchestration Layer receives and analyses the status information of 

resources that is notified by the Infrastructure Layer and forwards it to the Service Layer. 

Finally, the Infrastructure Layer encompasses all networking, compute and storage 

resources. By exploiting suitable virtualization technologies this layer supports the creation 

of virtual instances (networking, compute and storage) out of the physical resources. To 

put it concretely, Universal Nodes (see D5.2 for detail), Data Centres, SDN nodes (e.g., 

OpenFlow switches), and legacy appliances are primarily considered as physical resources. 
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Each of these physical resources has a different northbound interface (NBI) and capabilities 

(e.g., level of programmability). Therefore, the Orchestration Layer must be able to 

interact with each of this NBI exposed by these resources. For this reason, the 

Orchestration Layer is further divided into three sub-layers and the Control Adaptation (CA) 

and multiple controllers are mainly responsible for communicating with various types of 

physical resources. 

3.1 Actors relevant to programmability 

Considering the recent development hypes around Software Defined Networking 

[Chua2013], it is inevitable to consider and possibly build on already existing software 

components. Such component based design would also allow modular and independent 

development of functionalities if interfaces are cleverly defined.  

If we take a look at the development landscape, we can identify different actors who 

contribute with different components to create a virtualization and orchestration 

framework up to the users. Below, we identify a few key actors and describe their 

relations to creating a value chain.  

In the simplest case for any business relationships we have to identify users and service 

providers. Users consume communication and cloud services. Users can be residential or 

enterprise end users, other service providers (multi domain setup), over the top (OTT) 

providers, content providers, etc. Users sign a contract with the service provider for 

specific services with service level agreements (SLA). Service providers provision, operates 

and finally bill services to their users [TMF,ETOM]. In the SDN and Cloud era service 

providers would like to reduce both their operational and capacity expenses through 

virtualization.  

Softwarization of the infrastructure involves creating global resource views and 

orchestrating those resources. Infrastructure vendors (e.g., of universal node, data 

centres, etc.) will continue to create the hardware elements providing optimized 

execution environment for virtualized Network Functions. Controller software managing 

both the data centre and the physical networking resources are developed mostly in open 

sources communities (e.g., OpenDaylight1, ONOS2). Orchestration functionality, on the 

other hand, is an added value on the top of the generic controller functionality, hence will 

become the differential platform services offered to the service providers to run their 

networks.  

 

                                            
1 http://www.opendaylight.org/ 
2 http://onlab.us/tools.html 
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Figure 3.2: Business actors in Service Programming 

 User: Users consume communication and cloud services. Users can be residential or 

enterprise end users, other service providers (multi domain setup), over the top (OTT) 

providers, content providers, etc. End/Enterprise Users (also referred as client) interface 

with the U-Sl interface, while retail/OTT providers directly consume the UNIFY Resource 

Service (see D2.2). Users sign contracts with the service provider for specific services with 

service level agreements (SLA).  

 Service Provider: Service providers offer services to users subject to specific SLAs. 

Service providers make direct use of logical resource management (from Orchestration SW 

Providers) and DP & Virtualization Management (from Controller SW Providers). Service 

providers access the resources via a resource manager functionality of an Infrastructure 

provider. 

 Orchestration SW Provider: Software developers (e.g., vendors, 3rd party) who 

create software functions (services, libraries and apps) to manage the global view of 

abstract resources. 

 Controller SW provider: Software developers (e.g., open source communities, 

vendors or 3rd parties) developing data plane managers (e.g., OpenFlow) and cloud 
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managers (e.g., OpenStack) to present abstraction of the underlying resources (networking 

and cloud). 

 Infrastructure Vendor: Providers of physical resources including both networking 

and virtualization environments. 

 NF Developers: internal to the service provider or third party developers who 

designs, develops and/or maintains Network Functions. The orchestration framework shall 

support the development cycle through service provider DevOps (see WP4). 
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4 Programmability requirements 

The programmability requirements are largely driven by the interfaces corresponding to 

the defined reference points (see previous section). An initial definition of these abstract 

interfaces has been defined in D2.1 Section 7.2. The resulting functionality is depicted in 

Figure 4.1. Section 4 of the same document reports a full list of requirements relative to 

UNIFY. Subsection 4.2 focuses on the programmability and orchestration aspects and 

corresponding requirements in general (in direct relationship to the ETSI NFV 

requirements).  Meanwhile the functional architecture has reached a mature state 

(documented in D2.2) which requires minor reconsideration from programmability aspects 

as well.  A refined and more detailed version of the top-level functional model supporting 

recursive orchestration is shown in Figure 4.2.  

 

Figure 4.1: Initial interface description driving programmability requirements 

A more detailed version of the top-level functional model supporting recursive 

orchestration is shown in Figure 4.2. 
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Figure 4.2: A more detailed view on the top level functional blocks and interfaces 

4.1 U-Sl/Sl-Or interface 

A service request (involving a Service Graph) from the Application Layer towards the 

Service Layer, has the following programmability requirements: 

1. MUST include which SAPs are involved, and which NFs (both virtual and physical NFs 

MUST be supported) are required in the service (given that these NFs are listed in the NF 

catalogue) 

2. MUST include a specification of connectivity types and connectivity levels in 

between NFs and/or SAPs. This SHOULD support flow space definitions. 
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3. SHOULD be able to provide SLA parameters on traffic requirements and its scope  

4. SHOULD support the attachment of performance indicators or Key Quality 

Indicators3 to NFs, the connectivity between NFs or on combinations of both  

5. SHOULD support constraining the mapping of service components to the physical 

infrastructure (including pinning down NFs to particular resources) 

6. SHOULD be able to specify resiliency required of NFs, connectivity between NFs or 

combinations of both 

7. MAY support the characterization of optimization triggers related to the mapping of 

service components to the physical infrastructure (e.g., related to traffic characteristics) 

8. SHOULD be able to specify scaling requirements of service components  

9. SHOULD specify restrictions on what traffic is allowed in the Service Graph 

10. SHOULD be able to specify service-specific policies defined by users 

11. MAY specify how billing should be performed 

The reconfiguration of a service MUST support the addition or removal of NFs, links or 

SAPs, and the modification of any of the characteristics mentioned in the above 

requirements.  

4.2 SI-Or interface 

The Sl-Or interface can be considered as a an enriched U-Sl interface, where the SG is 

enriched towards a Network Function-Forwarding Graph. The requirements listed for the 

SG, also apply on the NF-FG description. For NFs part of the NF-FG, the following 

requirements apply: 

1. The NF description MUST include resource requirements in terms of computation, 

storage and memory requirements in order to enable mapping to infrastructure 

2. Key Performance Indicators (KPI) related to ENFs or interconnected groups of NFs 

MUST be measurable 

4.3 Cf-Or interface 

The following functionality is required from a Resource Control Function within a Deployed 

Service and the resource Orchestration Layer. These are similar to the ones on the Sl-Or 

interface: 

1. When programming the VNF as a component of the Service Graph its description 

MUST be able to contain compute and store resource demands. 

2. SHOULD be able to create and upgrade or remove NF images in an operational 

environment 

                                            
3 This may involve requirements related to resiliency, QoS, etc. 
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3. SHOULD be able to modify (add/remove) links between NFs 

4. SHOULD be able to change the NF description-related requirements: 

5. SHOULD be able to modify the link requirements 

● SHOULD enable scaling of NFs (e.g. resize NF resources) 

4.4 Or-Ca interface 

Requirements on the Resource Orchestration - Controller Adaptation (Or-Co) interface: 

1. MUST support the Sl-Or interface requirements, as described there. 

2. MUST support the resource mapped NF-FG description 

3. MUST not be specific to any controller 

4. SHOULD support the merged NF-FG view (because it will be scoped to 

domains/controllers by the CA) 

5. In case of the Orchestrator and the Controller Adaptation are not separated, this 

interface MAY not exist or MAY be internal/proprietary in the given implementation  

4.5 Ca-Co interface 

Requirements on the Controller Adaptation – Controller (Ca-Co) interface: 

1. MUST support a subset of the north bound interface (NBI) of the controller 

2. SHOULD support at least the minimal subset needed to initiate a NF and 

interconnect the initiated NF with the domain boundary (if applicable) 

3. MUST NOT contain information which is not related to the domain/controller scope 

(except reference to domain edges to other domains) 

4. SHOULD be specific to the given Controller, i.e. 

5. In case of networking, it MUST be able to describe the connectivity between the 

NFs 

6. In case of computations, it MUST be able to manage NFs (including initiating, 

configuring, …) 

7. MAY be skipped, in case of a domain which is able to directly receive NF-FGs. 

4.6 Co-Rm interface 

In addition, the following base functionality is expected to be initiated by Controller(s) in 

the Orchestration Layer towards the Infrastructure Layer: 

1. MUST support at least one north-bound interface of network switching equipment in 

order to start/stop, configure, model and discover switching functionality 
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2. MUST support at least one north-bound interface of a server platform in order to 

start/stop, configure, model and discover NF and server functionality 
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5 Programmability gap analysis 

Legend: 
X    = intended applicability 
[x]  = potential applicability, although not intentional 
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Multi-scope configuration and modelling frameworks           

SNMP 
    

x 

NETCONF/YANG [x] [x] 
  

x 

(Web) Interface Description Languages [x] [x] 
   Semantic (Web) Modelling frameworks [x] [x] 
   Infrastructure modelling frameworks 

     Common Information Model [x] 
   

x 

Directory-Enabled Networking(-NGRG) 
    

x 

RSpec 
    

x 

Network Description Language     x 

Network Markup Language     x 

Infrastructure and Networking Description Language 
    

x 

Network Programming and Control 
     Node-level programming and Control 
     OpenFlow 
    

x 

OVSDB 
    

x 

OF-Config     x 

Click Modular Router x 
    HILTI  x 
    ForCES 

    
x 

Network-level Programming and Control 
     SDN Controller (incl. ODL) 
  

[x] X 
 Network Programming Language Overview [x] [x] [x] x 
 Frenetic/Pyretic [x]      x   

Akamai Query System [x]          

Simple Management API x  x   

NM-WG schema x  x x   

I2RS 
  

x 
  ABNO x 

 
x 

  Cloud Programming and Control 
     Cloud-level Programming and Control 
     OpenStack 
   

x 
 Cloud Controller Overview 

  
x x 

 Service-level Programming and Control 
     ScaleDL x 

    ETSI MANO VNF Graph model x 
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In this section, we analyze the technologies reported in Annex 2 and investigate how they 

can be applied in order to meet UNIFY requirements.  

Orchestration and control functionality in the UNIFY architecture might be accessed as a 

(northbound) web interface. As REST provides good performance and scalability, it is the 

RPC paradigm to be used in most of the cases (Web services). Its simplicity and capability 

of using different data formats compared to SOAP protocol (using only XML) make it a 

potential interface paradigm to any orchestration and/or control software layer in the 

UNIFY architecture, thus of potential value for Sl-Or, Cf-Or and Or-Ca (the latter in both 

directions). 

5.1 U-Sl interface 

The closest match of the Service Graph information model and corresponding interface as 

defined in the UNIFY architecture in D2.1 is the Network Service (NS) model defined by 

ETSI MANO. The latter already defines the concepts of NFs, their links and the resulting 

graph. While this is ongoing work, UNIFY might base the SG model on ETSI, and extend it in 

order to support the notion of NF and service scalability.  

For service scalability, UNIFY might rely on the work performed by the CloudScale project. 

ScaleDL is a language defined by the project particularly expressing scaling properties of 

NFs and the service. 

Wherease the above proposals mainly focus on the syntactic/interface properties of 

services, it might be useful to consider the additional value of adding semantics to the 

description of NFs and services. The latter might inherit from the work done in research on 

ontologies and the semantic web (services). While traditional web services have a different 

goal compared to the services UNIFY intends to deliver4, there might be several 

characteristics which might be re-used. Frameworks such as BPEL (its extensions) and 

OWL-S enable the definition of composite web services. These syntactic and semantic 

frameworks have interesting properties in order to characterize composite UNIFY service in 

the form of Service Graphs. Capability of QoS parameters specification and fault handling 

are other features of BPEL which are useful for service description in UNIFY.  

In order to consolidate information of lower layers towards the user, UNIFY might rely on 

SMI. The Simple Management Interface (SMI) provides a simple and common management 

interface for multiple services deployed in cloud or other platforms. SMI can be used both 

with SOAP and REST interface. An operation “Get ManagementReport” is defined to return 

information about service instance health, failure and metrics. It could be used to query 

monitoring metrics or subscribe the metrics report and alarm. However, it doesn’t provide 

capabilities to describe monitoring functions or metrics to be associated with the Network 

Functions in service/network graph. It may be applied into U-Sl and SI-Or interfaces but 

must be extended and adapted in order to be used in UNIFY. 

                                            
4 UNIFY intends to offer services which provide functionality at lower layers than at the http-layer, 
involving for example raw packet processing elements. 
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The specification of a Service Graph not only describes the interconnection of NFs, but also 

assumes that the NFs themselves can be characterized in an accurate manner. NFs might 

be programmed using barebone system calls on top of, for example a *NIX-based OS, but 

ideally higher level libraries or frameworks are available. In addition to the frameworks 

which are investigated in WP5 (e.g., DPDK framework5), we identified Click Modular Router 

and HILTI as potential frameworks of value in this space. Click modular router is a 

potential candidate for implementing Network Functions (NF) indicated in the NF-FG. The 

modular structure in Click enables implementation of atomic Network Functions and more 

advanced Network Functions can be defined as Click scripts (combination of Click 

elements/atomic Network Functions). The HILTI toolkit might be used to compose NFs 

which focus on traffic analysis and inspection. 

5.2 Sl-Or interface 

Several of the technologies discussed in the previous section (a.o., ETSI MANO VNNF 

model), might be re-used and extended for the Sl-Or interface. In this context, the NF-FG 

model should be able to characterize the interconnection of NFs in a closer relation to the 

available infrastructure and to the end points via fixed and logical links respectively, 

supporting recursively splitting the graph into multiple domains (see D2.1 Section 6.3).  

The NM_WG XML schemas introduced by OGF (Open Grid Forum) define a neutral 

representation for network measurements and can be extended to support new types of 

data. It could be a candidate format used to describe the monitoring functions and the 

measurement metrics. However, it must be extended to support the concept of NF-FG 

defined in UNIFY and provide more generic abstract for various monitoring functions. In 

addition, as no all interfaces will use XML based format, the conversion with other format 

is to be considered. 

5.3 Cf-Or interface 

The Cf-Or interface has many similarities to the Sl-Or interface, but has a more restricted 

scope. The technologies discussed in the above section(s) might therefore be re-considered 

and potentially constrained. 

5.4 Or-Ca interface 

Network Programming languages are not directly considered in UNIFY. However, we can 

benefit from them in defining service programming approaches. That is, some of languages 

can be extended and applied in specification of the UNIFY architecture interfaces. The 

advantage of many of these languages is that they offer high-abstraction level primitives 

for controlling networks. These concepts might be re-used for the abstract interface 

between the resource orchestration component and the controller adaptation component. 

Specifically, the following four languages are relevant for the Or-Ca interface. 

                                            
5 Intel Data Plane Development Kit: http://dpdk.org/ 
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Frenetic/Pyretic provides high level abstractions to query and perform other network 

management tasks. It also lacks the capabilities to describe monitoring functions or 

metrics to be monitored. 

NetCore operates with network policies described at a high abstraction level. This 

approach could be useful for describing traffic steering at a higher abstraction level. 

However, the major drawback of NetCore is that it is not network-wide language and the 

user must specify which network element implements given policies. 

NetKAT uses regular expressions on network policies to describe the network behaviour. 

These regular expressions could be extended to involve NFs as well. Regular expressions 

could be a natural way to describe service chains or Service Graphs, therefore NetKAT or 

some components of that might be useful. 

Merlin is able to automatically partitioning network policies expressed by a declarative 

language, and allocating resources. It could be applied for service chain/Service Graph 

description. Furthermore, we can borrow ideas for decomposition and resource mapping 

tasks as well. However, here is that the source code of Merlin is not yet available yet. 

5.5 Ca-Co interface 

Although the UNIFY framework intends to be compatible be with (potential extension to) 

any controller framework, the following two frameworks are of particular interest because 

of their very active development community and wide support of the industry. 

OpenDaylight : The supported northbound interfaces to OpenDaylight include OSGi 

framework and bidirectional REST. In particular, the REST interface enables remote 

applications or higher layer controllers (e.g., Orchestrator) to describe the required 

transport between the NFs. Accordingly, the REST interface of the OpenDaylight can be the 

basis for designing a UNIFY-specific interface between the controller adaptation layer and 

the controllers (i.e., Ca-Co interface). 

OpenStack : OpenStack’s NBI is the management and control interface for OpenStack 

based cloud infrastructure. It is RESTful and based on JSON/HTTP. Each core project in 

OpenStack will expose one or more HTTP/RESTful interface for interacting with higher 

layer. OpenStack NBI claims to have good extensibility and discovery mechanisms. 

Therefore the interface may be used to manage NF VMs in the datacentre domain, and may 

be applied to other domain with extensions. 

Due to the recursive nature of the UNIFY architecture, the NF-FG model might also be 

used on this interface to interact with lower layer Orchestrators. Because of the bi-

directional nature of this interface, infrastructure resource might also be exposed from 

lower layers to higher layers using this model.   
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5.6 Co-Rm interface 

WP3 in UNIFY does not focus on the Co-Rm interface, as many protocols already exist in 

this space. Nevertheless, below a short overview is given on technologies which might be 

re-used. 

SNMP may be used for specifying the Co-Rm interface, however in this case all the 

relevant MIB for the managed entities should be defined. This seems to be inflexible 

compared to e.g. NETCONF. 

DEN may be used to model the knowledge about the network users, applications, network 

elements and their interactions. Using the information model in DEN-ng, policies can also 

be handled. This model is mainly used for management of devices and can be used to send 

capabilities of the devices over Co-Rm interface to the Orchestration Layer. However, it 

should be extended to support network virtualization technologies to be considered in this 

interface. 

OpenFlow is obviously a crucial protocol (cfr. programmability requirements) that can be 

used in the communication between SDN Controllers and network resources (i.e., 

forwarding element). Specifically, the SDN controllers can utilize OpenFlow to program the 

forwarding elements in a per flow basis. The OpenFlow protocol will play a central role in 

realizing the Co-Rm interface of the UNIFY architecture, as it will enable dynamic traffic 

steering between (virtual) Network Functions, and therefore allows the complete 

realization of NF-FG.  

NETCONF/Yang can be potentially used in Co-Rm interface to define NF-related operations 

and abstract data structures viewed by the Controller layer (or higher sub-layers of 

Orchestrator?). Procedures, such as starting/stopping NFs, requesting parameters of 

running NFs, notifications in case of failures or any other events can be defined by Yang 

language and implemented via NETCONF transport. Additionally, abstract data structures 

exposed toward upper layers can be given by Yang data models. 

The general models such as NDL and NML focus mainly at generic network descriptions 

which can be extended or incorporated in other models. The later models such as NDL-

OWL and INDL rely on these general models and also request-like models (e.g. VxDL) to 

enable i) users to define their requests easily and ii) management software to match the 

requests to available infrastructure. The semantic web nature of the general models 

enables them to be easily embedded in other models. Using OWL a graph structure can be 

generated which matches the infrastructures (a graph of connected resources). The other 

advantage is that OWL provides a clear split between semantic and syntax and this enables 

mixing/stacking several ontologies. Therefore, NDL-OWL and INDL may be of interest for 

the Co-Rm interface because unlike NDL and NML which are network-centric, they can 

model all network, compute and storage infrastructures and users requests can be 

modelled as well. 
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ForCES provides an extendible framework and protocol for (dynamic) composition of 

various processing pipelines in the data plane. Specifically, ForCES provide interfaces and 

methods for control and management of logical functional blocks (LFB) in the forwarding 

plane, where the concept of LFB can be extended to Network Functions as considered in 

the project. One of the main advantages of the FOrCES is that it is oblivious to the type of 

processing (LFBs), i.e., not caring if the data plane processing is virtual or physical. 

Accordingly, ForCES can potentially be used for instantiation, configuration and life-cycle 

management of various (virtual) Network Functions, as well as dynamically interconnecting 

them to provide complex Network Functions within the Infrastructure Layer.   

The most relevant OVSDB functionalities for UNIFY could be: 

● The Network Configuration Service: The current default OVSDB Schema's support 

the Layer2 Bridge Domain services as defined in the Networkconfig.bridgedomain 

component. 

● Overlay Tunnel Management: Network Virtualization using OVS is achieved through 

Overlay Tunnels. The actual Type of the Tunnel (GRE, VXLAN, STT) is of a different topic. 

The differences between these Tunnel Types are mostly on the Encapsulation and 

differences in the configuration. But can be treated uniformly for the sake of this 

document. While Establishing a Tunnel using configuration service is a simple task of 

sending OVSDB messages towards the ovsdb-server, the scaling issues that would arise on 

the state management at the data-plane (using OpenFlow) can get challenging. Also, this 

module can assist in various optimizations in the presence of Gateways, and also helps in 

providing Service guarantees for the VMs using these Overlays with the help of underlay 

orchestration. 
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6 Programmability framework 

Rigid network control limits the flexibility of service creation. Network and service 

virtualization aims to enable rich and flexible services and operational efficiency. 

Virtualization is controlled through Orchestrators (data centre and network), which offer 

northbound interfaces (NBI) to various users. The possibility for innovation highly depends 

on the capabilities and openness of these northbound interfaces. We believe that these 

interfaces should introduce high level programmability besides policy and service 

descriptions. 

It is the vision of UNIFY that service function chaining will be used by the network 

operators to offer services to their customers (residential, enterprise, content providers, 

other operators, etc.). Both, operators and customers will like increased flexibility and 

dynamism in their control. This may be achieved through allowing them to program 

(directly or indirectly) the service chains.  

ETSI in [ET2013a] – among other things - defined their Network Orchestrator as interfaces 

to the outside world to allow interaction with the orchestration software. Even though 

there may not be consensus in the splitting of functionality between orchestration and 

controllers, we re-define these terms as we use them throughout this document. 

Our goal with the introduction of UNIFY’s programmability framework is to enable on-

demand processing anywhere in the physically distributed network and clouds. Our 

objective is to create a programmability framework for dynamic and fine granular service 

(re-)provisioning, which can hide significant part of the resource management complexity 

from service providers and users, hence allowing them to focus on service and application 

innovation similarly to other successful models like the IP narrow waist, Android or Apple 

IOS. A programmability framework consists of the definition of processes, mechanisms, 

interfaces and information models in order to support highly dynamic and flexible service 

provisioning.  

Before delving into the details of the framework, a short overview of the global mapping 

process is given below. While most important concepts will be described in this context, a 

more complete overview of recurring terminology in UNIFY can be found in Section 2 of 

D2.2. 
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Figure 6.1: Orchestration as mediator between Service Graph requests and Infrastructure 
Resource availability 

Flexible service provisioning needs to reconcile two sides of a spectrum: on one side there 

is the service definition, on the other side there is a heterogeneous landscape of 

infrastructure on which services need to be deployed. The first reflects the Service Layer, 

the latter is part of the Infrastructure Layer. In between, it is the goal of the Orchestration 

Layer to bring both together (see Figure 6.1). The Orchestration Layer receives the service 

information on its north-bound information from the Service Layer, and receives 

infrastructure resource models from network and cloud controllers on its southbound 

interface. 
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Service provisioning starts with the user6 defining a service request in the form of a Service 

Graph (SG). An SG describes a service requested by a user and defines how (which Network 

Functions) and where the service is provided (which Service Access Points); and how 

successful delivery of the service is measured. Figure 6.1 depicts a simple SG consisting of 

three NFs. 

In order to enable mapping of the individual components of the SG to the infrastructure, 

the Service Layer performs translation of NF descriptions into palatable resource 

requirements, as well as translating NF interconnections into concrete forwarding 

abstractions which can be mapped to network abstractions such as Big Switch with Big 

Software (BiS-BiS) connectivity between NFs (see Figure 6.2). The BiS-BiS abstraction is 

defined in D2.2, and refers to the virtualization of a Forwarding Element with a Compute 

Node, enabling to instantiate and interconnect NFs. 

The result of this adaptation is the Network Function-Forwarding Graph (NF-FG), and is 

forwarded to the Orchestration Layer. Based on the resource model obtained via 

controllers interfacing with infrastructure, the resource orchestrator decomposes and 

maps NFs to server infrastructure, and network forwarding abstractions to infrastructure 

switching functionality. The mapping is the UNIFY Resource service provided by the 

Orchestration Layer.  In the particular example of Figure 6.2, the VNFs of the NF-FG on the 

left upper side are deployed on two separate Universal  Nodes (UNs), and the Big Switch 

abstraction interconnecting them is decomposed into the combined switching functionality 

of two OpenFlow switches and the virtual switching capabilities of UN1 and UN2. The 

output of the orchestration is the mapping/embedding of instantiable Network Functions 

to physical or virtual resources defined as a Network Function-Forwarding Graph.  

                                            
6 End-user, business user, retail provider, OTT Service Provider 
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Figure 6.2: Mapping the Network Function-Forwarding Graph to infrastructure  

6.1 Programmability process flows 

Note, that only the programmability process flow is described, other functionalities like 

authentication, authorization, access control, charging, etc. will be defined later on. 

Additionally, monitoring and management aspects are defined in the DevOps framework 

and will be integrated into the overarching architecture. The programmability framework 

is used to (re-)provision services. The (re-)provision triggers may come from the user, the 

service management system, the resource management system or control plane. Handlings 

of these triggers are considered for further studies.  
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6.1.1 Service Invocation: top-down 

 

Figure 6.3: Sequence diagram: Service Graph resolution 
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The service initiation process flow consists of the following steps, see Figure 6.3: 

1. The User creates its Service Graph based on the available service components (or 

catalogue) or service templates or simply picks one of the service (graph) offered by the 

Service Provider. The Service Graph includes service functions (atomic or compound) as 

components, their logical connectivity and corresponding service level specifications (SLS) 

as part of the service level agreement (SLA). 

Although Section 6.3 will describe in more detail the particular characteristics of a Service 

Graph, we can consider the following example of a parental control service as working 

assumption. It consists of 2 Service Access Points and three Network Functions: a firewall, 

a web-cache and a NAT function. The NFs are interconnected via three links, splitting web-

traffic from other traffic between the firewall and the other NFs. As indicated on the 

figure, every NF in a SG has a unique identifier (UUID), enabling to refer to a NF instance. 

The latter can be shared between different SGs.  

 

Figure 6.4: Service Graph example of a parental control service  

2. The service request is sent to the service adaptation as a Service Graph according 

to the U-Sl reference point. 

3. Upon receiving the Service Graph the service adaptation logic – besides traditional 

management functions like AAA, charging, etc. – may expand the details of the Service 

Graph definition using decomposition rules (see Section 6.5 and Section 6.6) and may 

translate any service level specifications requirements (e.g., by defining key quality 

indicators (KQI)) to compute, storage and networking requirements and measurable 

indicators (e.g., key performance indicators – KPIs). The relation of KQI’s and required 

monitoring and observation points is described into more detail in 6.7.4. In addition, 

service adaption functionality might involve mapping (Service Layer-orchestration) to 

virtualized resources as exposed by the underlying Orchestration Layer (i.e., by the 

virtualizer component of the underlying layer).  The mapping can be as simple as mapping 

the links of the SG to the ports of a virtualized Big Switch infrastructure component, but 

can also become more complex in case exposed virtual infrastructure consists of multiple 

components (see Section 6.2.1).  
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4. The NF-FG is sent to the Orchestrator according to the Sl-Or reference point (see 

Section 2). All components of the NF-FG are known in the SP’s  

NF-IB.  

5. The orchestration component bears with the global compute, storage and 

networking resource view at the corresponding abstraction level (see also Section 6.3 of 

D2.1). As detailed in Section 6.6, the Orchestrator can further decompose NFs according to 

available rules and resources in the catalogue, and/or delegate orchestration to lower-

level domains/Orchestrators. The (lowest-level) orchestration function breaks down the 

Network Functions defined in the NF-FG until they are instantiable according to the given 

service constraints (e.g., proximity, delay, bandwidth, etc.), available resources and 

capabilities and operational policies (e.g., target utilization). The output of the 

orchestration is the mapping/embedding of instantiable7 Network Functions to physical or 

virtual8 resources in the form of a resource-mapped Network Function-Forwarding Graph.  

6. The mapped Network Function Forwarding Graph (with outstanding compute, 

storage and networking requirements) is sent to the Controller Adaptation according to Or-

Ca reference point.   

7. Upon receiving a NF-FG, the Controller Adaptation: i) can split the NF-FG into sub 

NF forwarding graphs according to the capabilities of the different underlying controllers 

and ii) translates the information according to the Controllers’ northbound interfaces. The 

information format below the Controller Adaptation depends on the type of resource. 

8. Controller Adaptation sends scoped requests to the underlying controllers according 

to their resource types: 

a) For compute/storage instantiation in data centres some compute Orchestrator must 

be invoked, e.g., OpenStack to instantiate VMs at a data centre or compute node (see 8a 

in Figure 6.3). 

b) For the forwarding overlay allocation in the network an SDN controller must be 

contacted (e.g., OpenDaylight).  

c) For compute, storage and networking resources in the Universal Node, the UN’s 

Controller must be contacted. Within the UN, we foresee a similar stack of orchestration 

functions as in the overarching UNIFY domain, i.e., adaptation functions, orchestration and 

compute and networking resource managers. Therefore we foresee that the UN can receive 

definitions and requirements according to a NF-FG, which is a sub-graph of the output of 

the upper level orchestration. 

                                            
7 Note: Instantiable has scoped meaning, i.e., one Orchestration Layer may believe that a NF is 
directly instantiable at some of its resources; however, there may be additional 
abstraction/virtualization layer(s) involved underneath. 
8 Provided by the resource service provided by the underlying layer.   
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9. Different Controllers act as virtualization managers according to the underlying 

technologies/virtualizations:  

a) The Compute Infrastructure Manager receives the requested Network Function 

Virtual Instances and CPU, storage constraints per node. Depending on the type of the 

resource where the function is to be launched, it will bootstrap an appropriate virtual 

machine or reserve resources on an appliance. 

b) The Network Controller will receive the desired network connectivity between the 

Network Function instances. Based on the type of requested connectivity, the capabilities 

of the network equipment and the actual network state, it will decide on the realization.  

c) The Universal Node will receive a NF-FG, and will do the internal resource 

orchestration and allocation similar to point 4-9. 

10. The Infrastructure components will receive the requests from their associated 

Controllers/Managers via the applicable protocols (e.g., OpenFlow, libvirt) and will start 

providing the requested functionality. 
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6.1.2 Service Confirmation: bottom-up 

 

Figure 6.5: Sequence diagram: service confirmation 
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References to particular instances in the Infrastructure Layer can be assigned in a top-

down manner. Once the Service Graph is instantiated at the Infrastructure Layer the 

individual instantiation of components can be acknowledged and propagated back to the 

Service Layer in order to allow operation and management tasks to be performed. This 

bottom up notification process is shown in Figure 6.5.  

1. The Controllers / virtualized infrastructure managers collect the resource 

identifiers corresponding to the instantiated resources.  

2. Controller Adaptation collects status and identifications to the allocated resources.  

3. The Orchestration function collects resource allocation status of network 

configuration and VMs.  

4. The Orchestration logic notifies Service Adaptation about the resource allocation 

regarding the NF-FG. 

5. The Operation Support System (OSS) and / or Element Management System in the 

Service Layer configure the service logic in the NFs. (Some of the configuration might be 

done by the User) 

6. The User is notified about the available services and service access points.  

7. The Operation Support System (OSS) and / or Element Management System in the 

Service Layer operate and manage the instantiated services according to the SLA. (Note: 

management might be partially or fully done by the User.)   

Note: While the requests to create a NF-FG and the associated status reports go through all 

the layers (programmability flow) the actual configuration of the NF logic (e.g., filling in 

the rules of a firewall) will go directly from the OSS/EMS to the various Network Functions. 

6.2 Information models according to the reference points 

The information models form the essential information units transferred between different 

reference points in the programmability process. As indicated in the introduction, the role 

of the Orchestration Layer is to reconcile the bottom-up resource information flow driven 

by the infrastructure with the top-down service information requests. Because of this 

dependency, we start with the description of the bottom-up information flow before going 

into the top-down information flow. The report corresponding to Milestone M4.1 as well as 

Section 6.7.4 provide further refine this process with respect to the monitoring process. 

6.2.1 Bottom-up information flow 

Information concerning networking, compute, storage resources or particular capabilities 

flows from the Infrastructure Layer up to the Service Layer on various timescales and 

different level of detail. Networking resources refer to available interfaces, bandwidth, 

delay characteristics, compute resources are for example CPU characteristics, RAM 

memory, and storage refers to available disk space. The possibility for infrastructure 
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elements to expose particular capabilities enables to expose specific execution 

environments (e.g., hardware-optimized implementations), particular Network Functions 

(e.g., firewall of type x).  

Basic resource information, e.g., the existence of a switch or link, is seldom updated 

unless equipment is added, removed, or upon failure. This is a multi-level process: 

individual infrastructure resources announce themselves to their immediate controllers, 

and controllers consolidate information towards the Resource Orchestrator. In addition, 

resource virtualization might be applied in order to shield lower layer details to higher 

layers. Resource virtualization might occur at the level of compute and/or network 

controllers, the Controller Adapter or the Resource Orchestrator. More volatile information 

such as monitoring results on network links or Network Function utilization may be updated 

several times per second. High-volume data might be aggregated and modelled statistically 

to reduce the rate of updates.  

 Co-Rm reference point  6.2.1.1

Much, if not most, of the resource data such as available CPUs, RAM memory, link 

bandwidth originates from the Infrastructure Layer, where each node has to discover its 

own resources and capabilities. The Infrastructure Layer encompasses all networking, 

compute and storage resources. By exploiting suitable virtualization technologies this layer 

supports the creation of virtual instances (networking, compute and storage) out of the 

physical resources. Primarily, three domains of physical resources are considered:  

● Universal Node (see D5.2 for details) 

● SDN enabled network nodes (like OpenFlow switches) 

● Data Centres (like controlled by OpenStack) 

Exactly which resources these are depend on the type of infrastructure node but some 

examples may be network interfaces, CPUs, RAM and persistent memory, and other 

hardware resources such as acceleration cards for offloading packet processing or TCAMs 

for storing forwarding entries.  

Detailed information about these resources might not be needed or allowed by the higher 

layer. Instead the virtualization functionality is responsible for providing a customized 

resource view for particular higher layer consumers and for required policy enforcements. 

In the case of an OpenFlow-enabled switch it is the OpenFlow agent software running on 

the device that provides this functionality. It hides the low-level resource details 

concerning RAM & TCAM memories and physical ports and maps them to parts of the 

conceptual OpenFlow switch. So, for example, instead of providing detailed information 

about such memories they are shown as FlowTables with a maximum number of entries 

(depending on the size of the memory). Similarly, not all physical ports may be shown to 

the higher layer, but only those enabled as part of the OpenFlow switch. 
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How the virtualization is represented and transferred to the higher layers not only depend 

on the type of device but also on the protocol and protocol version used (see A.2.3.1.1 ). 

The nature of the information is also different among different technologies. For example, 

an OpenFlow-enabled switch can report which network ports it has but it doesn’t include 

any link information. Such information has to be discovered by higher layers using for 

example link discovery protocols such as LLDP [LLDP]. 

 Ca-Co reference point 6.2.1.2

The role of network and compute controllers is to consolidate and expose the collection of 

individual infrastructure resources of their corresponding domain towards the Controller 

Adapter. This not only involves resource fully contained within their domain, but also the 

exposure of interfaces towards other domains. As controllers might interface with multiple 

parties, they might virtualize the consolidated resources as part of this process. This 

enables hiding of lower layer details, as well as resource slicing setups.  

 

Figure 6.6: Bottom-up information flow at Ca-Co reference point  

Figure 6.6 depicts the bottom-up information flow where two compute controllers 

(corresponding to UNs) and one SDN (network) controller expose information towards the 

Controller Adapter. This enables the Controller Adapter to consolidate the information 

towards the Resource Orchestrator (next section).  
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 Or-Ca reference point 6.2.1.3

 

Figure 6.7: Bottom-up information flow at Ca-Ro reference point  

The Orchestration Layer is split into two sub-components: resource orchestration and 

controller adaptation. The resource orchestration is a logically centralized function. 

Below, there could be many underlying controllers corresponding to different domains or 

technologies in practice. The controller adaptation is responsible to bridge between the 

controllers and resource Orchestrators. It offers technology independent, virtualized 

resources and resource information. Hence, the resource orchestration collects and 

harmonizes virtualized resources and resource information into a global virtualized 

resource view at its compute, storage and networking abstraction. It is important to note 

here, that the aim of the resource orchestration is to collect global resource view. 

The global resource view in the Orchestrator consists of four main components; forwarding 

elements, compute host capabilities, hardware based or accelerated Network Function 

capabilities, and the data plane links that connect them. All of the resources must have 

associated abstract attributes (capabilities) for the resource provisioning to work.  

In order to obtain this global view, consolidation might happen at different layers. While 

individual controllers might expose a virtualized view of the underlying resources and 

topologies, the consolidated view might rely on discovery mechanisms to detect further 

details, e.g., links (cfr. LLDP in previous paragraph). For example, Figure 6.7 illustrates 

the consolidated topology integrating the received views from the individual controllers 

(cfr. Figure 6.6) into one global topology. 

Another type of resource that has to be discovered is Service Access Points (SAPs) 

representing devices connected to providing interconnection to customer networks.   
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The information sent from Controllers to the Controller Adaptation and Resource 

Orchestration may be adapted through virtualization functionality in order, for example, to 

hide lower layer details, slice network, compute or storage resources towards higher 

layers. The Controller Adaptation integrates virtualized topologies and resources coming 

from multiple controller entities, each responsible for different segments of network or 

compute domains. As the virtualized resource topology and capabilities is the main 

resource used to perform the orchestration of NF-FGs. To this end, a domain global view of 

all virtualized resources and capabilities are offered to the Resource Orchestrator: 

 Compute and storage resources 

o Identifiers, location, capabilities (e.g., KVM, Unified Node type A, etc.), capacity, 

resource use 

 Networking resources 

o Identifiers, links, forwarding elements, capabilities, capacity, resource use 

 Service Access Points 

o Identifiers, location in topology, and, if possible, information on what they 

represent (such as an OSPF neighbour, etc.) 

 Virtual/Physical Network Function instances/slices 

o Identifiers, Network Function types (note: this includes deployed VNFs and 

appliance based NFs), attachment points, capacity, current usage 

 Sl-Or reference point 6.2.1.4

The information flow to the Service Layer can be reduced based on what information is 

needed by different users.  For example, certain users may have a very restricted network 

view that only presents them with the network endpoints that they are allowed to create 

Service Graphs in-between. These restricted views could also include logical/abstract links 

and nodes connecting the endpoints that the user can control in order to represent the 

limitations in, e.g., network bandwidth and latency. Included virtualized nodes may be 

used to restrict which Network Functions are available to the user, and the 

minimum/maximum capacity of those. Based on user policies defining which SAPs, which 

Network Functions and the level of network abstraction the total information transferred 

between the Resource Orchestrator and the Service Layer is virtualized. 

In addition to the resource information coming from the Orchestration Layer, the Service 

Layer also needs additional information from other sources, for example information 

needed to translate the actual topological network endpoints (“IP address 1.2.3.4 on port 

1 on switch 1”) to a physical Service Access Point (“Plug 1 in building 1 on street 1”) and 

finally to a user or site (“Jane Doe” or “Office 1”).  
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Figure 6.8: Bottom-up information flow at Sl-Ro reference point  

The virtualization of resources from the Resource Orchestrator towards particular users is 

depicted in Figure 6.8. Depending on the user, a different resource virtualization is 

exposed. On the left side the network between the SAPs is exposed as a single Big Switch 

with Big Software towards the Service Management and Adaptation Function to a 

End/Enterprise User, whereas on the right side, more information is exposed towards a 

Retail Provider. Towards the latter a virtualized network of three BiS-BiSes each 

interconnecting with a particular SAP is exposed. This enables the Retail Provider to 

exploit this knowledge in order to formulate NF-FGs which use disjoint paths between SAPs 

or use the path which has lowest delay. 

To summarize what information is transferred from the Orchestration Layer to the Service 

Layer: 

● Service Access Points (SAP) that the user is allowed to connect in his Service 

Graphs, may be, e.g., its own offices and abstract endpoints such as “internet” 

● Abstract/logical links and/or nodes summarizing the network topology (BIS-BIS) and 

its limitations, for example artificial limits such as a restricted amount of bandwidth, and 

physical limitations such as the latency between two network endpoints 

● Abstract/logical nodes summarizing compute and/or storage resources, taking into 

account the user’s contract limitations (e.g., number of compute nodes with particular 

CPU and memory), but might also include particular Network Function instantiations such 

as a physical firewall appliance 
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6.2.2 Top-down information flow 

 U-Sl reference point 6.2.2.1

A Service Graph (exemplified in Figure 6.9) describes the service requested by a User and 

defines what service is provided, between which Service Access Points (SAP) is provided 

where the service is provided, and what are the associated service requirements, i.e., 

requirements on key quality indicators (KQIs). The provided service is described using 

Network Functions and their directed logical connectivity, and the Service Access Points. 

Finally, requirements on Key Quality Indicators (KQIs) attached to both Network Functions 

and the logical connectivity describes the service level agreements. These requirements 

and KQIs could be used to derive service level monitoring.  

The Network Functions offered by the service provider may be either Elemental Network 

Functions (ENF), which perform a specific function (such as a NAT, Traffic classifier, 

transparent HTTP Proxy, Firewall function, etc.) or Compound Network Functions (CNF) 

that internally consists of multiple ENFs. A CNF performing, for example, a Parental 

Control function could internally consist of a sub-graph starting with a Traffic classifier 

followed by a HTTP Proxy and a Firewall. When traffic passes through the Classifier it 

could inform the following functions and steer traffic to either of them for either re-

writing parts of the HTTP requests/replies (e.g.,., certain image URLs) in the HTTP Proxy 

or fully block the flow in the Firewall. In the Service Graph we make no distinction if the 

requested function is a CNF or ENF, they are both represented simply as Network 

Functions.  

Connectivity is described as directed logical links connecting the Network Functions to 

each other and to Service Access Points (SAP). At this level a SAP is not necessarily tied to 

the network (e.g., as a specific IP address or switch port), instead it represents 

attachment points at the service level and may be, for example, a particular branch office 

identifier, a user name, a group of users, or a connection to another network such as the 

Internet. SAPs are depicted as part of the (virtualized) Infrastructure Layer. 

The key quality indicator (KQI) requirements attached to Network Functions and to the 

logical links interconnecting them, represent quality goals matching the level (layer) of the 

service request, such as the number of users handled by a Network Function, the number 

of request per second handled, or the total service availability (SA) percentage. These KQIs 

are either calculated from related resource facing Key Performance Indicators (KPIs) – 

compute, storage and networking level performance indicators such as bandwidth, delay, 

etc.,– or they are KPIs themselves.  

From information model point of view, the U-Sl reference point must pass a Service Graph 

with vertices and edges plus associated KQIs according to arbitrary grouping of connected 

NFs and logical links.  
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Figure 6.9: Top-down information flow at U-Sl reference point  

 Sl-Or reference point 6.2.2.2

The Network Function Forwarding Graph (NF-FG) passed through the Sl-Or reference point 

is a translation of the Service Graph to match the Orchestration Layer, at a level of detail 

suitable for orchestration (shown in Figure 6.10). This includes all the components of the 

Service Graph; Network Functions are translated/expanded into Elementary Network 

Functions (ENF) to which known decomposition to corresponding instantiable Network 

Function types exist in the NF Catalogue Manager of which the most important component 

is the Network Function Information Base (NF-IB).  The latter maintains representation 

(images, code, etc.) of NFs together with deployment-related information (how to install, 

what are dependencies, etc.). A more detailed characterization of the NF-IB is given in 

Section 6.5. The latter is for example used for decomposing the previously mentioned 

Parental Control function into three NFs with internal connectivity); Service Management 

Adaptation Functions make sure that SAPs are translated/expanded into endpoints, 

identifiers meaningful at the network level such as a certain port on a switch or a 

collection of IP addresses; KQIs are mapped to resource facing and measurable KPIs and 

requirements on the ENFs. The KQI mapping may result in insertion of additional NFs into 

the NF-FG for measuring certain KPIs that cannot be provided in other ways. These KPIs 

and other configuration parameters are used by the Monitoring Functions (MF) which are 

also part of the NF-FG. The MFs provide different levels of information depending on the 

role (operator or user). 

The differences in the information passed in the Sl-Or compared to the U-Sl reference 

point are that  
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- (compound or abstract) Network Functions may be translated and decomposed into 

Network Function types, which are known to the Orchestrator for instantiation (Note: 

known Network Functions are defined in a Network Function information base, see Section 

6.5); Note that this process is guided by the decomposition principles documented in 

Section 6.6 

- All constraints and requirements must be formulated against compute, storage and 

networking resources. Note that KQIs as indicated in the SG are also decomposed into 

measurable KPI requirements which can be expressed in terms of compute, storage and 

networking requirements. As further detailed in Section 6.7.4, this might result into the 

interaction with monitoring components which themselves have compute, storage and 

networking requirements.    

- NFs are mapped to exposed resources by the virtualizer of the Resource 

Orchestrator. The resource model exposed by the RO might be a single Big Switch with Big 

Software (as indicated in the previous section), but also might be a more complex resource 

model consisting of multiple BiS-BiSes. 

Figure 6.10 depicts a NF-FG describing a service consisting of three NFs mapped to a 

virtualized Big Switch resource model. On the left side of the figure the mapping towards a 

single BiS-BiS resource model is depicted (for example for an End/Enterprise User), while 

the right side illustrates the mapping of NFs of the SG to the resource model consisting of 

multiple BiS-BiSes. This illustrates that a first level of orchestration might happen at the 

Service Layer, for example for OTT providers.  
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Figure 6.10: Top-down information flow at Sl-Or reference point  

 Or-Ca reference point 6.2.2.3

The role of the Orchestration Layer is to decompose and map NFs of the NF-FG received by 

the Service Layer to resources exposed by lower layers. The output of the Orchestrator is 

an instantiable Network Function-Forwarding Graph, which assigns infrastructure resources 

to each NF-NG component and adds the necessary overlay, producing a mapped NF-FG.  

This implies that individual deployable VNFs will be given UUIDs (Universally Unique 

IDentifiers), and will be mapped to infrastructure able to instantiate such VNFs. In 

addition, necessary network forwarding rules will be mapped to (virtual) switching 

functionality either in the form of OpenFlow switches or, for example, as virtualized 

switching rules in software switches of UNs. 

The resulting information model represents the mapping, without actually deploying it. 

The actual instantiation will be triggered when the Control Adaptation component splits 

the required control actions and translates them towards the responsible network and or 

cloud controllers (via their northbound interface). 

The resulting process is illustrated in Figure 6.11 with respect to the NF-FG received at the 

Sl-Or reference point. The green components depict the infrastructure as exposed by lower 

layers. The NF-FG of Figure 6.10 involving a virtualized Big Switch infrastructure is mapped 
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to a (potentially virtualized) infrastructure involving two Universal Nodes (UN) and two 

OpenFlow Switches (OFS). This implies the translation of switching rules of Big Switch with 

UUID0 to switching rules on the ports of the resulting UNs and OFSes. 

 

Figure 6.11: Top-down information flow at Or-Ca reference point 

 Ca-Co reference point 6.2.2.4

The Ca-Co reference point adapts various Northbound Interfaces related to different 

virtualization environments. In UNIFY we pursue the reuse and integration of some well 

accepted virtualization infrastructure managers like OpenStack for data centres and 

OpenDaylight for software-defined programmable networks. 

On the other hand, when a Universal Node is connected to the Controller Adaptation, we 

foresee that the same NF-FG representation can be used to define the local scoped service 

request (NFs and forwarding overlay) and constraints as the output of the orchestration 

logic. Hence, the Controller Adaptation should only extract and pass the corresponding 

sub-graph to the UN. 
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Figure 6.12 depicts this process for the previously mapped NF-FG. Recursive orchestration 

occurs between the CA and the Orchestrators of UN1 and UN2 (following the same 

interface as for Sl-Or) for two partial NF-FGs, while the interconnection of these NF-FGs is 

delegated and translated to the northbound interface of particular SDN controllers. 

Existing technologies for these interfaces are discussed in A.2.3 

 

Figure 6.12: Top-down information flow at Ca-Co reference point  

 Co-Rm reference point 6.2.2.5

The Co-Rm reference point captures various southbound protocols of the different 

controllers. Such potential protocols and frameworks are described in Section A.2.3.1. In 

UNIFY we aim at exploiting and relying on existing controllers (e.g., OpenStack and 

OpenDaylight) as much as possible. However, for the Universal Node, due to the 

recursiveness of the orchestration architecture, partial NF-FGs can be delegated to the 

Universal Node, using the same interface as the Sl-Or interface. More details about this 

interface can be found in Section 7 and referred WP5 deliverables. 

6.3 Specification of Service Graph 

The Service Graph (SG) describes the actual service that the user is requesting to the 

UNIFY control and orchestration framework. The SG is a representation of the requested 

service that defines the service functions and its logical connectivity (i.e. how the service 

is provided), the Service Access Points to the service (i.e. where the service is provided) 

and the Service Level Specification to meet the Service Level Agreement (i.e. how to 

measure the successful delivery of the service). 
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In relation to the UNIFY architecture, the SG is created by the Application Layer to 

describe the service request to the Service Layer by using the U-Sl reference point. The 

Service Layer then translates the SG (service related definition) into the corresponding NF-

FG (resource related definition based on compute, storage and networking). 

UNIFY will base the SG model on the ongoing work done by the ETSI MANO. Concretely, the 

ETSI defines the Network Service (NS) element, which is the closest element related to the 

SG defined at UNIFY. This means that the SG definition will be based on the ETSI’s NS. 

The main components of the NS, and also in the SG, are described below. The SG describes 

the relationship between the Network Functions (NFs) and the links used to interconnect 

them. The links are also used to interconnect the NFs to the endpoints, which provides the 

interface to the existing network (they define the boundaries of the SG). The SG includes 

the following elements: 

● Endpoints (EP): the EPs define the external interface of the SG (inbound and 

outbound traffic). They are related to the Service Access Points of the service. 

● Virtual Network Function (VNF) and Physical Network Function (PNF): both the VNF 

and the PNF describe the Network Functionality to be performed, as well as its deployment 

and operational behaviour requirements. 

● Virtual Link (VL): the VL describes the resource requirements that are needed for a 

link between VNFs, PNFs and endpoints of a SG. 

● VNF Forwarding Graph (VNFFG): the VNFFG describes the topology of the SG by 

referencing the VNFs/PNFs and the VLs used to interconnect them. The VNFFG is defined 

as a set of Network Forwarding Paths (NFP), which describes individually each of these 

interconnections. 

● Monitoring parameters: they represent the parameters that can be tracked for this 

NS to assure the proper level of service (also referred as service flavours) requested by the 

user. 

Apart from the aforementioned elements, the NS defined by the ETSI MANO also include 

additional elements such as the service deployment flavour (which represents the service 

KPI parameters and its requirements for each deployment flavour of NS) or the auto scale 

policy (which represents the policy metadata and criteria for triggering the scaling of the 

NS). 

6.4 Specification of Network Function-Forwarding Graph  

The Network Function Forwarding Graph (NF-FG) is one of the key enablers of the 

programmability framework. The NF-FG information model is described in this section, 

being the basic element that supports the interactions between the Service Layer and the 

Orchestration Layer. The Service Layer translates the Service Graph provided by the user 

into the NF-FG, which contains enough details to perform the service orchestration. The 
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NF-FG is also used internally inside the Orchestration Layer for supporting different 

functions such as decomposition, embedding, scaling and optimization. The NF-FG evolves 

from its original definition in the Sl-Or interface (i.e. the initial NF-FG requested by the 

Service Layer) based on two orthogonal dimensions: layering and time. On the one hand, 

while the NF-FG progresses down in the architecture, more details and elements will be 

specified or added. Moreover, the functionalities performed by the Orchestration Layer 

will also decompose the components (e.g. Network Functions) and/or split the NF-FG into 

smaller sub-graphs. On the other hand, during the service lifecycle the NF-FG will also 

evolve from the initial service request to its final deployment in the physical 

infrastructure. Furthermore, internal re-optimization processes, any modification to the 

original service definition (at the Sl-Or interface) or external changes (e.g. infrastructure 

update) will cause modifications in the NF-FG. 

According to the overall architecture, the NF-FG can be also used in the Ca-Co reference 

point, which is the NBI exposed by the Universal Node. The Orchestration Layer will split 

the service NF-FG into smaller sub-graphs and send the corresponding portion (sub-graph) 

to the target UN as a result of the embedding process. As shown in Section 7, this means 

that the Local Orchestrator at the UN consumes the NF-FG sub-graph and internally 

orchestrates the local resources (i.e. compute, storage and networking) to implement 

appropriately (based on KPIs) the requested functionality. This process will also further 

detail the NF-FG adding new elements related to the actual deployment. For instance, the 

Network Functions will be detailed with deployment-related parameters, such as the 

number and type of CPUs, memory size, storage size or network interfaces (e.g. virtual 

NICs). As a consequence, the NF-FG will become the central element of service 

transformation from the initial service request to the actual deployment at the 

Infrastructure Layer. 

Based on preliminary work done by ETSI9 the NF-FG model described in this section and 

shown in  is an ongoing work at UNIFY project. The NF-FG is an abstract representation 

used to describe the service and the resources (i.e. compute, storage and network) 

involved to provide that service. Basically, there are four main top-level elements defined 

to describe the service: endpoints (EP), Network Functions (NF), network elements (NE) 

and monitoring parameters: 

 The EP represents a reference point that defines the attachment of the NF-FG to 

the other elements outside. 

 The NF represents the compute element that performs the Network Functionality 

demanded by the Service Layer or further decomposed by the Orchestrator. 

                                            
9 http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-

%20management%20and%20orchestration.pdf  

http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-%20management%20and%20orchestration.pdf
http://docbox.etsi.org/ISG/NFV/Open/Latest_Drafts/NFV-MAN001v061-%20management%20and%20orchestration.pdf
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 The NE represents the networking element that determines the interconnection 

between the NFs (including the EPs). 

 The monitoring parameters that must be assured by the NF-FG to guarantee that 

the KPI requirements imposed by the Service Layer are met. 
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Figure 6.13: Network Function - Forwarding Graph (NF-FG) model 
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The contents of the NF-FG must cover a wide range of processes and support several 

different views. On the one hand, it must support a dual view of service and deployment 

information. The former would remain the same as long as the service does not change, 

whereas the later would be dynamically constructed during the deployment process. On 

the other hand, the NF-FG must support a means for specifying both the resources 

requested by the Orchestration Layer and the final resources assigned after the 

deployment process is completed. 

The complete set of top-level elements that comprises the NF-FG is detailed in the 

following Table 6.1. A first simplified version of the NF-FG has already been implemented 

and used in two separate demonstrations [Csoma2014a], [Csoma2014b], however, the 

terminology was slightly different. 

Table 6.1: Top-level elements of NF-FG model 

Element Card Description 

NF-FG Id 1 Unique identifier of the NF-FG for a given domain (scope: domain). 

Endpoints 0-N Set of external reference points/interfaces of the service/NF-FG (Detailed 

in Section 6.4.1). 

Network Functions 0-N Set of (virtualised) Network Functions defined in the NF-FG (Detailed in 

Section 6.4.2). 

Network Elements 0-N Set of network elements defined in the NF-FG (Detailed in Section 6.4.3). 

Monitoring 

Parameters 

0-N Set of monitoring parameters (KPIs) related to the NF-FG (Detailed in 

Section 6.4.4). 

6.4.1 Endpoints  

The endpoint is an external reference point (or interface) of the service (or the NF-FG) to 

the existing network. The endpoints are also used to define the boundaries of a network 

administrative domain. They must be uniquely defined at the Service Layer by means of a 

flowspace. 

Table 6.2: Elements of endpoints  

Element Card Description 

Endpoint Id 1 Unique identifier of the endpoint for this NF-FG (scope: NF-FG). 

The EP id can be referenced at any place in the NF-FG when needed. 

Flowspace 1 The flowspace that uniquely describes the endpoint. It could be generically 

defined as a header space extended with a collection of any network parameter 
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(L1-L7) that univocally describes the reference point. 

A set of possible values for defining this element are the following: 

 Node identifier. 

 Ingress physical port. 

 MAC header parameters (source/destination MAC address, Ethertype, 

VLAN id, VLAN pcp). 

 IP header parameters (source/destination IP address, IP protocol, IP 

ToS). 

 TCP/UDP header parameters (source/destination port). 

6.4.2 Network Functions 

As defined in D2.2, the Network Function (NF) is a basic component of the UNIFY’s 

architecture that performs a specific Network Functionality, being the core building block 

for data processing.  

Based on the result of the decomposition process described in Section 6.6, the NF can be 

decomposed into a graph (i.e. described by another NF-FG) with additional NFs and NEs. 

The mapping between the reference points defined in the NF (i.e. connection points) and 

in the NF-FG (i.e. endpoints) is crucial for supporting the decomposition and the 

traceability of the overall process. 

Table 6.3: Elements of NFs  

Element Card Description 

NF Id 1 Unique identifier of the NF for a given domain NF-FG - UUID (scope: domain). 

The same NF can be shared by several NF-FG at the same time. 

NF Functional 

Type 

1 Define the functional type of NF requested to perform a given Network 

Functionality. It represents an abstract functionality that can be implemented 

in different manners and the particular NF deployed in the end depends on 

different processes performed by the Orchestration Layer, such as the 

decomposition. 

The NF Functional Types are related to the information stored in the NF-IB, 

which also defines the possible alternatives to implement and decompose a 

given functionality. 

NF Specification 1 Detailed description of the NF instance (described below). The elements 

included in the NF Specification totally depend on the NF Deployment Type 

and the actual implementation. 
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When dealing with a Universal Node, the NF Specification element is fully 

qualified internally by the Local Orchestrator based on the NF description 

(including the NF Functional Type) provided by the Orchestration Layer and 

the available resources in the physical node. 

Connection points 1-N Define the reference points of connection between the NF and the network 

elements (detailed below). The level of definition of these points can depend 

on the abstraction level at which it is defined. 

Control Interface 0-N Define the control interface exposed by the NF towards the Orchestrator. This 

interface is related to the Cf-Or interface defined by the UNIFY architecture, 

that allows a CtrlApp, which resides in a NF, to interact with the 

Orchestration Layer. 

NF Monitoring 

Parameters 

0-N Set of monitoring parameters related to the compute resources to be 

performed at the NF. 

The NF Specification depends on the NF Functional Type and gives additional details of the 

actual instance that implements the NF. Moreover, the specific set of components detailed 

by the NF Specification also depends on the NF Development Type. This later type defines 

all the possible alternatives described so far to implement a given functionality based on 

the architecture of the Universal Node defined in D5.2. 

The NF Specification defines the resource requirements specified by the NF-FG, whilst the 

final resource assignment is determined once the NF is deployed on the infrastructure. 

For instance, a NF Deployment Type 1, i.e. when the functionality is implemented by a full 

virtual machine, is described by the following elements: 

Table 6.4: Elements of deployed NFS of the NF-FG 

Element Card Description 

NF Deployment 

Type 

1 Define the type of the NF to be deployed. It can be also set of possible 

alternatives for implementing the needed functionality (e.g. {Type1, Type2, 

Type3}). 

The five possible deployment types of NFs considered at the Universal Node 

are: 

 NF Deployment Type 1: full virtual machine. 

 NF Deployment Type 2: isolated container running on the host. 

 NF Deployment Type 3: process running on the host. 

 NF Deployment Type 4: plugin to the Virtual Switch Engine. 
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 NF Deployment Type 5: a switch. 

An additional NF Deployment Type 0 is defined to represent an abstract 

type of NF not yet specified. 

In this case, the rest of elements of this NF Specification assume a NF 

Deployment Type 1, i.e. a full virtual machine. 

VM URI/Image 1 Reference to the image used by the VM to implement the NF. 

CPU 1 Detailed description of the CPU: model, architecture, number of cores, 

clock speed. 

Memory 1 Detailed description of the memory: type, size.  

Storage 1 Detailed description of the storage: type, (root and ephemeral) filesystem 

size. 

The “connection point” (CP) is the external reference point of each NF element, which 

allows describing how the NF element is connected to other elements in the NF-FG (i.e. 

other NFs or Endpoints). The CP is shared between the NF, where the CP is properly 

detailed, and the NE, where the CP is referenced and its interconnection with other CPs 

and/or endpoints is defined. The CP is described by the following elements: 

Element Card Description 

CP Id 1 Unique identifier of the connection point for this NF-FG (scope: NF-FG). 

CP Port 1 Detailed description of the port of the NF associated with the connection 

point. 

Depending on the specific implementation and nature of the CP, the CP Port element could 

be detailed by a different set of elements. One possible alternative contains the following 

elements: 

Element Card Description 

CP Port Id 1 Unique identifier of the CP port for this NF (scope: NF). 

Direction 1 Define the direction of the port. Possible values are: In, Out, or both. 

CP Port Type 1 Define how the NF exchanges the packets with the underlying components. 

This element is platform specific. When using Intel DPDK possible values could 

be KNI or IVSHMEM. 

 



  

64 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

The “Control Interface” (CI) element represents the interface exposed by the NF towards 

the Orchestrator (related to the Cf-Or interface). It is described by the following elements: 

Element Card Description 

CI Id 1 Unique identifier of the control interface for this NF-FG (scope: NF-FG). 

Attributes 0-N Detailed description of the attributes associated with the control interface. 

6.4.3 Network Elements 

The Network Element (NE) is an abstract representation used to describe the 

interconnection between the different elements in the NF-FG (e.g. endpoints and/or 

connection points) as a virtualized SDN Forwarding Element. Therefore, it describes the 

interconnection between the NFs and represents the networking resources of the NF-FG. 

The endpoints are also connected to them, being the incoming and outgoing reference 

points of the NF-FG. On the one hand, the NE can be used to abstract the whole 

interconnection as a Big Switch and uses the flow-rules to describe the connections 

between the NFs. On the other hand, the NE can be used to describe a networking 

resource from the underlying infrastructure, such as an OpenFlow switch or a Universal 

Node (the networking part). 

The network element is described as follows: 

Table 6.5: Elements of Network Elements 

Element Card Description 

NE Id 1 Unique identifier of the network element for this NF-FG (scope: NF-FG). 

NE Type 1 Define the type of the network element. Currently different types are 

considered, such as “Big Switch” (BS), “OpenFlow Switch” (OFS) and 

“Universal Node” (UN). 

Connection point 

/ Endpoint 

(reference point) 

0-N Define the set of CP and/or EP that comprises this NE. Both the CP and the EP 

are detailed by the proper NF or the endpoint, respectively. The NE only 

refers to the appropriate reference point by its identifier. Because of this, the 

CP id and the EP id must be unique at the NF-FG scope. 

NE Monitoring 

Parameters 

0-N Set of monitoring parameters related to the networking resources to be 

performed at the network element. 

 

The connection point / endpoint element is described as follows: 

Element Card Description 
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Reference CP Id 

/ EP Id  

1 Reference to a connection point or an endpoint. To assure the uniqueness for 

this reference, the CP id and the EP id must be unique at the NF-FG scope. 

Flow-rules 0-N Describe each connection between the NFs (i.e. endpoints and connection 

points) as a flow-rule (detailed below). 

 

The Flow-rules element contains the following elements: 

Element Card Description 

Flowspace 1 Detailed description of the “flowspace” to be performed at the Big Switch. 

The priority of the rule and a set of matches are detailed. Possible values for 

defining the match element are the following: 

 Ingress port (e.g. connection point or endpoint). 

 MAC header parameters (source/destination MAC address, Ethertype, 

VLAN id, VLAN pcp). 

 IP header parameters (source/destination IP address, IP protocol, IP 

ToS). 

 TCP/UDP header parameters (source/destination port). 

Actions 1-N Detailed description of the “action” to be performed by the Big Switch when 

the parameters detailed in the previous element are matched. The most basic 

action is defined by a “type” element (e.g. output) and the egress port (e.g. 

connection point or endpoint). 

6.4.4 Monitoring parameters 

The Service Graph processed by the Service Layer describes how the service delivery must 

be measured by adding Key Quality Indicators (KQIs) to the Network Functions and their 

connectivity. These KQIs represent the quality goals to achieve the expected service level 

and must be transformed by the Service Layer into the proper Key Performance Indicators 

(KPIs) associated to the elements described by the NF-FG. 

The KPIs can be attached to the overall NF-FG as a “monitoring parameters” element, 

which defines the goals for the whole NF-FG. The bandwidth and delay are some of the 

possible KPIs already considered. 

There are other more specific KPIs that can be attached directly to some NF and/or NE. A 

“monitoring” element has been added to the NF and NE elements to address this 

possibility.  
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6.5 Network Function Information Base 

The Service Graph initially requested by a user is described by Network Functions 

(NF)/apps and their logical connectivity. At this level the Network Functions/apps might be 

either Elemental Network Functions (ENF) with specific function (e.g. NAT) or Compound 

Network Functions (CNF) which means that they are composed of several ENFs. Both ENF 

and CNF are represented as Network Functions in a Service Graph. As explained in Section 

6.2 the Network Functions in such a graph (CNFs) are further decomposed into ENFs in the 

following layer and the NF-FG might be expanded with additional Network Functions 

required for measuring KPIs. Therefore, Network Functions appear at multiple layers and 

the same NF will have different views (Compound Network Function, Elementary Network 

Function or Application) at the different layers. However, for the Orchestrator to 

understand the NF abstractions at networking, compute and storage resource level, there 

must be a NF database or catalogue containing these models. This database is referred as 

Network Function Information Base (NF-IB). To be more precise, this catalogue includes 

the following information for each NF: i) NF interface descriptions ii) NF implementation 

and iii) NF resource requirements. Figure 6.14 illustrates the model used for NF description 

in NF-IB. Also for each NF, an id, type and a list of dependency on other NFs should be 

stored in the database. The definition of id and type used in this model are similar to the 

definition in the NF-FG model explained in Section 6.4.  

 

 

Figure 6.14: NF description model in NF-IB 
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Rather than providing a complete formal model, below we give an example on how these 

attributes might be filled for a NAT (V)NF implemented in Click modular router the 

following information is stored in the NF-IB: 

 Id: NAT  

 Type: type2/type3 (it can be run as a Click process in the host or it can be run in an 

isolated container in a host) 

 Dependency: IPAddrRewriter, Classifier (these Click elements/(V)NFs are required 

to be able to implement a NAT in Click)  

 Interface description:  

o Management: Click element read/write handlers such as mappings(read-only), 

nmappings(read-only) 

  Implementation:  

o ImpType: Click modular router 

o SrcType: C++ 

o Template: Click script template 

 Resource requirement: 

o CPU: 1 CPU core x86 with at least 600 Mhz clock frequency  

o Memory: 10 MB 

o Disk: 10Mb 

In this example, we considered that the NF is implemented as an element in Click modular 

router. Therefore, its source code (C++) and its corresponding Click script template are 

required to be stored in the NF-IB to be able to run this (V)NF as a Click process in a 

host/container in case it is requested in a service chain.  However there are other 

possibilities to implement a (V)NF. An example is to have x86, amd64 VM images with 

firewall functionality, for AWS, QEMU. Similar to Click implementation these images should 

be stored in NF-IB to be used once they are requested in a service chain. 

In Table 6.6, we report some of the possible Network Functions to be stored in NF-IB.  

Table 6.6: Network Functions 

Category Network Functions 
Switching elements BNG, CG-NAT, router 

Tunneling gateway elements IPSec/SSL VPN gateways 

Traffic analysis DPI, QoE measurement 

Security functions Firewalls, virus scanners, intrusion detection systems, 
spam protection, parental control 

Mobile network nodes HLR/HSS, MME, SGSN, GGSN/PDN-GW 

Converged and network-wide functions AAA servers, policy control, charging platforms 

Application-level optimization CDNs, Cache Servers, Load Balancers, Application 
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Accelerators 

NGN signalling SBCs, IMS 

Functions for home environment virtualization - RGW DHCP server, PPPoE client, Port mapping 

Functions for home environment virtualization - STB Media streaming (VOD, NPVR, TSTV, OTT clients), Media 
cache 

As explained in Deliverable 2.2 Section 4.2, in the Service (Graph) Adaptation sublayer of 

Service Layer there is a module responsible for managing the NFIB..Tasks such as database 

updates (add/remove/update NFs) and NF request are addressed by this module. Figure 

6.15 illustrates the functional architecture of the Service Layer and NF-IB manager in this 

figure is the sub-module performing all the NF-catalogue related tasks. 

 

Figure 6.15: Service Graph Abstraction module 

This catalogue is a cross-layer (Service/Orchestration) entity in the sense that it is 

understood and populated at the NF level by the Service Layer, but may be used by the 

Orchestration Layer to translate and optimize NF placement according to the given 

constraints, resources and operation policies. For the NF placement optimization, it is 

possible that the Orchestrator further decomposes the NFs based on existing 

decomposition rules. Service decomposition is detailed in Section 6.6. As will be explained, 

the decomposition rules should be stored in the NFIB or a mapping database which NFIB 

interacts with. Each of the decomposition rules can be represented by the NF-FG model 

explained in Section 6.4. Therefore, the database can include a list of dictionaries, each of 

which defining a NF but the values in the dictionaries are lists of decomposition rules 

represented as different NF-FGs. 
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To be more precise in describing the required interactions between different modules and 

databases, we briefly report the used information in different stages (layers) stored in 

multiple databases. 

● Once the Service Layer receives the high-level service requests from the customers, 

the SG adapter module of the Service Management sublayer (see Figure 6.15) translates 

the service request to a Service Graph.  

● The Service Layer is also responsible to map the Service Graph to NF-FG. For this 

translation, the Service Layer uses a database referred to as virtual resources database 

which includes information such as restricted topology view.  The mapping (SG->NF-FG) is 

stored in a special database called SG instances and the NF-FG is sent to the Orchestration 

Layer. 

● In the lowest Orchestration Layer the NF-FGs coming from the Service Layer should 

be mapped to the resource topology. To this end information in NFIB and possible 

decomposition rules for NFs are required to have an optimal mapping. The mapping can be 

optimized considering different objectives such as minimizing the resource consumption 

and cost, maximizing the requests acceptance ratio, minimizing network load, etc. If the 

decomposition rules are stored in a separate mapping database then, there should be an 

interaction between this database (Mapping DataBase) and NFIB to provide the NFs 

decomposition rules. 

 

Figure 6.16 illustrates the interaction between different layers and the two databases, 

NFIB and Mapping DataBase. 
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Figure 6.16: Interactions between different databases in different layers 

Note that both Mapping DataBase and NFIB are populated by the Service Layer but used for 

the Orchestrator Layer for optimization (based on resource requirements/models), 

automated NF decomposition (see Figure 6.19), and instance deployment through the 

controllers.  

Now, we explain the steps required to add an NF to the NF-IB (NF-IB population in Service 

Layer).  

Figure 6.17 illustrates the corresponding sequence diagram. Once the NF developer 

uploads the source code/template/image of a Network Function (e.g. through a Web GUI) 

to the NF catalogue manager in the Service Layer, several checks should be performed 

before adding the new NF to the database: i) In case of new source code, it should be 

checked that the code is compiled ii) in case of dependency on other NFs e.g. 

IPAddrRewriter and Classifier in case of NAT example, their existence in the database 

should be checked iii) the NF (mgm) interfaces should be extracted. Then the NF catalogue 

manager could, for example interact with an entity referred as resource estimator to get 

the information about the required resources of the NF. Later on, we explain a possible 

approach for implementing this resource estimator. Such an entity is required to quantify 

the resource requirements of NFs to enable/simplify the mapping of (V)NFs to the 

infrastructure. In case of a success in all the above steps, the new NF is added to the 
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database and the NF developer is informed of the successful addition. It might be the case 

that NF developers are not willing to provide the source code of their apps. Therefore, 

some of the mentioned steps such as compiling the source code and (mgm) interface 

extraction might be skipped.  

NF Developer NF Catalogue Manager Resource Estimator NFIB

Upload Source Code /template /image

Compile Source Code

Check Existence of NFs

Extract NF interfaces

Query Resource Requirement

Estimate Resources

Estimated Resources

Add NF to the DB

Success

Service Layer

 

Figure 6.17: Processes to add new NF to the NF-IB 

It is worth mentioning that in case of removing a NF from the database, the NF catalogue 

manager should first check the dependency of other NFs. In case of no dependency, it can 

be removed from the database. 

We referred to a resource estimation entity for obtaining resource requirements. In order 

to estimate the required resources for NFs to be included in the NF catalogue, the 

framework depicted in Figure 6.18 can be considered. In this framework, NF resource 

model is conditioned on (discrete) parameter values (e.g. number of flows, inputs, etc.) 

and is characterized by CPU, MEMORY and DISK USAGE requirements.  
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The derivation of NF resource model is characterized by Test Environment which is 

performed through the following tasks: 

● The required resources (CPU, MEM, Disc usage) for a NF are measured.  

● The measurement is performed for discrete values of parameters. 

● The estimation/evaluation is conditioned by the test machine properties (CPU, OS, 

etc). 

 

Figure 6.18: Resource estimation framework 

Alternatively, resource estimation methods can be used as proposed in [Wang2013]. Their 

estimation is based on analysing the interaction between user behaviour and network 

performance. Therefore, the method can dynamically adjust the resource estimation in 

case there is a change in the QoS requirements.   

A Network Function will have an abstract type view in the interface between the Service 

Provider and the Orchestrator. This view will include the type and the identifier (id) of the 

NF, as well as the resource requirements of the NF as explained in the NF-FG model in 

Section 6.4. Requirements can include, compute (CPU), memory and storage parameters. 

An example for such a NF abstraction is: “Firewall Type 1”. The Orchestrator will map the 

Network Function types to virtual NF instances. The virtual NF instance is a given type of 

realization of the abstract Network Function type at a given resource and location (as seen 

by the Orchestrator). The realization type depends on the type of the infrastructure at the 

given location. For example, a firewall Network Function type can be realized on a 

dedicated firewall hardware appliance, or it can be realized in a virtual machine which 

may run on a generic x86 environment.  

At the Infrastructure Layer that implementation of the virtual NF instance will be used 

which is on first hand compatible with the infrastructure environment and on second hand, 

which is the best optimized for the given environment. Deciding which implementation to 
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use depends on the Service Controller or the Universal Node (see Section 7 for details). 

Examples of the possible implementations of a firewall are x86, amd64 VM images with 

firewall functionality, tailored, e.g., for AWS, Qemu or other virtualization environments. 

A scalable/elastic route example is also described in details in Section 8.1. 

A basic version of the NF-IB containing only the most relevant, essential components have 

been implemented and demonstrated in [Csoma2014a].  Other parts will be added to our 

prototypes during the next phases of the project.  

6.6 Service decomposition 

Service decomposition is the process of transforming a NF-FG containing abstract NF(s) to 

NF-FG(s) containing less abstract, more implementation-close NF(s).  This can also include 

dividing the functionality of a complex NF to more, less complex NFs. In UNIFY, we have a 

generic concept of UNIFY(ed) service decomposition as described in this section, and two 

realization options, the NF-IB-based (aka white-box) and the CtrlApp based (aka black-box) 

decomposition as described later in this section. 

UNIFY(ed) service decomposition is an important concept in UNIFY, sometimes referred to 

as Model-based decomposition. This implies on one hand a time aspect of the 

decomposition: there is a decomposition Model, made (decided) in design time, while in 

execution time the Model is static, the instantiation is dynamic taking e.g. actual resources 

into account. The model is basically the decomposition model set. A decomposition rule in 

generic form is a NF-FG  {NF-FG} mapping (which means that a NF-FG will be 

transformed to another NF-FG or a set of NF-FGs).  

On the other hand, the model based decomposition implies abstraction. The model 

describes abstract type to type mappings, not instances: the model stored in the NF-IB can 

live without ever instantiating any NF. The model is also a dynamic entity, it can change 

over time: e.g. new possible realization options can be developed for an abstract NF. 

The model based service decomposition also refers to the way the Orchestrator 

decomposes an NF-FG’s NFs. It will decompose them as long as there are no possible 

further decompositions. In this sense the Orchestrator thinks that it has received a high 

level NF-FG with abstract NFs; while it decomposes to low-level, “atomic” NFs, a.k.a., 

instances, according to his view. Taking into account the recursion possibility in the UNIFY 

architecture, an NF “instance” of a higher layer can be an abstract NF to be further 

decomposed by a lower layer. 

The model-based service decomposition concept includes additional aspects, like: 

● The approach that there can be multiple decomposition options for an NF 

● The approach that the decomposition is automatic 

● The workflow (Service Layer, Orchestrator, CtrlApp) 



  

74 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

● The involved entities (OR, NF-IB, Ca-Or interface) 

Most of the concepts and processes introduced in this section are initial or ongoing working 

assumptions to give initial directions to the decomposition functionality to be further 

developed in later stages of the UNIFY project. 

6.6.1 NF-IB based decomposition  

The model-based service decomposition allows for the step-wise translation of high-level 

(compound) Network Functions into more refined Network Functions, which can eventually 

be mapped onto the infrastructure. The decomposition model can be stored in the NF-IB as 

a set of decomposition rules. The service decomposition offers the following: 

● Adaptation logic for ensuring SLAs: high-level Network Functions are decomposed 

according to the required SLAs and parameters as e.g. the number of users. The abstract 

firewall functionality can e.g. be decomposed into a single firewall for one user, or into 

several load balanced and redundant firewalls, for 10,000 users. 

● Support for DevOps concept: the initially limited NF-IB can be extended over time, 

allowing “to subclass” Network Functions targeted at specific hardware environments. 

While initially only a purely software-based firewall might be offered, the firewall 

functionality can be optimized for the execution on Universal Nodes. 

The Service Layer’s task is to decompose the abstract / compound Network Functions, 

until an instantiable NF-FG is obtained, which can be passed to the Orchestrator. However, 

as there might exist a multitude of possible NF-FG realizations for a single Service-Graph, 

the following questions arise: 

1. To which extent does the Service Layer already take resource availability into 

account? 

2. To which extent should non-fully decomposed Network Functions be passed to the 

Orchestrator? 

While failing to take resource availability into consideration might prolong the provisioning 

process of a service-graph as the Service Layer “blindly” proposes decompositions, the 

same holds true once the Service Layer takes all resource information into account, 

effectively superseding the orchestration process. 

Regarding the second question, we generally observe the necessity to allow for passing 

non-fully decomposed Network Functions in the light of layered or recursive orchestration 

stacks. Consider e.g. a multi-provider with multiple sub Orchestrators for different 

domains.  In this case, different sub Orchestrators may allow for different competing 

implementations and the inner workings of the sub Orchestrators’ should not be disclosed. 

This will also generally hold true for cloud providers, as the efficient resource 

orchestration is a company secret. Note that the support for passing non-fully decomposed 

Network Functions is not only beneficial in multi-provider scenarios, but can be of use for 
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appropriately dimensioning NF-FGs. Given e.g. a software-based firewall, the throughput 

will heavily depend on the node’s hardware configuration, on which it is instantiated. 

While the choice of the type of firewall solution should be made by the Service Layer, also 

generating appropriate SLAs, KPI requirements and observability points, the Orchestration 

Layer may determine the best choice of hardware configurations in its own right. 

In short, we note the following requirements for the decomposition process in UNIFY: 

 The Service Layer SHOULD take information pertaining to the type of hardware into 

account by excluding any decomposition options, which cannot possibly be supported.  

 Depending on the granularity of available resource information and the type of 

function, the Service Layer MAY restrict the number of potential implementation 

templates, to allow for an efficient orchestration process. 

 Any decomposition decisions that introduce additional functionality on the Service 

Layer, MUST be made by the Service Layer before passing the abstract NF-FG to the 

Orchestrator. 

To summarize, in the UNIFY model based service decomposition instead of making 

decomposition decisions upon requesting a service instance at Service Layer and allocating 

resource at the Orchestration level, we choose a more flexible way. The decomposition 

rules are given from the Service Layer, where multiple options may be present to realize a 

Service Graph. No decision is made at Service Layer, as it will give “abstract” NFs in the 

NF-FG to the Orchestrator. The Orchestrator knows the theoretically possible 

decompositions of a Service Graph from the Service Layer via the NF-IB. The Orchestrator 

will decide how to actually decompose and where to run the components, based on 

available resources.  

An example decomposition rule-set for an imaginary “forest service” can be seen in Figure 

6.19. The dashed arrows represent the possible decomposition steps. Such a decomposition 

database could be stored in the NF-IB. 
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Figure 6.19: Model based service decomposition example 

6.6.2 ControlApp-driven decomposition vs. VNF scaling  

As introduced in Section 2, a deployed service might involve a resource control function (or 

ControlApp or CtrlApp) which is able to dynamically change requested services. While 

decomposition can occur as a static process part of the resource orchestration, it can also 

be a result of the interaction with the ControlApp. So, ControlApp based service 

decomposition is a second option to implement UNIFY(ed) service decomposition, which 

can be seen as a black-box service decomposition, since the logic performing the 

decomposition is internal to the CtrlApp and is not visible from outside. From that 

perspective, the task of decomposing a VNF requires similar functionality as the task of 

scaling a VNF once it is running (see Section 6.7.2 for details). This section will further 

detail similarities and give a first indication on how this decomposition process might be 

further formalized. 
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During UNIFY(ed) decomposition a VNF type is given together with requirements R and the 

expected output is a partial NF-FG that can take the place of the VNF type in the original 

NF-FG. The decomposition function could be written as: 

 Partial NF-FG = decompose(VNF type, Requirements R) 

The same output is expected in the case of scaling a VNF, a partial NF-FG representing a 

VNF implementation, capable of dealing with the current or expected future. However, 

the input to a scaling function is a bit different. Scaling applies to a particular VNF 

implementation with the functionality of a VNF type, of which there may be many per VNF 

type. The requirements R are still involved, and a change of these requirements might be 

the reason the scaling function is invoked. For scaling there is also the addition parameter 

of internal VNF state S representing VNF state specific to an implementation, such as 

number of rules inserted in a firewall for example. Changes in S may also be a reason to 

call the scaling function, e.g. in order to automatically scale the VNF once there is no 

more space to insert additional firewall rules. The scaling function also has a third 

parameter, measurement triggers M that could for example indicate that the VNF 

processing latency has exceeded some threshold and the VNF needs to scale to reduce 

latency. With these parameters in mind the scaling function could be described as: 

 Partial NF-FG = scale(VNF implementation, Requirements R, State S, Measurements M) 

Ideally, the output of decompose(VNF type, R) and scale(VNF implementation, R, Ø, Ø) 

should be identical for any R, otherwise a newly decomposed partial NF-FG may be 

instantiated and then immediately need to be modified since the decompose() and scale() 

functions disagree. One way of solving this is to merge the decompose() and scale() 

functions to a single one, with S and M set to Ø in the initial decomposition step.  

A VNF type might be represented by multiple VNF implementations, i.e. the VNF type 

Firewall could have several implementations, FirewallA, FirewallB, etc, therefore one call 

to decompose(Firewall, R) translates into multiple scale(FirewallA, R, Ø, Ø), one for each 

of the different implementations. This results in multiple partial NF-FGs, which may need 

additional decomposition if the partial NF-FGs also contain VNF types. Based on some 

criteria one of the resulting partial NF-FGs has to be selected for instantiation, e.g. 

depending on the amount of resources required. 

Calling VNF CtrlApps 

As the scaling function requires knowledge of the internal state S a good place to 

implement the scale() function is in a VNF CtrlApp for a specific VNF implementation, since 

that is where internal state of the VNF data plane components are known. This means that 

if a decompose() call translates to scale() calls, the scale() function in VNF CtrlApps must 

be callable somehow. 

One way to solve this would be to have instances of all the VNF CtrlApp implementations 

always running, isolated without any connections to corresponding VNF data plane 
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components, and expose an RPC interface allowing the Orchestrator to call their scale() 

functions during the decomposition process.  Another solution could be to instantiate 

relevant VNF CtrlApps during each decomposition call, trading higher latency for less 

resource usage. 

A more lightweight approach could be to force the VNF developers to export their scale() 

functions in some way that could be integrated into the Orchestrator, e.g. as Java classes, 

Python scripts, or simple compiled executables. Those could then be placed in the NF-IB, 

and obtained by the Orchestrator during the decomposition process, the Orchestrator then 

executes them to obtain the partial NF-FGs.  

Control-App-driven decomposition example 

Rather than fully formalizing the decomposition process already, in this subsection we 

describe the dynamic decomposition as can be induced by a ControlApp as illustrated in 

Figure 6.21. Figure 6.20 gives a detailed overview on the sequence of required interactions 

between different entities, and Figure 6.22 depicts the finally resulting decomposed NF-

FG.  

It is important to note here, that the NF-FG shown in Figure 6.14 is purely a theoretical 

NF-FG, as it won’t be available in this final decomposed form neither in any of the UNIFY 

architecture components, nor at any reference points or interfaces. This figure helps the 

reader to see the whole final picture of the decomposed service and understand the 

process, however only NF-FGs A1-3, B1-3 and C1-2 of Figure 6.22 will appear really. Figure 

6.14 is the superposition of the previous NF-FGs. 

In the example we assume a hierarchy of 2 domains (conform the principle of recursiveness 

documented in D2.1 Section 6.3), where the Orchestrator of domain of level 1 (ORCH1) can 

delegate sub-graphs of the NF-FG towards the Orchestrator of the sub-domain at level 2 

(ORCH2). In the next overview, we will shortly discuss the most essential steps of the 

process for an imaginary Gold Forest service request (top of Figure 6.21.). A detailed 

sequence diagram is depicted in Figure 6.20, we will walk through the main steps 

according to the sequence diagram. (Please look at in Figure 6.21 and Figure 6.22. parallel 

while following the description below.) 

1. The User requests for a Gold Forest service between two SAPs to the Service Layer. 

2. The Service Layer uses a set of rules/templates in order to convert the service 

request to a corresponding NF-FG and passes the request to the resource orchestration of 

the top-level domain (ORCH1). 

3. ORCH1 decides to decompose the Forest NF to an NF-FG with the same scope (i.e., 

connection points) involving a (non-atomic) Forest ControlApp which interacts with ORCH1 

using the Or-Cf interface (purple). In addition, it delegates the further resource 

Orchestrator of this Forest ControlApp to ORCH2. 
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4. ORCH2 instantiates the Forest ControlApp as David’s Forest CtrlApp on the 

infrastructure. 

a. The corresponding Forest-CtrlApp instance is started and returns its interfaces to 

ORCH1. This results into a cascade of Interface announcements (see middle of Figure 6.22) 

until it reaches the user. 

5. As the instantiated CtrlApp is now in charge of further decomposition actions, it can 

further decompose the NF-FG within its scope (between the SAPX and SAPY and interface 

to CtrlApp SAP2). This results into NF-FG B1 which decomposes to a Tree Pair which is 

directed towards ORCH1 over its Cf-Or interface. 

6. Based on the received NF-FG B1, ORCH1 can decompose the resulting Tree Pair into 

a Pine Tree and Oak tree which can be further decomposed/instantiated by ORCH2 (NF-FG 

B2). 

7. Based on the received NF-FG B2, ORCH2 instantiates these into David’s PineTree 

and David’s OakTree CtrlApp (NF-FG B3), where the last one has a Or-Cf interface with 

ORCH2.  

8. The created instances return the resulting interfaces to ORCH2. 

9. David’s OakTree CtrlApp generates a new decomposition, resulting into Root, Trunk 

and Tree NFs communicated to ORCH2 (NF-FG C1). 

10. ORCH2 instantiates VNFs for the received decomposition. 

11. Interfaces and statuses of the newly instantiated components are propagated and 

consolidated such that finally the user is informed that the Forest service is up and 

running. 
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Figure 6.20: CtrlApp based decomposition example, sequence and messages 
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Figure 6.21: CtrlApp based decomposition example, NF-FGs 
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Figure 6.22: CtrlApp based decomposition example, final theoretical decomposed NF-FG 

6.6.3 Decomposition of KQI, KPI and resource parameters and decomposition types 

In addition to the decomposition of pure NFs or parts of the NF-FG, decomposition might 

also be needed in order to accommodate quality/performance or resource parameters. 

Again, the purpose of this section is mainly to introduce related concepts, issues and 

potential further working directions.  

Service related parameters have to be decomposed as well. For example in a high level 

form of a NF-FG there is an abstract “Firewall NF” component to serve 2 users, while the 

VM implementation to which it can be decomposed is able to serve 10 MB/s. In this 

example there is a need to map from “users” to “MB/s”. Such parameter decomposition 

rules can be very simple or complex ones, as well as they may be generic or 

implementation specific. We envision that such parameter decomposition rules may be 

given in the NF-IB. In this section we elaborate on these possible rules. 

Resource/performance parameters will be given for each NF in the NF-IB. Decomposition 

and/or conversion rules of parameters will be given in the NF-IB. 

As a first approach, we introduce the following set of rule types: 

 Type A rule: function decomposition without parameter conversion 

o Example: Forest(X tourists)  PineTree(X tourists) + OakTree(X tourists) 

 Type B rule: parameter conversion without function decomposition 
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o Example: PineTree(X tourists)  PineTree(1+2X walk/hour) 

 Type AB rule: function decomposition with parameter conversion 

o PineTree(X tourists)  David’sPineTree VM (1+2X walk/hour) 

 Type C rule: instantiation rule 

o Example: David’sPineTree VM Needs “small” (1 VCPU, 128 MB RAM, 0 GB HDD) 

execution environment, Capacity: 50 walks/hour 

The decomposition/orchestration can be complex even by using rules only from the types 

above. Therefore we differentiate the scenarios in the following section and discuss them 

one by one.  

The scenarios can be classified according to three main dimensions: levels of 

decomposition, dynamicity and number of choices available. First we present the simplest 

scenario and then the variations on it along each of the three dimensions. 

6.6.4 Decomposition example scenarios 

 Single choice scenario 6.6.4.1

Assumptions: single level, static, single choice 

In this scenario there is one possible matching for each service parameter decomposition, 

i.e. there must not exist multiple matching rules. For example, in case of “C” type rules, 

the capacity of realizations must be non-overlapping, like: 

o David’sPineTree VM Needs “small” (1 VCPU, 128 MB RAM, 0 GB HDD) execution 

environment, Capacity: <=50 walks/hour 

o David’sPineTree VM Needs “big” (2 VCPU, 215 MB RAM, 0 GB HDD) execution 

environment, Capacity: >50, <=100 walks/hour 

This scenario makes service parameter decomposition easy, however requires strict 

coordination of decomposition rules.  

 Multi-choice scenario 6.6.4.2

Assumptions: single level, static, multi choice 

Compared to the first scenario, here there are multiple matching rules for a decomposition 

step, these multiple rules may differ only in the NF, in the parameters, or both.  

Example1: 

o PineTree(X tourists)  David’sPineTree VM (X tourists) 

o PineTree(X tourists)  Joe’sPineTree VM (X tourists) 

Example2: 
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o David’sPineTree VM Needs “small” (1 VCPU, 128 MB RAM, 0 GB HDD) execution 

environment, Capacity: <=50 walks/hour 

o David’sPineTree VM Needs “big” (2 VCPU, 215 MB RAM, 0 GB HDD) execution 

environment, Capacity: <=100 walks/hour 

This scenario makes service decomposition and service parameter conversion part of the 

optimization process. The optimization process is to be discussed later in the project. 

 Multi-level decomposition 6.6.4.3

Assumptions: multi-level, static, single choice 

Compared to previous scenarios, in this case an “atomic” NF or a NF “instance” of a higher 

Orchestration Layer will be seen as an abstract NF by a lower layer Orchestrator and will 

be further decomposed. This will raise the questions what NF parameters are allowed at 

various interfaces of the UNIFY architecture. Without this multi-level behavior the NF 

parameters below the Orchestrator could be limited to the narrow-waist CPU, memory and 

storage parameters. However, with multi-level orchestration more abstract parameters 

and requirements (e.g. number of users served) are allowed to be passed to lower layer 

orchestration. 

 Dynamic decomposition 6.6.4.4

Assumptions: single level, dynamic, single choice 

In this scenario the decomposition is made by a ControlApp (described in more detail in 

Section 6.6.2), extended with the various parameters described above. 

A real life scenario can contain any combination of the scenarios listed, which implies 

complexity of the implementation. These aspects will be further worked on by the project. 

6.7 Orchestration process 

The Orchestration Layer has as its input an NF-FG and is responsible for mapping the 

resource requirements described in the NF-FG to the available resources in the 

Infrastructure Layer, giving as its output a decision where to instantiate certain Network 

Functions, how to connect them to each other and the Service Access Points included in 

the NF-FG. The decision should not only fulfil the requirements posed by the input NF-FG 

but also be as close to an optimal placement as possible, as defined by certain goals. The 

Orchestration Layer also takes part in the life-cycle of a deployed NF-FG, dynamically 

reacting to changes in both the infrastructure and in the requirements of the NF-FG to 

either fulfil requirements updated by the client or updated by the system itself in order to 

automatically adapt to the demand required by a particular deployed NF-FG. In this 

section we discuss some of the design options we have when designing this process, how it 

can be built to scale to a large scale network of resources, how individual NFs and NF-FGs 

can scale, and what interactions with other components can be expected.  
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Figure 6.23: High level view of the orchestration process.  

A simplified and high level view of the functions in the Orchestration Layer can be seen in 

Figure 6.23. The basic flow is that an incoming NF-FG is decomposed into appropriate 

VNFs, potentially with input from the topology manager in order to take into account 

resource restrictions, as described in Section 6.1, 6.2 and 6.5. The decomposed NF-FG is 

then handed over to the Virtual Network Embedding module responsible for find a near-

optimal way to map the resource requirements to the topology. If a mapping is found the 

verification process verifies that the mapping is correct before handing it over to the 

scoping process. The scoping process partitions the mapping into appropriate pieces and 

sends them to the lower layers to be instantiated. 

The verification processes is mainly developed as part of work package 4, and may verify 

several different aspects of the NF-FG as it passes through the overall orchestration 

process:  

● The complexity of solving the Virtual Network Embedding Problem increases with 

the level of information provided (see Section 4.6). To simplify the algorithms employed 

for orchestration and reduce their runtime they may utilize a limited set of core 

information. The verification process could as a second step verify that the found 

embedding actually is a valid one. If the verification fails, the VNE process should be 

restarted with additional input to produce a new embedding. 

● As the orchestration process naturally happens in a distributed setting, resource 

information may change while the orchestration algorithm is computing a solution. The 

verification step may be necessary to check that the resources used by the embedding are 

still available afterwards. 

● The verification functionality should check the correctness of the outcome of the 

decomposition process to ensure that the decomposed NF-FG still fulfil all the 

requirements (as SLAs, KPIs etc.) that were defined for the initial NF-FG. This step may 

occur before the VNE process.  

● Before passing the obtained NF-FG to the scoping process, certain verification 

routines should be executed to check for the topological correctness of the defined NF-FG. 
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These checks might verify reachability constraints e.g. that end hosts can 

actually communicate or that no forwarding loops exist in the NF-FG. 

The scoping processes has two main responsibilities, partitioning the embedded NF-FG into 

appropriate pieces for the lower layer orchestrators or controllers, and allocate necessary 

cross-domain handles to allow the partitions to be stitched together in the Infrastructure 

Layer.  To partition the embedded NF-FG requires an understanding of where in the NF-FG 

the domain boundaries are, how the NF-FG can be split and what information is necessary 

to bridge them, in a lower layer. This could for example be to split cross-domain links into 

two intra-domain links and translate KQIs/KPIs from the single link to be applicable to two 

links. Part of this split includes either directly allocating necessary matching traffic tags 

(e.g. VLAN-, VXLAN-, or MPLS tags or wider flow-space definitions) so that traffic from one 

domain can be identified in the other domain, or allocating temporary handles that lower 

layer orchestrators or controllers can use to negotiate traffic tags between themselves.  

The basic flow depicted in Figure 6.23 hides all the complexity that will be introduced in 

order to provide scalability, e.g. it is likely that several of these processes are 

implemented in a hierarchical fashion, with topology management, decomposition, and 

virtual network embedding taking place multiple times. Additional complexity is added by 

the need to handle dynamic processes described in Section 6.7.3, to handle e.g. 

automated scaling, arriving at more detailed processes is not done in this section, we aim 

at describing the options we have and what the detailed processes should handle.  

In addition, a preliminary prototyping framework has been established to support the 

development of all highlighted modules.  The benefits of this framework and proof-of-

concept implementations were demonstrated in [Csoma2014a], [Csoma2014b]. 

6.7.1 Orchestration scalability 

To be able to orchestrate NF-FGs over large scale networks, scalability features in the 

Orchestration Layer needs to be supported. We have three major mechanisms for improve 

the scalability of the orchestration system. These mechanisms each individually improve 

the scalability of the system but they can also be combined.  

The first attempts to reduce the amount of details and options for placements that the 

Orchestration Layer needs to manage through network abstractions, by hiding parts of the 

topology and details about its components in lower layers in order to reduce the size of the 

topology graph that has to be taken into account by the virtual network embedding 

algorithms responsible for finding a placement within the required parameters. Reducing 

the amount of packet forwarding nodes, compute/storage nodes and links connecting them 

can have a big impact on the performance of VNE algorithms since the time and memory 

requirements typically scale in proportion to the complexity of the graphs they are 

operating on. 
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The second mechanism is parallelized orchestration, in which we attempt to split the 

problem of virtual network embedding into smaller problems within one logical 

Orchestrator and distribute the virtual network embedding calculations among a number of 

peers, either running as multiple threads or processes in a single machine or among 

multiple machines that form an orchestration cluster.  

The third mechanism is hierarchical orchestration. Here, like in parallelized orchestration, 

the problem is divided into smaller pieces and delegated to multiple Orchestrators on a 

lower level, letting each of them handle a subset of the problem on a smaller topology, 

the network domain that they are responsible for.  

A combination of these could be to have a hierarchical orchestration setup, where each 

Orchestrator in the hierarchy is implemented as a parallelized/distributed Orchestrator. 

Each level in the hierarchy could in addition calculate an appropriate network abstraction 

which it communicates to higher layers.   

6.7.1.1 Network abstractions 

When discussing network abstractions here what we refer to can also be called virtual 

topologies, abstract topologies, network maps, etc. These represent different ways of 

hiding information about the actual topology and present a simplified or reduced view of 

the actual topology to whoever is the receiver. We do not refer to other concepts sharing 

the same name, such as network abstraction layers as used in e.g. the OSI 7-layer model. 

Figure 6.24 shows a scenario where two physical networks controlled by two controllers 

which export their topology to a single logical Orchestrator. Since a controller is only 

aware of the topology under their own control, the Orchestrator has to construct the full 

topology (seen in the rectangle in the right side of the figure) in some way. When 

communicating this topology to a higher layer the control- and/or Orchestration Layer can 

hide parts of the topology in order to reduce the complexity of the graph, hide irrelevant 

or confidential details, and simplify calculations at a higher layer. In terms of 

performance, this simplification in most cases is a trade-off between optimality of the 

traffic engineering / virtual network embedding and the computational cost of the 

associated algorithms. Here we will go through some network abstraction techniques and 

discuss their pros and cons. 
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Figure 6.24: Various modes of abstracting the topology to higher layers. Blue ’E’s 
represent external nodes whereas yellow circles are representations of nodes in the 
Orchestrator topology. 

Abstract node (“Big Switch”) 

One of the extreme options the Orchestrator has is to reduce the entire topology to a 

single abstract node (seen at the leftmost in Figure 6.24). In this case all internal nodes 

and internal links are hidden within a single node, external links and end-points which 

represent the connections to other networks or nodes remain the same.  

The abstract node view efficiently reduces the number of components in the topology, in 

the example in Figure 6.24 the number of components is reduced from a total of 26 

objects (links, nodes, etc.) to 7 objects in the abstract topology. The “efficiency” of the 

reduction is proportional to the number of internal nodes and links vs external links and 

endpoints, the larger the internal network the more is gained.  

However, with the reduced view we lose all information about the internal network, for 

example we lose any geographical information about nodes, and all information about 

internal connectivity and performance. For links these include bandwidth/latency/jitter 

parameters and for nodes this may be for example current load. We may have link 

parameters on the external links, but it is difficult to say what they actually represent. For 

example if two endpoints, connected with two external links to the abstract node, each 

external link with a bandwidth of 1 Gb/s, this does not necessarily mean we can connect 

the two endpoints with 1 Gb/s, since internal links may not have sufficient bandwidth. This 

is an issue unless the internal network is constructed in such a way that it is non-blocking 

even when all external links are saturated.  Another issue with this extreme abstraction is 
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that network partitions cannot be represented; it looks like all endpoints can connect to 

each other even if the internal network is partitioned.  

Some of these issues can be alleviated by re-introducing some of the information we 

removed in the abstraction and adding it as node related parameters on the abstract node 

itself, this could for example include a “Connectivity matrix” showing e.g. maximum 

bandwidth between all endpoints. An alternative to explicitly carrying information in nodes 

could be an interface for asking certain questions about specific endpoints, e.g. “Can 

endpoint A and B be connected, and with what bandwidth?”. Such an interface allows the 

management of the topology to remain simple at the cost of additional latency in the 

processes using the information. 

Abstract nodes and links 

A less extreme option is to allow the abstract topology to contain multiple abstract nodes, 

connected with abstract links to represent e.g. bottlenecks in the topology. The abstract 

nodes can be used to group e.g. endpoints with fairly uniform traffic parameters between 

each other (i.e. similar bandwidth, latency, etc.)  by creating an abstract node and 

attaching a group to it. 

This approach reduces the size of the network topology while preserving some information 

that is useful for traffic engineering, and can also represent partitions in the network. As 

nodes that are geographically close are more likely to get grouped together it can keep at 

least some of the geographical information in the topology. This approach also allows a 

trade-off between traffic engineering quality and topology size, depending on how the 

abstract topology is constructed and with which primary goal the end result may be range 

from the single abstract node case to a full topology. Automation of the abstract topology 

construction may be possible to formulate as a graph clustering problem [Schaeffer2007]. 

If this is possible existing algorithms may be applied automatically and periodically at the 

Orchestrator(s) in order to generate a suitable abstract topology. If the “aggressiveness” of 

clustering can be tuned, this could perhaps be used as a parameter controlling the trade-

off between traffic engineering and topology complexity. Examples of clustering 

approaches can be found in e.g. [Beck2013] and [Fuerst2013]. 

Abstract nodes, links, and ports 

This approach could be seen as a different way of implementing the “single abstract node 

with connectivity matrices”, without the matrices. Recall that the matrices represent 

connectivity, bandwidth, latency, etc, between endpoints in the graph which are stored as 

node parameters on the single abstract node. These matrices may also be expressed as 

links in a graph, generating something that could range from a full mesh between 

endpoints to a reduced mesh in case of network partitioning, nodes which cannot reach 

each other, etc. However, as the number of links would tend to scale as N2 with N either 

being the endpoints (or nodes connecting multiple endpoints) this approach does not scale 

well. As an alternative to matrices it may simplify the implementation of algorithms 
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operating on the graph, by reducing the amount of information stored in nodes which may 

be an issue depending on how the topology is stored, updated etc. 

No abstraction - full topology 

Depending on how the algorithms that utilize the topology operate, it may not be 

worthwhile to provide an abstract view at all. Some algorithms need to iterate through the 

whole graph and thus scale badly as the size of the topology grows. Other algorithms may 

depend more on the type of topology (random, tree, circular, etc) and e.g. the number of 

geodesics (number of shortest paths in the network). For example if the underlying 

topology is a tree topology there is only one shortest path from a leaf to the root, if the 

typical use of the graph is to calculate the bandwidth from a leaf to the root it may not be 

worth to try to simplify the graph. 

6.7.1.2 Parallelized/distributed orchestration 

With parallelized orchestration a single logical Orchestrator may be implemented over 

multiple CPUs and the whole or parts of the VNE algorithms calculations distributed among 

these CPUs either in a SMP/multi-core system or over multiple servers. The VNE problem 

could potentially be parallelized/distributed using two general approaches, illustrated in 

Figure 6.25: 

1. Dividing the incoming NF-FG into partitions and calculating them in parallel, or 

calculate the original NF-FG in parallel in isolated or restricted parts of the shared 

topology (top of the figure).  

2. Parallelization of parts of the VNE algorithm itself (bottom of the figure). Some 

operations within the VNE algorithms can potentially be executed in parallel e.g. 

calculating a number of constrained paths between certain points or evaluating different 

embeddings.  

 

Figure 6.25: Distributed Orchestrators with a shared topology.  

How much the second parallelization approach , distribution of internal calculations, can 

aid scalability depends heavily on the VNE algorithm itself, if none of the steps in the 

algorithm can be carried out in parallel there is nothing to gain in terms of lowering the 

time it takes to perform a single embedding.  This is illustrated by “Amdahl’s Law” which 

estimates how much speedup gain S one can expect depending on the proportion P of the 
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program that can benefit from parallelization, for N processors the gain can be estimated 

as:  

𝑆(𝑁) =
1

(1 − 𝑃) +
𝑁
𝑃

 

That is, if P=0.5, i.e. 50% of the execution of the program can be parallelized, we can 

expect at most a factor two of speedup gain, regardless of how many CPUs we dedicate to 

the 50% of the program that can be parallelized.  

However, dedicating multiple CPUs to an Orchestrator even if the VNE algorithm itself is 

not very parallelizable can still be useful in order to allow multiple NF-FG embeddings to 

be carried out in concurrently without having to wait for other embeddings to finish before 

starting with a second. How useful this is in practice depends on how likely different 

embeddings are to affect each other. If for example two embeddings are calculated 

concurrently without synchronizing used resources they may end up assigned to the same 

resource in the topology, even though that resource can only accommodate one of the 

embeddings. This requires one of the embeddings to be calculated again once it has been 

rejected since the other one used the critical resource first. That issue can be managed by 

for example adding locks to the topology data structure used to calculate the embedding, 

in order to communicate between concurrent processes that a particular resource may 

already be occupied. This in turn adds latency to the calculations as locks has to be 

synchronized between concurrent processes.   

6.7.1.3 Hierarchical orchestration 

Hierarchical orchestration differs from the distributed/parallelized approach by not having 

a shared topology view between the Orchestrators; instead the topology at each level is 

limited to a subset of the total topology (depicted in Figure 6.26). The limited topology 

may come from a practical placement of the Orchestrators based on e.g. geography or by 

placing Orchestrators based on knowledge of the total topology, e.g. by setting a maximum 

number of nodes in an Orchestrator’s topology and allocating Orchestrators based on this 

limit.  

 

Figure 6.26: Hierarchical Orchestrators. 

The hierarchical orchestration process is of specific interest within the UNIFY project, as 

ISP networks can easily be considered to be hierarchical (see Annex 2): Assuming that NFV 
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functionality is placed at POPs, each of these POPs can be considered an independent 

orchestration domain such that the global orchestrator of the ISP just ensures appropriate 

connectivity and passes the orchestration of Network Functions towards one of the POP 

orchestrators. 

This approach is taken in [Beck2013] which proposes a hierarchical placement of 

Orchestrators based on clustering of the total network topology to create a tree topology 

of Orchestrators. A short summary of how this proposal operates:  

1. When an Orchestrator receives a NF-FG it calculates a heuristic based on the 

number of nodes, required bandwidth and other parameters of the NF-FG, and compares it 

to the same heuristic calculated on the topology in its child Orchestrators in the hierarchy.  

2. It then forwards the incoming NF-FG to a child whose heuristic is larger to the one 

of the NF-FG itself, starting with the child closest to the NF-FG requirements.  

3. When the recursion stops, i.e. there are no more potential children, the 

Orchestrator tries to perform a VNE embedding, and if that fails the parent one step above 

in the hierarchy continues to the next potential child.  

4. If none of the children that could potentially embed the NF-FG are able to do so, 

the Orchestrator tries to do it using the topology on its own level, if that also fails it again 

backs up until all an embedding is found or the request fails.  

In this proposal the NF-FG itself is not partitioned, the original request is used throughout 

the hierarchy, in terms of Figure 6.26, NF-FG’ and NF-FG’’ are identical to the original NF-

FG. The authors additionally propose a locking scheme which in conjunction with a 

coordination protocol allows the Orchestrators to process multiple NF-FG requests in 

parallel.  

One potential extension of this proposal could be to allow Orchestrators to partition an NF-

FG into e.g. two new requests, NF-FG’ and NF-FG’’, before forwarding the request to two 

of its children, given that the connectivity requirements between the two partitions are 

fulfilled by the connectivity between the topologies managed by  the child Orchestrators. 

6.7.2 NF and NF-FG Scaling 

The possibility to dynamically scale Network Functions at run-time in an automated fashion 

is one of the main advantages offered by the VNF approach, providing both better resource 

utilization and better service at a lower cost. There are multiple reasons for initiating a 

scaling procedure; a user could request higher capacity ahead of time in order to deal with 

a known increase of demand in the future, the procedure could be triggered by increased 

demand on the fly, or the procedure could be triggered by changes in the network / 

compute substrate itself, for example when additional hardware is added or is taken off-

line for administrative purposes.  
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Scaling a VNF can be done in many ways, which one is appropriate in a particular case 

depends heavily on the precise function provided by the NF, for example; the type of 

traffic it operates on and at which layer in the networking stack, requirements on 

synchronization, requirements on traffic during the scaling event, dependencies on other 

NFs, ability to run multi-threaded, as well as the operators ability to modify the NF to 

better support scaling.  Here we first try to break down the types of VNFs and the main 

options we have when increasing/decreasing the performance of a VNF.  

6.7.2.1 VNF taxonomy 

Table 6.7: VNF taxonomy, properties of a VNF implementation 

Sensitivity State/Flo
w 

Support Flow type Consistency Modificatio
n 

Packet loss None None Non-
divisible 

None None 

Packet reordering Individual 
flow 

Resource 
aware 

Layer 1-4 Low rate Low rate 

Service 
interruption 

Multiple 
flow 

Scaling 
protocol 

Layer 4-7 High rate High rate 

Progressive move All flows -- -- -- -- 

 

Various scaling properties for a VNF implementation can be seen in Table XX, where six 

different properties/attributes have been defined, some of them are mutually exclusive 

whereas for others multiple options may apply to a single implementation: 

Sensitivity represents flags that characterize the VNF’s tolerance of effects caused by the 

scaling process itself; a sensitive VNF requires a more complicated control plane to ensure 

that these guarantees are met.    

 Packet loss, the VNF cannot accept any packet losses during scaling 

 Packet reordering, the VNF cannot accept any re-ordering of packets during scaling 

 Service interruption, the VNF cannot accept any interruption during scaling 

 Progressive move, whether or not state has to be immediately transferred to new 

instances  

State/Flow represents the type of the state stored in the VNF; here multiple types of state 

may be present in a single VNF, this affects the granularity and speed at which the control 

plane may move flows and their associated state from one VNF instance to another.  

 None, no state associated to individual flows is stored; however there may still be 

VNF configuration parameters. 

 Individual flow, there is a one-to-one association between a flow and a state block 

o E.g. a packet counter in a firewall for a single specific flow, 10.0.0.0/24 

 Multiple flow, there is a many-to-one association between flows and a state block 

o E.g. a packet counter in a firewall for multiple flows, 10.0.0.0/8 

 All flows, there is a all-to-one association between all flows and a single state 

block 

o E.g. a packet counter in a firewall counting all packets 
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Support indicates what type of scaling support a VNF has, a VNF may support multiple of 

these. This affects what scaling options we have and what can be guaranteed during 

flow/state transfer.  

 None, the VNF has no internal support for scaling  

 Resource aware, the VNF is able to take advantage of increased local resources 

 Scaling protocol, the VNF has a protocol to coordinate state transfer and traffic 

redirection 

Flow type indicates the type of traffic flow a VNF is processing, this affects the complexity 

of distributing traffic among multiple VNF instances.  

 Non-divisible, the traffic flow cannot be sub-divided into smaller flows.  

 Layer 1-4, the traffic flow can be sub-divided based on layer 1-4 information (e.g. 

IP addresses, TCP ports)  

 Layer 4-7, the traffic flow can be sub-divided based on layer 4-7 information (e.g. 

HTTP session identifier, SIP session,  

Consistency refers to state synchronization requirements between VNF when multiple VNF 

instances are running simultaneously to distribution load. This affects the requirements on 

the intra-VNF control network needed to maintain consistency.  

 None, the VNFs can run independently without sharing/synchronizing state. 

 Low rate, the VNFs need to share/synchronize state but at a low traffic rate, e.g. 

no strict requirements on high bandwidth/low latency connections between the VNFs.  

 High rate, the VNFs need to share/synchronize state at a high traffic rate, e.g. with 

strict requirements on high bandwidth/low latency connections between the VNFs. 

Modification refers to the rate of internal state updates (in respect to the traffic rate) 

during normal operation of a VNF, this affects the migration of running functions and the 

requirements on both a intra-VNF control network as well as on the control plane / scaling 

protocol. 

 None, the VNF has no internal state affected by traffic. 

 Low rate, the VNF seldom updates its internal state, e.g. a NAT may update the 

state only when new sessions are established or when they time out.  

 High rate, the VNF often updates its internal state, e.g. an NF counting packets per 

flow is updating its state for each packet. 

These parameters greatly affect the options available when scaling a VNF and the 

complexity of the required scaling solution. For example a VNF with a non-divisible flow 

type cannot be scaled by starting multiple VNF instances since we cannot spread the 

traffic to more than one instance. A VNF with no requirements on packet loss, re-ordering, 

and service interruption requires no sophisticated coordination of flow and state transfer.  

6.7.2.2 Scaling approaches 

We have identifier three major approaches to scaling a VNF; individual scale-up/down by 

adding/removing resources, scale-out/in by adding/removing instances and redirecting 

traffic, and dependency scaling where a VNF’s performance is depending on another 

VNF/service which in turn has to be scaled using previous methods or perhaps through 
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improving the link to that VNF/service. These approaches may also be combined, for 

example by first trying to assign more resources to a VNF and when no more local 

resources are available, adding additional instances and spreading the load. In Figure 6.27 

the initial setup is depicted. A VNF is deployed connected to Service Access Points (SAPs), 

transferring all data bi-directionally on the link (indicated by the <*,*> notation). A VNF 

CtrlApp is connected to the VNF in order to control and manage its internal state. The 

CtrlApp is also connected to the Resource Orchestrator in order to update the initial NF-FG 

deployment by e.g. adding additional NFs or modifying the traffic forwarding rules on the 

links.  

 

Figure 6.27: Initial setup before any scaling events. 

Scale-up/down of individual NFs 

The simplest approach may be to scale up rather than scale out, i.e. increasing the 

performance of a single NF instance rather than adding more instances. One way of doing 

this would be to increase the allocation of existing host node resources to the VNF running 

on that host, e.g. allocating more CPUs, memory, or I/O resources to a VM, or in the case 

of the VNF running as a container/process, relaxing the resources constraints placed on 

them. This process is shown in a simplified way in the left part of Figure 6.28. Here a 

request for increased/decreased resources is sent to the Orchestrator which adds/removes 

resources to VNF_1, which may need a notification to realize that the situation has 

changed and adapt to the situation. 

 

Figure 6.28: Scaling by resizing existing resources (left).  Scaling by migrating to a new 
VM/container (right).  
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This approach requires that 1) host resources are available, and 2) that the NF is able to 

take advantage of the additional allocated resources. That a NF is able to use additional 

resources is not always the case, the implementation may for example be single-threaded 

and therefore unable to take advantage of additional CPUs (see Support in the VNF 

taxonomy). The performance bottleneck additionally may be in a resource that cannot be 

easily controlled, for example the main memory bus might be saturated rather than the 

CPU itself. This approach also requires that the virtualization or container system is 

capable of assigning additional resources to a running instance, and that the instance is 

able to notice that additional resources has been added.  

If additional host resources are not available an extension of this approach is to migrate 

the instance to a different host machine where more resources are available, using e.g. 

traditional live-migration techniques such as KVM10 live-migration or process/container 

migration in CRIU11 depending on the virtualization system used (depicted to the right of 

Figure 6.28). Here a request for an additional instance is sent to the Orchestrator which 

allocates a VM/container (VNF_2) with more resources that the original (VNF_1). After 

allocation the existing state is transferred to the new instance, traffic redirected via the 

Orchestrator and a notification sent to VNF_2 if necessary. This still requires that the VNF 

is able to take advantage of the new resources, and typically would cause an interruption 

of the service during the final phase of the migration process. Live migration usually 

involves transferring all VM/process memory to the new host, marking memory that has 

been modified during the transfer process, and finally stopping the original VM/process to 

transfer the modified memory before starting the new VM/process. How long the 

interruption is varies on the virtualization system used, the NF itself, the network used to 

transfer the memory, etc. Additionally, during this process traffic must be redirected from 

the original host to the new, during the redirection packets may be lost or re-ordered and 

established connections broken (e.g. TCP connections terminating on the NF). Depending 

on the service provided by the VNF this may or may not be acceptable behaviour. There 

are more sophisticated ways of transferring state and flows, e.g. OpenNF [Gember-

Jacobson2014], these are discussed below in Section Scaling protocols. 

Scale-out by adding instances 

Scaling NFs may also be done by creating additional VNF instances and spreading the load 

among them. The complexity of the process for this ranges from fairly simple in the case of 

a stateless VNF that accepts packet loss and reordering to quite complex for stateful VNFs 

with rapid state updates, high synchronization requirements, and a transition where both 

packet loss and reordering is unacceptable. 

                                            
10 http://www.linux-kvm.org/page/Migration 

11 http://criu.org/Main_Page 

http://www.linux-kvm.org/page/Migration
http://criu.org/Main_Page
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Figure 6.29: Scale-out example for Layer 1-4 traffic (left). Scale-out example for Layer 4-
7 traffic (right).  

The Scale-out approach can only be used if the traffic into the VNF is divisible, either at 

layer 1-4 or layer 4-7. Splitting the traffic in case of layer 1-4 could be performed by for 

example an OpenFlow-enabled switch or other programmable switches/routers. If higher 

layer headers are needed to split the traffic a particular Load balancer for those protocols 

is required, one capable of dividing traffic based on those higher layer protocol(s). These 

two options are shown in a highly simplified manner in Figure 6.29, an actual 

implementation may require many more steps to perform the function in a controlled 

fashion. In the left side of the figure a new VNF instance is created and the relevant 

existing state is copied to the new instance. Once the copying process is complete 

associated traffic flows are redirected by the Orchestration Layer and modified state once 

again copied and removed from the original VNF.  In the right side of the figure the process 

is similar in the case of Layer 4-7 traffic, however the load balancers require configuration 

by the CtrlApp and traffic is completely redirected from the original VNF into the load 

balancers by the Orchestration Layer, rather than divided among the VNFs. One can 

imagine cases where the Layer 1-4 case is handled the same way using e.g. an OpenFlow 

switch as Load balancer in order not to burden the Orchestration Layer with many traffic 

redirection updates. 

Depending on the particular VNF implementation there may be internal state associated 

with one or more traffic flows, this state also has to be divided and transferred to the new 

instance as well. The transfer of state(s) and the associated flow(s) needs to be 

synchronized to avoid race conditions, e.g. if one transfers the state associated with a flow 

first and then instructs a switch or load balancer to redirect traffic flow(s) to the new VNF 

instance, packets that were already in transit to the original instance may arrive and 

affect the state that was just copied to the new instance. One way to avoid this problem is 

to redirect only new flows (called Progressive move in the VNF taxonomy), which has no 

associated state in the original VNF; to the new VNF until the load of the VNF instances are 

balanced. However, this approach does not work in cases where there is state shared 

among all flows (or, sometimes between multiple flows), and may take a long time if flows 
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are long lived, new flows are rare, etc. It also requires that one is able to distinguish 

between new and existing flows (in the entity redirecting traffic), not a trivial problem.  

In the cases when state is shared between multiple flows one can move groups of flow in 

unison i.e. move all the multiple flows sharing state atomically, however when this is not 

possible the groups might need to be subdivided and the shared state kept synchronized 

between multiple VNF instances during run-time (this is also true when state is shared 

between all flows). Depending on how often the state is updated and the required 

consistency model (e.g. eventual consistency, strong consistency, etc.), this problem could 

be handled by the same protocol responsible for the scale-out in the first place or it might 

require a dedicated separate system built-in to the VNFs with high bandwidth / low-

latency data plane connectivity between the VNF instances. These issues (called 

Modification and Consistency in the VNF taxonomy, Table 6.7) may strongly affect how 

performance of the distributed VNF system scales with regards to the number of VNF 

instances, as in any distributed or parallelized system.  

Finally, the scale-out event itself additionally burdens the original VNF during the process 

of scaling out, generating traffic for transmitting state, perhaps requiring locking of data 

structures within the VNF, etc. This has to be taken into account when the decision to 

scale-out is taken, perhaps one should anticipate increased load already at 80% load and 

start the process already at that level rather than wait until the load hits 100% for 

example. It is worth mentioning that observability points can provide observed 

performance metrics and monitoring information to be used for the scale-out decision. 

 

Figure 6.30: Scale-in of a Layer 1-4 VNF (left). Scale-in of a Layer 4-7 VNF (right). 

Similarly to scaling out by adding instances, it is possible to scale-in by removing instances. 

This process is very similar to the opposite and requires state to be moved from one 

instance and the traffic redirected, likely with the same requirements (depending on the 

VNF) as for the scale-out event. This has to be overseen by the CtrlApp which may move 

individual, multiple, or all flows stepwise into a VNF instance, and finally signal the 

Orchestration Layer to remove the now “empty” VNF instance. Simplified examples of this 

process is shown in Figure 6.30, to the left a Layer 1-4 VNF is scaled-in by first copying 
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state from VNF_2 to VNF_1, then the traffic redirected, and finally the VNF_2 instance 

removed. In the right hand side a similar procedure is performed for a Layer 4-7 VNF.  

In both the case of scale-out and scale-in a process of optimizing flow rules in both Layer 

1-4  and 4-7 devices once the move has been completed may be useful, in order to reduce 

the number of entries used to move fine-grained flows into a smaller number of more 

generic flow entries.  

Scaling dependencies 

The performance of a VNF may also depend on other VNFs or functions that are not 

contained within the VNF instance itself and therefore not controlled by the VNF CtrlApp. 

This could be e.g. a block device attached over the network such as an iSCSI drive, a 

database used for authenticating flows, etc.. In these cases the performance bottleneck 

may appear to be the VNF when the real reason could be the bandwidth to the iSCSI device 

or an overloaded database server. Dealing with issues such as this requires wider 

understanding of the system than what a VNF CtrlApp alone can be expected to have and 

may be a topic for troubleshooting studies in WP4, which may apply techniques for root 

cause analysis which could potentially detect real issue.  

Scale-out/in protocols 

One system for dealing with the transfer of state and re-direction of flows with optional 

guarantees on packet loss and re-ordering is OpenNF [Gember-Jacobson2014]. The OpenNF 

architecture, seen in Figure 6.31, consists of three components, a CtrlApp responsible for 

directing scaling events by transferring flows using its knowledge of NF internal state and 

external input (e.g. measurements), a NF State Manager responsible for state transfer and 

event buffering, and a Flow Manager responsible for redirecting the traffic flows to and 

between NFs.  

 

Figure 6.31: OpenNF architecture, taken from [Gember-Jacobson2014] 

To perform loss-free and ordered state transfers two APIs are used, one southbound API 

that is implemented in the VNF itself used for retrieving and inserting state as well as 

keeping track of state updates, and a northbound API utilized by the CtrlApp to direct 

which flows (and state) to move, copy, and share between NFs. The southbound API 

consists of commands to retrieve, insert and delete state for the three different types of 

state to flow mappings, individual flows, multiple flows and all flows:  

multimap<flowid,chunk>  getPerflow(filter) 
void    putPerflow(multimap<flowid,chunk>) 



  

100 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

void    delPerflow(list<flowid>) 
multimap<flowid,chunk>  getMultiflow(filter) 
void    putMultiflow(multimap<flowid,chunk>) 
void    delMultiflow(list<flowid>) 
list<chunk>                              getAllflows()  
void    putAllflows(list<chunk>) 

Here filter represents a rule matching a particular or set of flows (much like a Match in 

OpenFlow), flowid identifies individual flows, and chunk is a “raw” block of state data 

(since different NFs may use various types of internal structures to store their state).  In 

addition to these eight functions for transferring state two more commands are needed to 

observe and prevent state updates during a scaling event, in order to guarantee 

consistency: 

void   enableEvents(filter,action{process | buffer | drop}) 
void   disableEvents(filter)  

These two commands are used to observe and prevent state updates caused by packets 

matching filter, the action drop causes packets to be redirected and buffered at the 

CtrlApp, the action buffer causes to be buffered locally, and finally the action process is 

used to notify the controller that a certain packet is being processed (and thus might 

modify the local state).  

On the northbound API side, three commands are available:  

move(srcInst,dstInst,filter,scope,properties) 
copy(srcInst,dstInst,filter,scope) 
share(list<inst>,filter,scope,consistency{strong | strict}) 
 

The move() command transfers the state and traffic corresponding to filter from VNF 

srcInst to dstInst, with a scope (per-flow, multi-flow, all-flows), and certain properties i.e. 

loss-free and/or ordered. Similarly, the copy() command is used to clone state between 

two VNF instances, in order to provide eventual consistency for shared state but does not 

redirect traffic. Finally the share() command ensures strong or strict consistency for 

certain state for VNFs in the inst list.  

Without going into details on how these commands are implemented and how the signalling 

works it seems that in principle the required framework for handling scaling of VNFs is 

there. There are however some issues that could be improved with regards to carrier 

environments, for example the current OpenNF system is designed to do significant amount 

of packet buffering and processing in the CtrlApp, something probably not feasible for 

VNFs which has to deal with large amounts of traffic. Tweaking the OpenNF design to move 

this functionality either into the VNF host system (e.g. a Universal Node) or into the VNFs 

themselves could be one approach to deal with these issues. 

6.7.3 Dynamic processes 

The Orchestration Layer is not only responsible for the initial deployment of a Service 

Graph but also has the responsibility of maintaining it during its lifecycle from start to 
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stop. During this lifecycle dynamic processes may require that the Orchestration Layer 

adds or removes components, change the amount of resources allocated for components, 

or even initiate migration of logical links or VNFs. In this section we detail what these 

dynamic processes are and outline some strategies on how the Orchestration Layer can 

deal with them. In Figure 6.32 a simplified view of the UNIFY architecture is depicted, 

showing with red circles the main sources of dynamic changes.  

 

Figure 6.32: Simplified view of the UNIFY architecture with focus on dynamic processes 
affecting the Resource orchestration. The red circles highlight the interfaces which 

interact with the Resource Orchestrator. 

1) Changes to Service Graph/NF-FG on the Northbound Interface from higher layers, 

e.g. modifications to an existing Service Graph directly from a client, or from a higher 

level Orchestrator in the case of hierarchical orchestration. The dynamic changes that may 

occur here are:  

a) Addition/removal of SAPs, VNFs, and links between VNFs/SAPs 

b) Modification of requirements on VNFs, Links, and end-to-end requirements 

2) Changes to part of the NF-FG on the CtrlApp interface triggered either by a client 

through the NF control interface, or automatically based on internal VNF state e.g. if a 

CtrlApp determines that a function needs to scale out due to resource constraints in the NF 

(see Section 6.7.2). Possible dynamic changes here are:  

a) Addition / removal of VNFs, and links between VNFs/end-points 

b) Modification of requirements on VNFs, Links, and end-to-end requirements 
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3) Resource topology changes on the Southbound Interface; these may be caused by 

e.g. new infrastructure hardware or SAPs changing location in the network topology. 

Additionally, the intent to perform administrative work on some component, such as 

upgrading the firmware on a switch, may trigger the need to migrate traffic to other 

paths. The changes coming from the lower/Infrastructure Layer are: 

a) Addition/removal/”administrative down” of SAPs, VNFs, compute/storage 

resources, links 

b) Migration of SAPs 

4) Triggers and reports from monitoring components, e.g. link failures or node 

failures, and performance degradations can affect a link that is explicitly part of an NF-FG 

from the start, connecting for example VNF A with VNF B, or it could be internal to a 

scaled-out VNF.  

a) Failure or performance degradation triggers for physical or logical infrastructure 

(links, logical links, nodes, VNFs, etc.) 

Modifications to a running NF-FG, or a subset of the NF-FG, coming from higher layers or a 

CtrlApp, (1) and (2) respectively, typically comes as a an modified version of the existing 

NF-FG description.   

These dynamic changes coming from different layers and for different reasons are very 

diverse in their characteristics in terms of how often we expect an event to happen, and 

the amount of time the system has available to react to the event. In Table 6.8 we try to 

categorize the dynamic event types into six groups and give a ballpark figure on how often 

we expect the event to occur and how much time the system has to handle an event.  

Table 6.8: Types of dynamic events, expected frequency and reaction times. 

Dynamic event cause Event frequency Expected reaction 

time 

Seasonal demand cycles (e.g. 

New Year’s eve, Christmas, 

vacation period) 

Monthly/weekly. 

Increased/decreased can likely be 

predicted in advance. 

Hours to days. 

Daily demand cycles 

(business hours, movement 

between 

industrial/residential areas) 

Daily. Could likely often be predicted 

in advance, although unpredictable 

events may occur (e.g. public events, 

exceptional news stories) 

Minutes to hours. 

Updated service definitions, 

e.g. adding new SAPs such as 

additional offices, modifying 

Daily/weekly. A customer updating 

their services is not expected to be 

very frequent, though it depends on 

the type of customer and type of 

Minutes to hours. 
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service requirements change. E.g. connecting new offices 

happen less frequently than changing 

from silver to gold home internet 

subscription. 

SAP mobility, e.g. if a SAP 

represents a cell phone or  

outside broadcasting truck  

Seconds to yearly, depending on 

what the SAP represents  

Seconds to hours, 

can be service and 

customer 

dependent 

 

Infrastructure changes, e.g. 

addition of new links and 

nodes or administrative stops 

for upgrades etc. 

Daily to monthly for new 

infrastructure, daily for 

administrative changes 

Minutes to days, 

depending on 

action 

(administrative stop 

vs new resources) 

Physical/logical 

infrastructure failures 

Mean time between failures unknown Milliseconds to 

seconds, can be 

service and 

customer 

dependent  

Our expectation is that infrastructure failures and SAP mobility puts the highest 

requirements on the Orchestration Layer, in terms of updating an existing NF-FG 

deployment in a timely fashion. This is followed by other unpredictable events, such as 

administrative stops, unexpected demand changes either coming from customers as 

updated requirements or from automatic scaling due to unexpected surges in traffic. 

Finally we have changes that can be somewhat predicted such as daily, weekly, and 

seasonal changes where there is time to pre-calculate reactions. 

Strategies for dealing with these events are limited by how time consuming various 

operations in the UNIFY architecture are, across the various layers in the architecture. This 

includes e.g. time to start a new VNF or migrate an existing, time to create or move a 

network connection, time to decompose a NF, time to calculate placement for a whole or 

partial NF-FG, etc. For example, if the whole chain from initial NF-FG to deployment could 

be handled within the expected reaction time, re-deployment from scratch could be a 

viable strategy to deal with most of these events, however it seems unlikely that the 

whole process could be carried out within the milliseconds required to deal with 

infrastructure failures.  

Detailing strategies for dealing with these events without timing information is premature; 

however we can outline some possibilities:  
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1. Recalculate the deployment and transform the existing deployment to the new 

configuration 

2. Recalculate affected parts of the deployment and update certain aspects of the 

existing deployment. This approach could reduce time spent in the Orchestration Layer as 

well as time to update the infrastructure.  

3. Pre-calculate failure scenarios and update the deployment when a particular event 

occurs. This approach can effectively remove any time spent in the Orchestration Layer, 

but pre-calculated scenarios may be outdated when a failure occurs.  

4. Quickly handle certain events in lower layers (e.g. failures), and later re-optimize 

the deployment. For example for a link failure, immediately calculate and deploy new 

network paths and inform the Orchestrator what has happened, which then can take action 

to initiate re-optimization.   

While there are many different events that can occur and each of them should be 

considered, many of them can likely be dealt with in a similar fashion. For example, in 

Figure 6.32, the events originating from higher layers (1) and events at the same level due 

to CtrlApp decisions (2) are very similar and can likely be treated identically. 

6.7.4 Monitoring component interaction 

The monitoring functionality developed in work package 4 needs to be integrated with the 

programmability framework described in this deliverable. The integration of WP3 and WP4 

components involves several components and processes from both work packages and 

requires close integration in some processes. The main questions here are: 

1. How to model monitoring functionality and resource requirements in Service Graphs  

and NF-FGs 

2. How to orchestrate and operate monitoring functionality in the infrastructure 

3. How to utilize monitoring results in WP3 processes, e.g. orchestration and VNF 

control 

In the following sections we will describe some potential answers to these questions and 

describe some implications for the programmability framework.  

 Modeling monitoring functions – VNFs or node capabilities 6.7.4.1

How monitoring functions are modeled and what their roles consist of is described in 

Milestone M4.1 from WP4 but we include a brief summary here. The various monitoring 

functions under development in WP4 generally fit the model described in Figure 6.33, 

which shows the relationship of the three different monitoring components within a simple 

view of a Universal Node.  
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Monitoring of a NF-FG (partially or fully) as well as monitoring of the (virtualized) 

infrastructure12 itself is performed by the means of one or several Monitoring Functions 

(MFs) under the control of a control application; this control application is not necessarily 

the same as a VNF control application. The functional scope of an MF typically covers one 

or several Observability Points (OPs) deployed in the infrastructure. Depending on the type 

of MF, the OP implementation capabilities includes measurement mechanisms, aggregation 

and analytics, as well as communication between OPs.  

The three monitoring components are: 

● A Local Data Plane (LDP) component is part of an OP and performs low-level 

monitoring functions such as accessing packet/byte counters in a OpenFlow switch, 

generating probe packets and injecting them into user traffic flows, piggy-backing 

monitoring data on user traffic passing through a switch, or monitoring some low-level 

aspect of the VNF Execution Environment such as CPU or memory usage. 

● A Local Control Plane (LCP) component is also part of an OP and performs 

configuration and/or triggering of one or more LDP components in the same OP. In addition 

to this functionality it may perform some node-local analytics such as aggregating and 

analyzing monitoring data from one or more LDP components.  

● A Control Application / Control Plane component performs similar functionality as 

the LCP component with a broader scope, controlling one or more MFs (in turn consisting 

of one or more OPs) stretching over multiple nodes in the network. It can configure and/or 

trigger Monitoring functions, aggregate measurement data from them, and perform 

analytics.  

                                            
12 Note that exposed infrastructure can always be the product of a virtualization function at lower 
layers. 
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Figure 6.33: An overview of the mapping of MF and OPs on UNs. 

When the purpose is to monitor the (virtual) infrastructure itself these components, the 

instantiation and management of these components are separated from the NF-FG 

orchestration process. This concept is referred as ‘shared monitoring’ and is explained in 

Section 3.2.9 of D2.2. However when monitoring a service defined as a Service Graph / NF-

FG, the placement and instantiation should be part of the same process that is allocating 

the NF-FG resources, in order to fulfill both the service and monitoring requirements. 

Depending on whether the monitoring is done on (virtual) infrastructure or service level, 

and who the consumer of the monitoring results are, we define four different roles for 

monitoring.  

Monitoring for the operator may be on both (virtual) infrastructure and service level, the 

shared monitoring is done in order to e.g. detect failures in the infrastructure, assist the 

orchestration process with a clear view of the resource status in the network, and trigger 

physical layer troubleshooting and failovers. Service level monitoring can be useful for the 

operator in order to e.g. monitor SLAs of established services, perform root-cause analysis 

upon failures, and trigger logical layer failovers.  

Monitoring for a client is only on the service level with purposes such as SLA monitoring, 

monitoring resource usage in order to trigger requests for additional resources, and 

troubleshooting service behavior. A client may also wish to insert monitoring functions that 

it has full access to, like any of the VNFs it is controlling, in order to perform e.g. fine 

grained monitoring of the certain parts in its service. For example if the client is a VNF 

developer it may wish to perform detailed DPI on packets going in and out of the 

developed VNF function.  
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These four monitoring roles limits the options on how monitoring can be integrated in the 

programmability framework. For example when monitoring is performed for clients we 

cannot provide direct access to infrastructure components as this may allow a client to 

obtain information about services belonging to other clients as well as disrupt its own and 

others services. 

 Example monitoring function 6.7.4.2

One monitoring function under development is a function for monitoring link delay and loss 

monitoring utilizing a time stamping mechanism on packets traversing the network. As 

depicted in Figure 6.34, there is an LDP function on each network hop that adds a 

timestamp to a particular packet before forwarding it. The actual LDP function is realized 

as an OpenFlow action inside an OpenFlow switch. Local analysis and triggering of the LDP 

function is performed by a LCP component running on the SDN controller managing the 

various OpenFlow switches, the LCP component then reports aggregated results to a 

control application. The control application both manages the LCP components as well as 

reports results to higher layers.  

 

Figure 6.34: Example mapping of the link monitoring MF in the Infrastructure Layer. 

 Shared monitoring 6.7.4.3

When monitoring the virtual infrastructure there is no explicit connection to the NF-FG 

orchestration process, the monitoring functions have to be activated by a separate 

process. This process could be part of the bootstrapping phase of the whole system and 

could utilize the same functionality as the orchestration process, such as the topology 

database, underlying controller layers, etc. Once the system is operational, other 

processes have to ensure that new hardware added to the system has monitoring functions 

started if necessary. As the infrastructure controller layers already has bootstrapping 

phases for handling e.g. topology discovery, infrastructure monitoring instantiation and 

configuration could potentially be added to those processes. A way of describing and 

instantiating infrastructure monitoring is introduced below in Section 6.7.4.5. 

Multi-node MF example 

24/09/14 UNIFY presentation template 9 

OP 

Adaptive 
probing 

behavior 

LDP 

Control app 
MF: End-to-end  
delay measurements 

OP-placement on infrastructure,OP-specs (type/
complexity), flow desc, monitoring requirement, 
monitoring conditions, detection thresholds, etc 

UN 

OP 

Modeling & 
monitoring 

behavior 

LDP 

UN 
OP 

LDP 

OP 

LDP 

OP 

LDP 

Internal MF control message exchanges in-network or via controller app 

One-way packet-pair probing 

Reports,e.g.  
change detection 

Conf. 



  

108 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

 Service monitoring as monitoring VNFs 6.7.4.4

Since monitoring functions will be instantiated on the physical infrastructure connected to 

the forwarding graph and also require certain resources in order to function (e.g. CPU) it 

could be possible to include monitoring functions as additional VNF(s) in either the original 

incoming Service Graph in case the client wants to have control over the monitoring 

functionality, or inserted into the NF-FG as part of the decomposition process. This model 

works well for certain monitoring functions when the monitoring role is that where the 

client has full control over monitoring.  

Assuming that the initial Service Graph connects SAP1 and SAP2 with a Firewall VNFs as 

depicted in Figure 6.35. Once the initial Service Graph has gone through the decomposition 

process it may look as in the bottom part of the figure. At this stage all links are still 

logical links only, without any mapping to physical forwarding nodes or link, similarly the 

placement of VNF nodes and their associated control applications have not yet been 

performed. 

 

Figure 6.35: Initial service without monitoring 

Assuming we would like to monitor the delay between FW-SAP1 and FW-SAP2 connected to 

the Firewall VNF. Doing this with monitoring functions as VNFs would look like Figure 6.36 

where two delay monitoring functions have been included. As the decomposition is done 

the end result has included two functions into the graph that can now be embedded by the 

VNE algorithm.  As the links are still logical at this point the only thing we can do to affect 

the placement of the monitoring VNF is to set the link latency requirements very low 

between e.g. Delay SAP2 and FW-SAP1 and hope that the leftmost Delay MF is placed very 

close to FW-SAP1. However, we still have no guarantees that no additional links are 

included in the placement so we cannot be sure we are not actually monitoring the latency 

between FW-SAP1 and FW-SAP2 plus a number of links. Additionally, modelling this type of 

monitoring functions as VNFs and inserting them between existing SAPs in the Service 

Graph require that the all the user traffic is passed through the monitoring VNFs. Passing 

client traffic through the monitoring VNF both affects the traffic we try to measure (e.g. 

adding latency) and adds instability to the system as a failure in the monitoring VNFs may 
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cause client traffic to be dropped in case the monitoring VNFs get overloaded. One could 

insert the Delay MFs with connections to the FW VNF but without connections to the 

external SAP1 and SAP2 to avoid passing user traffic through them, but this is often not 

advised since one typically wants monitoring probe packets to be treated as close to  

normal traffic as possible, and follow the same path through the network. 

 

Figure 6.36: SG / NF-FG Extended with Delay Monitoring functions inserted as VNFs 

However for certain monitoring functions this may be the intended behaviour, for example 

if a VNF developer wishes to perform DPI on traffic entering and leaving a VNF to find bugs 

in the way it processes packets.  

Looking back to the monitoring example shown in Figure 6.34, where components have to 

be inserted into OpenFlow switches in order to perform the measurements, we can see 

that the VNF model is inadequate to express this requirement, as all links in the final 

decomposed NF-FG are still logical, without any mapping to the physical nodes and links 

that will realize the logical connectivity, and it is in those physical nodes where the 

functionality has to be installed or activated. Like the in the case of a VNF developer 

wanting DPI functionality, this functionality may be modelled as VNFs if the client requests 

OpenFlow switches and controllers as VNFs in its Service Graph, perhaps with the 

functionality preinstalled. However this would be inefficient as packets would have to pass 

through not only the physical switches part of the infrastructure but also through switches 

running in VNF execution environments, and would again not guarantee that we are 

measuring exactly what we intend to measure. 

 Service monitoring as annotations  6.7.4.5

As modeling monitoring functions as VNFs seems adequate only for fulfilling one of the 

three service monitoring roles we need some other method for including monitoring in the 

Service Graph and NF-FG. One option could be to include them in separated from the 

service definition itself and instead as accompanying annotations or metadata, and have a 

separate process to allocate and configure the monitoring functions instead of using the 
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VNF orchestration process.  To describe the monitoring requirements one could reference 

the existing components of the Service Graph / NF-FG, e.g. the delay monitoring function 

from Figure 6.36 could be expressed as “Delay between SAP1 and SAP2” for an end-to-end 

measurement, or “Delay over VNF FW” for a measurement only over the firewall function. 

The metadata would have to be understood and modified appropriately through the layers, 

for example during decomposition it would have to be updated to appropriate fit the 

decomposed NF-FG. Once a NF-FG is decomposed and ready to be placed into the 

infrastructure we also need to provide a different way to express the resource 

requirements needed to instantiate not only the VNFs themselves but also the monitoring 

functions. While VNFs requirements are on compute and storage resources monitoring 

function requirements are difficult to describe in terms of e.g. CPU resources, in the 

example in Figure 6.34 the requirements are that the OpenFlow switches realizing the 

logical links are capable of performing the time stamping action and that their controller is 

able to run the Local Control Plane component for controlling those actions. These 

requirements could be described as node capabilities in the resource topology and the VNE 

algorithm restricted to place VNFs and their logical links only across compute and network 

resources that have the capability to fulfill the necessary monitoring capabilities. While 

adding complexity to the resource topology description as well as the VNE algorithm, 

similar placement restrictions are caused by SLA requirements such as latency, bandwidth, 

and CPU requirements.  

The MEASURE Monitoring language 

To specify which measurement functions should be activated, what and where they should 

measure, how they should be configured, how the measurement results should be 

aggregated, and what the reactions to the measurements should be, WP3 and WP4 is 

developing a language called “MEASURE” (for “Measurements, States, and Reactions”). 

The MEASURE language definition is divided into in three main components; measurement-, 

state-, and action definitions.  

Measurement definitions describe which measurement function should be activated, 

where the particular measurement should be taken, and how the measurement should be 

configured. This is described like a typical function call in a C-like language, i.e. “variable 

= function(placement, parameters)”.   

State definitions specify how measurement results should be aggregated and define 

thresholds for a combination of aggregated results, state definitions results in one or more 

finite state machines (FSM). The states and are described by a arithmetic expressions, e.g. 

“state = variable < value && function(variable)”, where functions could be used to 

calculate e.g. averages.  

Finally, Action definitions specify actions that are taken both when moving between 

states and while within a particular state. Actions may typically be to send a notification 

to another component in the UNIFY architecture, e.g. “S1: Notify(component, message)”, 
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but additional actions may be useful to for example trigger actions in the data plane such 

as failovers. 

A simple example for measuring the delay between two SAPs using MEASURE could be “M1 

= Delay(SAP1, SAP2, interval=100ms)”, defining the measurement M1 as delay between 

SAP1 and SAP2, performed every 100 milliseconds. State definitions for this example could 

be “S1 = (M1 < 5 ms), S2 = (M1 > 5 ms)”, creating two states, one below 5 ms delay and one 

above. Actions in this case could be “S1: Notify(CtrlApp1,5min,M1), S1S2: 

Notify(CtrlApp1,"ERROR",M1)”, that while in state S1 informs a control application with the 

value of M1 every 5 minutes. If M1 goes above 5ms and we enter state S2, an ERROR 

message is sent to the control application with the current measurement value attached.  

 

Figure 6.37: Two implementations of a MEASURE description 

In Figure 6.37 an example of potential implementations of a slightly more complicated 

MEASURE definition is shown, based on input from two measurements, m1 and m2. In the 

left part of the figure the aggregation and state logic for both states is placed in a single 

aggregation point, which receives the raw measurement data from the two measurement 

functions, this aggregation point could be e.g. the monitoring control application 

component in the Figure 6.34 example. The aggregation logic is applied and a notification 

is sent to a relevant receiver if the evaluation is true.  

Sending raw measurement data to the aggregation point in the MF control application may 

generate too much data on the network, in that case we can further distribute the 

aggregation logic by moving the aggregation logic closer to the measurement sources, e.g. 

into the Local Control Plane components, and let them perform an initial aggregation, for 

example “(m1>50)” and “(m2>50)”. They in turn could be configured to send a notification 

to the higher layer aggregation point in the MF control application when the value changes 

from true to false and vice versa. While this aggressive aggregation may not be necessary 

most of the time, we have the potential to automatically divide the aggregation logic into 

independent pieces and distribute it into different places in the network depending on 

traffic and processing load. However, doing so increases the latency from when a 

measurement is performed until a reaction can be taken, which may not be appropriate in 

all cases.  
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While the description of the MEASURE language here is shown in relation to service 

monitoring the description language itself is not tied to services other than by referencing 

components in a Service Graph or NF-FG. The language could equally contain references to 

physical components in the infrastructure and be used to describe and the same process 

used to instantiate monitoring for infrastructure monitoring as well, using a similar 

description as a NF-FG but without NFs. 

6.7.5 Resources related optimization 

Dynamic decomposition can lead to multiple potential instantiations for one NF-FG. For 

example, in the case where a VNF type maps directly to three kinds of VNF instances; large 

(200 users), medium (100 users), or small (50 users) and we want to support 200 users, the 

exact solutions are given by the Diophantine equation 200L+100M+50S = 200, for which 

there are 4 solutions. On the other hand if the VNF should support 400 users the number of 

potential implementations grows to 9, and for 4000 users there are 441 solutions.  

If the NF-FG contains three different VNFs each with 441 potential implementations, that 

is 4413 ≈ 8.6 x 106 potential solutions for the entire NF-FG. This is a slight overestimation 

however since it assumes that there is no overlap between the 86 million implementations 

in terms of actual resource requirements, a more accurate estimation may be around the 

number of solutions to 200L+100M+50S=4000x3, which is roughly 4000.  

This is in the case where a VNF type maps directly to VNF instances which have clear 

resource requirements. In the case where there are intermediate VNF types, for example 

VNF type Firewall maps to Firewall Linux and Firewall FreeBSD which in turn map to three 

instance types, the potential combinations are much higher since Firewall for 200 users 

could map to Firewall Linux for X users and Firewall FreeBSD for 200-X users for all 

integers X between 0 and 200. This gives us 201 intermediate mappings, which in turn each 

may be mapped to a number of actual instances, as described by the Diophantine equation 

above. 

This problem has also been considered to some extent in the related work. In 

[Meraghdam2014] the authors consider commutative Network Functions, such that an 

exponential number of Network Function orderings are needed to be considered. Based on 

this fast growing number of possibilities, the authors propose a heuristic, to find “good” 

orderings.  

However, the problem of finding a good mixture of implementations and/or deciding which 

types of Network Function to choose can be considered a multi-dimensional knapsack 

problem (see e.g. [Freville2005]). These types of problems can be solved quite quickly by 

employing e.g. mixed-integer programming. A naïve solution would be to iterate through 

all potential solutions until one that can be orchestrated is found, however with such a 

solution is that we may have to iterate through all potential solutions until we find one 

that can be placed. In the previous case where there were 441 different solutions, if no 

large or medium instances are available within e.g. the bandwidth or latency requirements 
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on the NF-FG we may have to try 440 times before we find the only one that can be 

implemented, i.e. the one constructed only from small instances.  

This argues for a tight integration between orchestration and decomposition, e.g. by 

informing the decomposition process how many of the large, medium, and small 

implementation could be instantiated, perhaps with some estimations of the available 

bandwidth, latency, etc., between them. This could assist the decomposition process to 

rule out combinations that are unlikely to be possible to orchestrate.  In addition to this,  

potential solutions could be prioritized by applying a cost function which could prioritize 

e.g. a smaller amount of large instances over many small, instances that can be shared by 

multiple NF-FGs over those that can’t, etc. 

6.8 Abstract interfaces  

Based on the architecture, the reference points and the information models described in 

previous sections, the next step is the definition of interfaces between the separate 

layers. We follow a three-step approach in the definition of interfaces. First, we have 

identified the reference points between the relevant functional components in order to be 

able to refer them during the architectural design (see Section 2 and D2.2). Second, we 

define abstract, high-level functions which should be supported by the interacting 

components. By this means, we define abstract interfaces. This section is devoted to this 

task. Third, we will implement the abstract functions realizing the interfaces in different 

ways (during the next phases of the project).  

The interfaces between the main layers, i.e., U-Sl, Sl-Or, and Co-Rm interfaces, will be 

characterized (and slightly revised starting from the initial definition documented in 

MS3.1-3.2) in this section. Besides these inter-layer interfaces, we give the first definition 

of internal interfaces of the Orchestration Layer, namely, Or-Ca and Ca-Co interfaces and 

we give an additional interface regarding the new reference point called Cf-Or. The 

functions which MUST/SHOULD/MAY be supported via given interfaces are derived from the 

requirements (referred as req. x) declared in Section 3. 

6.8.1 Application-Service (U-Sl) interface 

The interface between the application (End / Enterprise Users, UNIFY Users, Developers) 

and the service provider is at the highest abstraction level in the UNIFY architecture.  Via 

U-Sl interface, a normal user is able to request a given service or different reports on the 

service from the service provider interacting with an OSS.  UNIFY Users (e.g., retail 

provider, OTT provider, content provider) or Developers can have lower-level access to the 

system with advanced functionalities.  They can operate directly with Service Graphs, 

manage NF-IB and request UNIFY resource service using this interface. 

U–Sl interface / API has to support the following operations: 

Function request/release/update service 
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Description A service is set up / released / updated by Service Layer (with the 

help of lower layers) and the status of the operation is sent back to 

the user as an answer.  

Input The user submits a request (start/stop/update) referring to a service 

which can be initiated e.g., in the GUI of a management system 

Output Service Layer sends back the status of the operation 

 

Function get/send service report 

Description Service Layer provides high-level measurement reports related to the 

SLA 

Input The user requests/polls KQIs (or reports are provided automatically 

according to initial parameters given in the service request) 

Output Service Layer provides measurement reports on KQIs regarding the SLA 

or only on requested parameters (see req. 3 of Section 4.1.) 

 

Function notification/alarm 

Description Service Layer is able to send notification to the user in case of failure 

or violation of the SLA or KQI requirements 

Input – 

Output notification/alarm is sent to the user identifying the event 

 

Function list Service Graphs 

Description Service Layer lists the running Service Graphs (SG) of a given UNIFY 

User or Developer 

Input UNIFY User or Developer queries his/her running SGs 

Output Service Layer lists running SGs belonging to the customer 

 

Function request/release/update Service Graph 

Description A service  described by a ServiceGraph is started / released / updated 

by Service Layer (with the help of lower layers) and the status of the 

operation is sent back to a UNIFY User or Developer. 
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SG is a data structure describing various types of Network Functions, 

SAPs, the connections between them, restrictions on allowed traffic, 

and other service-level requirements (KQIs).   For details on carried 

information, see Section A.2.5.2 and Section 6.2. These parameters 

are determined by req. 1, 2, 4, 6 and 9 given in Section 4.1. 

Pinning or restricting graph nodes/edges to a set of potential nodes 

(e.g., BiS-BiSes) is also supported (see req. 5 of Section 4.1) 

Both SG structure and service-level requirements can be modified 

dynamically. 

Input UNIFY User or Developer submits Service Graph to Service Layer.  

Output Service Layer sends back the status of the operation 

 

Function get Service Graph info 

Description Different types of information on a queried SG is provided by Service 

Layer 

Input UNIFY User or Developer queries information on a given SGs 

Output Service Layer provides different kinds of information (e.g., SLA, KQI 

reports, current status) on given SG 

 

Function add/remove Observability Point to/from Service Graph 

Description Service Layer adds / removes Observability Point (OP) to/from a given 

SG according to a Developer's request on-demand. 

OP can be treated as a special purpose NF, e.g., selected from a 

catalogue. 

OP can also become inactive when certain specified conditions have 

been fulfilled. 

Input Developer initiates the modification of a given SG (add/remove special 

purpose NFs) 

Output Service Layer sends back the status of the operation 

 

Function list NFs from NF-IB 
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Description Service Layer provides the list of available NFs from NF-IB. 

Input UNIFY User or Developer queries available NFs, i.e., the current 

content of NF-IB 

Output Service Layer provides the list of (abstract) NFs which are currently 

available in the catalogue and can be used for composing SGs 

 

Function add/remove/update NF in NF-IB 

Description NF can be added to / removed from / updated in the NF-IB catalog by 

Service Layer according to the request coming from a UNIFY User or 

Developer.  (Typically the service provider or a 3rd party NF developer 

can add new/modified/updated NF version to the catalog.) 

Input The following parameters and information have to be given as input: 

an abstract description (e.g., Yang data model); expected interfaces 

to other NFs/SAPs/architectural components; control channel 

connectivity; NF type (physical/logical, abstract/concrete); 

decomposition rules; an optional resource model (resource model can 

be blank and computed/estimated/measured automatically later); 

topological and temporal dependencies on other NFs; resource scaling 

requirements; optimization goals; monitoring parameters; and the NF 

implementation, as well. 

Output Service Layer updates NF-IB and gives back information on the 

corresponding NF 

 

Function request/release UNIFY resource service 

Description This management function of the BSS of Service Layer can be used by 

UNIFY Users or Developers in order to request / release UNIFY resource 

service.  As a result, a new virtualization context (Virtualizer object) 

will be initiated at Resource Orchestration Sublayer. 

Input UNIFY User or Developer requests / releases a virtual context  

Output Service Layer provides information on the initiated / released 

virtualization context (Virtualizer object) 
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6.8.2 Service-Resource Orchestration (Sl-Or) interface  

Service Layer gives a transformed/enriched Service Graph, namely Network Function 

Forwarding Graph (NF-FG), to the Orchestration Layer via Sl – Or interface.  This data 

structure contains information needed by resource optimization tasks performed in 

Orchestrator modules.  For details on the data structure and carried information, see 

Section 6.4.  Sl-Or interface also appears between orchestrators realizing multi-level, 

recursive orchestration (see Figure 4.2). 

Sl–Or interface / API has to support the following operations: 

Function initiate/tear down/change NF-FG 

Description Orchestration Layer takes the NF-FG request coming from Service 

Layer, tries to execute it according to its global resource view and 

sends back the result. 

The NF-FG request includes resource requirements of NFs and KPIs as 

well (see req. 1,2,4,6,9 of Section 4.1 and req. 1 of Section 4.2). 

Preferences on placement should be able to be defined per sub NF-FG  

and/or per NF (see req. 5 of Section 4.1). 

Change request includes the following operations: modify NF demands, 

insert/remove NFs in a SG, sharing NFs between SGs (sharing of NFs 

can be handled internally, however, Service Layer can also be 

involved) 

Input Service Layer submits an NF-FG  

Output Orchestration Layer sends back the status of the operation 

 

Function get/send virtual resource info 

Description Orchestration Layer provides resources, capabilities and topology 

information (e.g., BiS-BiS resource view) 

Input Service Layer queries virtual resource information 

Output Orchestration Layer provides a virtual resource view 

 

Function notification/alarm 

Description Orchestration Layer is able to send notification to Service Layer in 

case of failure or any violation of KPI thresholds 
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Input – 

Output notification/alarm is sent to Service Layer identifying the event 

 

Function get/send observability info 

Description Orchestration Layer provides observability info to Service Layer 

Input Service Layer requests/polls KQIs corresponding to NF-FGs or virtual 

resources 

Output Orchestration Layer provides measurement reports on KQIs 

corresponding to NFs, sub-graphs of NF-FGs or virtual resources (see 

req. 2 of Section 4.1.) 

 

6.8.3 Resource Orchestration-Controller Adaptation (Or-Ca) interface 

The Or-Ca interface is an internal interface of the Orchestration Layer between the 

Resource Orchestrator and the Controller Adaptation components. The main information 

exchanged between these components is stored in NF-FG data structures.  Therefore, the 

same functions have to be supported here than we have seen in case of Sl-Or interface.   

6.8.4 Controller Adaptation-Controllers (Ca-Co) interface 

Controller Adaptation makes it possible to use different, technology dependent controller 

solutions on top of the infrastructure. This requires adaptation functions which translates 

information carried by NF-FG into messages which can be sent to the northbound interface 

of a given controller. Hence, this interface significantly depends on the controller itself as 

it is the northbound interface of that. In case of controllers not implementing this 

interface, the controller has to be extended by this functionality. 

6.8.5 Controllers-Infrastructure (Co-Rm) interface  

The interface at the Co-Rm reference point is determined by the protocols used at the 

southbound interface of the controllers.  Here, several available protocols can be invoked 

and adapted to our special purpose architecture.  For example, available protocols, such 

as OpenFlow, NETCONF, OFconfig, OVSDB, and libraries such as libvirt, can be used in Co-

Rm interface.  The definition of this interface is out of the scope of the UNIFY project, 

however, the required primitives can also be defined in an abstract way. 

Co–Rm interface / API has to support the following operations: 

Function start/stop/restart NF 

Description Infrastructure Layer starts / stops / restarts an NF 

Input Controller requests to start/stop/restart given NF (see req. 2 of 
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Section 4.6)  

Output Infrastructure Layer sends back the status of the operation and gives 

back access information to the NF 

 

Function start/stop switch (forwarding element) 

Description Infrastructure Layer starts / stops a (logical) switch 

Input Controller requests to start/stop forwarding element, e.g., logical 

OpenFlow switch (see req. 1 of Section 4.6)  

Output Infrastructure Layer sends back the status of the operation and the 

control interface of the switch 

 

Function connect/disconnect NF to/from switch 

Description Infrastructure Layer connects/disconnects an NF to/from a (logical) 

switch 

Input Controller requests to connect/disconnect an NF to/from a specified 

logical switch, e.g., via virtual Ethernet interface 

Output Infrastructure Layer sends back the status of the operation 

 

Function configure switch 

Description Infrastructure Layer configures flow entries into a switch 

Input Proactive: Controller sends flow entries to given switches 

Reactive: Infrastructure Layer sends request to Controller in case of 

new flows 

Output Status of the operation 

 

Function get/send capability info 

Description Infrastructure Layer provides info on its capabilities 

Input Controller requests capability information 

Output Infrastructure Layer sends information on different types of 

capabilities 
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Function notification/alarm 

Description Infrastructure Layer is able to send notification to upper layers in case 

of failures or any unexpected events 

Input – 

Output notification/alarm is sent to Controller (or to OSS) identifying the 

event 

 

Function configure observability components 

Description Infrastructure Layer configures special components, e.g., individual 

observation points of a Monitoring Function are configured. 

The exact operation depends on the observability component. 

 

Function get/send observability info 

Description Infrastructure Layer provides observability info towards dedicated 

components. 

 

6.8.6 Resource Control Function-Resource Orchestration (Cf-Or) interface  

The Cf-Or interface supports the same functions as Sl-Or.  Additionally, UNIFY architecture 

supports the delegation of NF-FG (or VNF) decomposition and VNF scaling tasks to a special 

controller entity running in the Network Functions System which is called Resource Control 

Function within Deployed Service (CtrlApp).This feature requires further interaction  

between the control function and the Resource Orchestrator and additional functions at 

the Cf-Or interface. 

Cf–Or interface / API has to support the following additional operations (besides the 

functions provided by Sl-Or): 

Function decompose VNF 

Description Resource Orchestrator delegates VNF decomposition to CtrlApp 

Input Resource Orchestrator sends an abstract VNF (simple NF-FG composed 

of a single element) to the CtrlApp and delegates the decomposition 

task.  VNF type and requirements have to be added as input 

parameters. 
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Output NF-FG 

 

Function scale VNF 

Description Resource Orchestrator delegates VNF scaling to CtrlApp 

Input Resource Orchestrator sends an abstract VNF (simple NF-FG composed 

of a single element) to the CtrlApp and delegates the scaling task.  

VNF type, requirements, optional state and measurement parameters 

have to be added as input parameters. 

Output NF-FG 

 

6.9 Multi-domain aspects 

In Section 6.3 of deliverable D2.1 a first overview of recursion in the UNIFY architecture is 

provided in order to cover multiple domains. A domain refers either to a set of resources 

under the control of the same administrative entity. The set of resources could either be a 

set of network resources (switches, routers, etc.), a.k.a. a network domain, or a set of 

cloud resources (compute, storage and network resources), a.k.a. cloud domain (e.g., a DC 

domain).  

In such a recursive/hierarchic UNIFY architecture a Global Orchestration Layer interacts 

via its Controller Adaptation component with the Orchestrator Layers of individual 

domains. The nature of this interface may support different levels of exposure. Let’s 

consider the following scenario where a Global Orchestrator interacts with the 

Orchestrator of a commodity (OpenStack-controlled) datacentre (DC) and the controller of 

a (OpenDaylight-controlled) SDN network domain.  

Depending on the level to which the DC wants to expose its resources, we might distinguish 

between the following scenarios: 

a. The SP wants to use third party's (off-the-shelf) DC to deploy VNFs even if it means 

that the VNFs must be tailor made to handle network tunnel end points (Black Box 

approach). 

b. The SP who owns the DC infrastructure hence is willing to expose control interfaces 

beyond off-the-shelf APIs (White Box approach). 

c. The SP wants to utilize state-of-the-art SDN control and data plane split design to 

virtualize and hide DC internal networking (Big Switch virtualization). 

d. The SP pursues joint compute and network programmability interface for full 

domain virtualization (NF-FG abstraction). 
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Black Box approach 

 

White Box approach 

 

Big Switch Abstraction 

 

NF-FG abstraction 

Figure 6.38: Multi-domain abstraction variations 

Common to all scenarios are a genuine NF-FG request containing in our simple example one 

VNF connected to an End Point (or Service Access Point, SAP); an overarching RO, which 

maps the VNF to the DC; a CA splitting and translating the RO's mapped NF-FG to 

infrastructure controllers' APIs: an SDN Controller with an SDN domain including the SAP, 

and various set-ups of DC components' APIs (see Figure 6.38). The SDN controller simply 

gives global resource view to the North from the South, and does not perform information 

hiding or abstraction. Providing a simplified, abstract view of an internal topology can be a 

task of a dedicated entity, like a Switch Agent (SA) in some of our examples below. The 

OpenStack-internal entities in our figures are the OpenStack Controller (OSC) which can be 

considered as the Dashboard of OS, the OS-internal OpenDaylight (ODL) controller 

responsible for realizing the Neutron network of OS, the DC's OpenFlow gateway switch 

(OFS DC), compute nodes of the DC (CN), and compute node internal Open vSwitches 

(OVS). 

The dashed green boxes in the figures represent the request that is made from the upper 

component to the lower one through the corresponding red coloured control channel. In 
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our example for simplicity reasons the VNF has only a single network interface, realizing 

both the incoming and the outgoing interfaces. A real VNF can have multiple interfaces. 

Black Box DC (a): In this set-up, due to the lack of forwarding control within the DC no 

native L2 forwarding can be used to insert the VNF running in the DCinto the service chain. 

Instead, explicit tunnels (e.g., VxLAN over IP) must be used, which needs termination 

support within the deployed VNF. Therefore, the genuine VNF of the NF-FG must be 

decomposed into a VxLAN termination point in the SDN network domain, a routed IP 

gateway and a LAN network configuration in the DC, and a VxLAN capable Network 

Function image (VM-VNF-VxLAN). 

White Box DC (b):  If the internal network of the DC can be exposed in full details through 

an SDN Controller,  e.g., OpenDaylight (ODL), to the overarching RO (see Fig. ) then native 

L2 forwarding may be applied all through from the SAP to the VNF's port in the DC.  The 

implications are that all resource dynamisms of the DC are exposed to the RO. 

Big Switch virtualization (c): SDN allows split control and data plane design.  If the SP or a 

third party DC provider wishes to hide the internal network details and dynamism of the 

DC, then she can do so by adding a software Switch Agent (SA) component corresponding 

to the control plane of an abstract Big Switch (see Fig).   The role of the SA will be to map 

DC internal VNF ports to service access ports appearing in the transport SDN network 

domain through the external SDN controller.  Note that the SA is only a control plane 

abstraction and the data plane execution can be mapped to the internal switching 

resources of the DC. 

NF-FG abstraction (d): All the above method requires sequential orchestration of compute 

and networking resources, i.e., once the VNF is instantiated to a compute node the 

forwarding overlay is created to attach to it. However, NFV expects that both networking 

and compute constraints could be considered equally.  For example, a VNF in the DC may 

be instantiated closest to the gateway involved in the service chain or VNFs of the same 

service chain should be orchestrated with their compute node proximity in mind.  This can 

only be considered if compute and networking requests and requirements are matched and 

merged together for local orchestration. However, this yields to the idea of genuinely 

combining and transmitting compute and networking requests.  According to the UNIFY 

programmatic framework, the NF-FG at the Sl-Or is one such combination of resources.  

Since the Or-Ca contains a mapped NF-FG, the CA may simply send a sub NF-FG graph to 

the Local RO. 
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7 Universal Node interfaces 

7.1 Universal Node Architecture 

The Universal Node (UN) architecture detailed in [D5.2] describes the latest vision in UNIFY 

regarding the UN. Figure 7.1 shows the main functional blocks and external interfaces from 

this architecture. Although this section focuses on the UN interfaces, the components of 

the architecture are introduced previously for clarity. 

 

Figure 7.1: Current working UN architecture 

As depicted in the figure the three main functional blocks of the UN are the VNF Execution 

Environment (VNF EE), the Virtual Switching Engine (VSE) and the Unified Resource 

Manager (URM). 

● The VNF Execution Environment (VNF EE) represents the computing resources and 

several different compute platforms are considered as virtualization solutions for 

implementing it, from hypervisors to simpler container based approaches like Docker or 

Linux Containers (LXC). 

● The Virtual Switching Engine (VSE) represents the networking resources and focuses 

on implementing packet switching functionality. It is responsible for managing the physical 

network interfaces and steer the traffic according to the part of the NF-FG deployed on 

the UN. 

● The Unified Resource Manager (URM) acts as the local orchestrator and has a 

complete view of the node regarding the available resources, their topology and internal 
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constrains. The UN interfaces are provided by the URM, which then controls the VSE and 

VNF EE to meet the NF-FG requests and subsequent management actions. 

The UN interfaces identified so far are also reflected in the previous figure: 

● Resource management interface: this interface is responsible for discovering the 

resources exposed by the node, updating the list of resources (as a result of actions 

requested through other interfaces or internal reconfiguration at the node) and reporting 

the current availability of resources to the upper layers based on the already deployed NF-

FGs. The primitives provided by the UN for resource management are summarized in Table 

7.1. 

Table 7.1: UN Resource Management primitives. 

Primitive Request Response 

Get Node Info and 
Capabilities 

(empty) ● Total processing capacity 

● Total memory 

● Local disk capacity 

● CPU Info 

● Platform Tag 

● Ports List 

● Flow space specification capabilities 

● Supported VNF Types 

Get Available 
Resources 

(empty) ● Available Processing Capacity 

● Available Memory  

● Available Local disk capacity 

● Available capacity on ports 

 

● NF-FG management interface: this interface covers the deployment and 

management of the NF-FGs at the UN. This interface is the most relevant from the 

programmability point of view, since it focuses on managing the NF-FG lifecycle. The 

primitives provided by the UN to deploy and manage NF- FGs are summarized in Table 7.2. 

Table 7.2: UN NF-FG Management primitives. 

Primitive Request Response 

Deploy NF-FG Graph Id / Graph Data Graph Id / Result Code 

Modify NF-FG Same as Deploy NF-FG, Graph Id must correspond to an already deployed NF-FG. 

Delete NF-FG Graph Id / Graph Data Graph Id / Result Code 

Get NF-FG List (empty) Graph Ids List 

Get NF-FG Data Graph Id Graph Data 

 

● VNF Template and Images repository interface: this interface is responsible of 

fetching and recovering the appropriate VNF images from the external/central VNF 
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repository. When a new NF-FG is requested to the UN, it needs to fetch the detailed 

specification and recover the related binaries to implement the requested VNFs. The list of 

operations supported by this interface is summarized in Table 7.3. 

Table 7.3: UN VNF Template and Images primitives. 

Primitive Description 

Fetch VNF 
specification by 
Type 

Retrieve the list of possible VNF specifications for a given NF abstract type or 
template as provided by the upper level orchestrator in the input NF-FG. This is 
likely in the form of a generic list operation with a filter on the “NF Abstract 
Type” attribute. The returned list contains an identifier for each VNF 
specification. 

Fetch VNF 
specification by Id 

Fetch a VNF specification given its identifier. 

Fetch VNF image Fetch a binary (e.g. a Virtual Machine image) that is referenced in a VNF 
specification. 

 

7.2 UN relation to the UNIFY architecture 

In the layered model defined in UNIFY, the Universal Node implements functionalities of 

both the Infrastructure Layer (completely, by means of the VNF EE and VSE) and the 

Orchestration Layer (partially, by means of the URM). Regarding the programmability 

framework, the northbound interfaces exposed by the UN will match the Ca-Co reference 

point with the following considerations: 

 The input format will be a NF-FG as handled in the upper layers (Ca-Co). 

 The scope of the input from the Controller Adaptation layer will be a sub-graph 

containing all the elements to be deployed in the UN. 

So for the UN, the Controller Adaptation layer will not need to perform any adaptation but 

only the scoping necessary to provide the UN with the appropriate sub-graph. 

The current working approach in WP5 is that the NF-FG management interface is used to 

manage all the resources provided by the UN (i.e. VNF and VSE) so the Unified Resource 

Manager can optimize the placement of the requested NF-FG in its internal resources. The 

relation of the UN architecture to the reference points defined by the UNIFY architecture 

is shown in Figure 7.2. 
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Figure 7.2: UN architecture in relation to reference points 

In order to allow the UN to perform internal optimizations of the deployed NF-FG, the 

scope of the sub-graph must include both the elements related to the NFs to be deployed 

and the elements related to the traffic steering mechanism (to be defined later on in the 

project). That is, the scoping performed on the Controller Adaptation layer for the sub-

graphs to be deployed on a UN must be done according to a domain criteria and not a 

functional criteria, as exemplified in Figure 7.3. 

 

 

Figure 7.3: Service Graph, NF-FG graph and traffic steering 

Finally, regarding the integration of the UN in the overall programmability framework and 

the scopes of WP3 and WP5, the following decisions have been taken: 
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4. The scope of WP5 is a single UN, any process involving more than one UN will be 

handled by WP3. 

5. The scope of the NF-FG handled to the UN will be everything related to the global 

NF-FG to be deployed in that UN: 

a. If several NFs of the same NF-FG are deployed in the same UN, the input will be a 

single NF-FG sub-graph with the information related to all of them (including internal 

connectivity). 

b. If several NFs of different NF-FGs are deployed in the same, the input will be 

separate NF-FG sub-graphs with the information related to each of them. The isolation 

between the NF-FGs must be assured. 

6. Regarding the fulfilment of KPIs, two scenarios are possible: 

a. During deployment, the UN can detect that it is not able to fulfil the requirements 

and would then reject the deployment request from the Orchestrator (WP5 to WP3 

signalling). 

b. During runtime, the UN can detect that it is not fulfilling the requirements and 

would then notify the monitoring process (WP5 to WP4 signalling, and then to WP3 if 

needed). 

7. When the scaling of the NF-FG is NF dependant: 

a. If the NF can handle resource changes at runtime, it will be managed by the UN 

(internally at WP5). 

If the application can NOT handle resource changes at runtime, it will be managed by the 

upper layers 
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8 Programmability aspects of use cases 

8.1 Elastic Network Function use case 

The use case covers the deployment and operation of an Elastic Network Function in the 

UNIFY framework to demonstrate the different methods for scalability supported, as 

detailed in Section 6.7.2. The approach followed allows for an incremental verification of 

the capabilities of the framework, with emphasis in those methods more reliant on 

functionalities of the UNIFY framework, as opposed to methods more dependent on 

functionalities of the VNF itself.  

Following this approach, the use case shall demonstrate: 

● Scale-up/down of individual NFs and scale-out by adding instances (Section 

6.7.2.2). 

● Scalability triggered by changes in the NF-FG from upper layers and triggers from 

monitoring components (Section 6.7.3). 

● Scalability managed by the UNIFY framework (Section 6.6). 

8.1.1 Initial assumptions 

In order to define the scope of the use case, the following initial assumptions are made: 

● The use case considers a single deployment option in the Infrastructure Layer so the 

Orchestrator placement logic is not involved. 

● The Infrastructure Layer bootstrapping process has been completed successfully 

beforehand so the infrastructure is available for the Orchestrator to deploy a Network 

Function Forwarding Graph (NF-FG). 

● The NF-FG handled to the Infrastructure Layer for deployment is fully characterised 

and the VNF images to be executed are available at the Infrastructure Layer (the process 

for retrieving the VNF image is not included in the use case). 

● Scalability of the NF is considered in the NF definition, including the elements to 

scale and the criteria for splitting the job among the different elements. 

8.1.2 High level use case process 

The use case can be divided in the following process blocks, each of them aiming to 

demonstrate a different aspect of the UNIFY framework in an incremental manner. The 

steps pertaining each of these blocks are further detailed in the next subsections: 

1. Initial deployment of the NF-FG. 

2. Change of the NF-FG requested by the user triggering a scale-up. 

3. Monitoring event detection triggering a scale-up. 
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4. Monitoring event detection triggering a scale-out. 

5. Monitoring event detection triggering a scale-in. 

6. Change of the NF-FG requested by the user triggering a scale-down. 

8.1.3 Service Graph and Network Function Forwarding graph decomposition 

The Service Graph initially requested by the user is decomposed by the different layers as 

described in Section 6.6. In the scope of the Elastic Network Function use case and based 

on the assumptions previously stated, the following operations take place (described in 

Figure 8.1): 

 NF-FG initial decomposition, performed in Service Layer by Adaptation Functions: 

based on the user Service Graph requirements the Elastic Network Function NF-FG is 

selected. 

● NF-FG placement and steering, performed in the Orchestration Layer by Resource 

Orchestration: the infrastructure node is selected to deploy the NF-FG and the appropriate 

inbound and outbound traffic steering is determined. 

● NF-FG scoping, performed in the Orchestration Layer by Controller Adaptation: the 

NF-FG is split according to the domain criteria producing five sub-graphs, two for the 

traffic steering from the Service Graph endpoints up to the infrastructure node physical 

endpoint, one for everything to be deployed in the infrastructure node (containing both 

the NF and the traffic steering from the infrastructure node physical endpoint to the NF 

logical endpoint and two for the traffic steering from the infrastructure node physical 

endpoint to the Service Graph global endpoints. 
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Figure 8.1: Service Graph and Network Function Forwarding Graph decomposition 

8.1.4 Detailed Use case process and information flow 

 Initial deployment of the NF-FG 8.1.4.1
 

Step Description Input Output Actor 

1.1 Service Graph to deploy 

handled to Service Layer 

N/A Service Graph Service User 

1.2 Service  graph is mapped to a 

specific NF type supporting 

scalability 

Service Graph NF-FG with 

abstract NFs 

Service 

Layer 

1.3 Fully characterized NF-FG to 

deploy is handled to the 

Orchestration Layer 

NF-FG with 

abstract NFs 

Fully 

Characterized 

NF-FG 

Service 

Layer 

1.4 Based on the NF types in the 

NF-FG types, requirements and 

the available resources a 

Fully 

Characterized 

NF-FG 

Place for 

deployment 

Resource 

Orchestrator 
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placement is selected 

1.5 NF-FG to deploy is handled to 

Controller Adaptation 

Fully 

Characterized 

NF-FG 

Place for 

deployment 

Fully 

Characterized 

NF-FG 

Place for 

deployment 

Resource 

Orchestrator 

1.6 NF-FG is split based on the 

placement 

Fully 

Characterized 

NF-FG 

Fully 

Characterized 

NF-FG sub-

graphs 

Controller 

Adaptation 

1.7 The NF-FG subgraphs are 

handled to the corresponding 

Controllers 

Fully 

Characterized 

NF-FG sub-

graphs 

Fully 

Characterized 

NF-FG sub-

graphs 

Controller 

Adaptation 

1.8 The required resources are 

instantiated 

Fully 

Characterized 

NF-FG sub-

graphs 

Resources for 

NF-FG 

subgraphs 

Controller(s) 

1.9 NF-FG management information 

is handled up to Service Layer 

Resources for 

NF-FG 

subgraphs 

NF-FG id, 

NF-FG 

management 

interface 

Controller(s) 

 

 Change of the NF-FG requested by the user triggering a scale-up 8.1.4.2
 

Step Description Input Output Actor 

2.1 Service Graph modification 

requested to Service Layer 

N/A NF-FG id 

Modified 

Service 

Graph 

Service User 

2.2 Based on NF definition the 

scaled up NF-FG containing the 

required changes is obtained 

NF-FG id 

Modified 

Service 

Graph 

Scaled up 

NF-FG 

Service 

Layer 
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2.3 Scaled up NF-FG is handled to 

the Orchestration Layer 

Scaled up 

NF-FG 

Scaled up 

NF-FG 

Service 

Layer 

2.4 Based on the scaled up NF-FG 

modifications and the available 

resources a placement is 

selected 

Scaled up 

NF-FG 

Place for 

deployment 

of 

modifications 

Resource 

Orchestrator 

2.5 Scaled up NF-FG to deploy is 

handled to the Controller 

Adaptation 

Scaled up 

NF-FG 

Place for 

deployment 

Scaled up 

NF-FG 

Resource 

Orchestrator 

2.6 Scaled up NF-FG is split based 

on the resource modifications 

required 

Scaled up 

NF-FG 

Scaled up 

NF-FG sub-

graphs 

Controller 

Adaptation 

2.7 The modified NF-FG subgraphs 

are handled to the 

corresponding Controllers 

Scaled up 

NF-FG 

subgraphs  

Modified NF-

FG subgraphs 

Controller 

Adaptation 

2.8 The required resources are 

instantiated and/or modified 

Scaled up 

NF-FG sub-

graphs 

Resources for 

scaled up 

NF-FG 

subgraphs 

Controller(s) 

2.9 Scaled up NF-FG management 

information is handled up to 

Service Layer 

Scaled up 

Resources 

for NF-FG 

Scaled up 

NF-FG id 

(constant) 

NF-FG 

management 

interface 

Controller(s) 

 

 Monitoring event detection triggering a scale-up 8.1.4.3

 

Step Description Input Output Actor 

3.1 Infrastructure notification 

is received and handled up 

to the Controller 

Adaptation 

Infrastructure 

notification 

NF-FG id 

Monitoring 

Notification 

Controller 
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3.2 Based on NF definition 

necessity for a scale up is 

determined and requested 

to the Resource 

Orchestrator 

NF-FG id 

Monitoring 

Notification 

NF-FG scaling 

information 

NF-FG id 

Request for 

scale up 

Controller 

Adaptation 

3.3 Based on NF definition the 

scaled up NF-FG containing 

the required changes is 

obtained 

NF-FG id 

Request for 

scale up 

Scaled up NF-

FG 

Resource 

Orchestrator 

3.4 Based on the scaled up NF-

FG modifications and the 

available resources a 

placement is selected 

Scaled up NF-

FG 

Place for 

deployment 

of 

modifications 

Resource 

Orchestrator 

3.5 Scaled up NF-FG to deploy 

is handled to the 

Controller Adaptation 

Scaled up NF-

FG 

Place for 

deployment 

Scaled up NF-

FG 

Resource 

Orchestrator 

3.6 Scaled up NF-FG is split 

based on the resource 

modifications required 

Scaled up NF-

FG 

Scaled up NF-

FG sub-

graphs 

Controller 

Adaptation 

3.7 The modified NF-FG 

subgraphs are handled to 

the corresponding 

Controllers 

Scaled up NF-

FG subgraphs  

Modified NF-

FG subgraphs 

Controller 

Adaptation 

3.8 The required resources are 

instantiated and/or 

modified 

Scaled up NF-

FG sub-graphs 

Resources for 

scaled up NF-

FG subgraphs 

Controller(s) 

3.9 Scaled up NF-FG 

management information is 

handled up to Service 

Layer 

Scaled up 

Resources for 

NF-FG 

Scaled up NF-

FG id 

(constant) 

NF-FG 

management 

interface 

Controller(s) 
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 Monitoring event detection triggering a scale-out 8.1.4.4

 

Step Description Input Output Actor 

4.1 Infrastructure notification is 

received and handled up to the 

Controller Adaptation 

Infrastructure 

notification 

NF-FG id 

Monitoring 

Notification 

Controller 

4.2 Based on NF definition 

necessity for a scale out is 

determined and requested to 

the Resource Orchestrator 

NF-FG id 

Monitoring 

Notification 

NF-FG scaling 

information 

NF-FG id 

Request for 

scale out 

Controller 

Adaptation 

4.3 Based on NF definition the 

scaled out NF-FG containing the 

required changes is obtained 

NF-FG id 

Request for 

scale out 

Scaled out 

NF-FG 

Resource 

Orchestrator 

4.4 Based on the scaled out NF-FG 

modifications and the available 

resources a placement is 

selected 

Scaled out 

NF-FG 

Place for 

deployment 

of 

modifications 

Resource 

Orchestrator 

4.5 Scaled out NF-FG to deploy is 

handled to the Controller 

Adaptation 

Scaled out 

NF-FG 

Place for 

deployment 

Scaled out 

NF-FG 

Resource 

Orchestrator 

4.6 Scaled out NF-FG is split based 

on the resource modifications 

required 

Scaled out 

NF-FG 

Scaled out 

NF-FG sub-

graphs 

Controller 

Adaptation 

4.7 The modified NF-FG subgraphs 

are handled to the 

corresponding Controllers 

Scaled out 

NF-FG 

subgraphs  

Modified NF-

FG subgraphs 

Controller 

Adaptation 

4.8 The required resources are 

instantiated and/or modified 

Scaled up NF-

FG sub-

graphs 

Resources for 

scaled up 

NF-FG 

subgraphs 

Controller(s) 

4.9 Scaled out NF-FG management Scaled out Scaled out Controller(s) 
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information is handled up to 

Service Layer 

Resources for 

NF-FG 

NF-FG id 

(constant) 

NF-FG 

management 

interface 

 

 Monitoring event detection triggering a scale-in 8.1.4.5

 

Step Description Input Output Actor 

5.1 Infrastructure notification is 

received and handled up to the 

Controller Adaptation 

Infrastructure 

notification 

NF-FG id 

Monitoring 

Notification 

Controller 

5.2 Based on NF definition 

necessity for a scale in is 

determined and requested to 

the Resource Orchestrator 

NF-FG id 

Monitoring 

Notification 

NF-FG scaling 

information 

NF-FG id 

Request for 

scale in 

Controller 

Adaptation 

5.3 Based on NF definition the 

scaled in NF-FG containing the 

required changes is obtained 

NF-FG id 

Request for 

scale in 

Scaled in NF-

FG 

Resource 

Orchestrator 

5.4 Based on the scaled in NF-FG 

modifications and the released 

resources a placement for 

modifications is selected 

Scaled in NF-

FG 

Place for 

deployment 

of 

modifications 

Resource 

Orchestrator 

5.5 Scaled in NF-FG is handled to 

the Controller Adaptation 

Scaled in NF-

FG 

Place for 

deployment 

of 

modifications 

Scaled in NF-

FG 

Resource 

Orchestrator 

5.6 Scaled in NF-FG is split based 

on the resource modifications 

required 

Scaled in NF-

FG 

Scaled in NF-

FG sub-

graphs 

Controller 

Adaptation 
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5.7 The modified NF-FG subgraphs 

are handled to the 

corresponding Controllers 

Scaled in NF-

FG subgraphs  

Modified NF-

FG subgraphs 

Controller 

Adaptation 

5.8 The required resources are 

released and/or modified 

Scaled in NF-

FG sub-

graphs 

Resources 

released 

and/or 

modified 

Controller(s) 

5.9 Scaled in NF-FG management 

information is handled up to 

Service Layer 

Scaled in 

Resources for 

NF-FG 

Scaled in  

NF-FG id 

(constant) 

NF-FG 

management 

interface 

Controller(s) 

 

 Change of the NF-FG requested by the user triggering a scale-down 8.1.4.6

 

Step Description Input Output Actor 

6.1 Service Graph modification 

requested to Service Layer 

N/A NF-FG id 

Modified 

Service 

Graph 

Service User 

6.2 Based on NF definition the 

scaled down NF-FG containing 

the required changes is 

obtained 

NF-FG id 

Modified 

Service 

Graph 

Scaled down 

NF-FG 

Service 

Layer 

6.3 Scaled down NF-FG is handled 

to the Orchestration Layer 

Scaled down 

NF-FG 

Scaled down 

NF-FG 

Service 

Layer 

6.4 Based on the scaled down NF-

FG modifications and the 

released resources a placement 

for modifications is selected 

Scaled down 

NF-FG 

Place for 

deployment 

of 

modifications 

Resource 

Orchestrator 

6.5 Scaled down NF-FG is handled 

to the Controller Adaptation 

Scaled down 

NF-FG 

Place for 

Scaled down 

NF-FG 

Resource 

Orchestrator 
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deployment 

of 

modifications 

6.6 Scaled down NF-FG is split 

based on the resource 

modifications required 

Scaled down 

NF-FG 

Scaled down 

NF-FG sub-

graphs 

Controller 

Adaptation 

6.7 The modified NF-FG subgraphs 

are handled to the 

corresponding Controllers 

Scaled down  

NF-FG 

subgraphs  

Modified NF-

FG subgraphs 

Controller 

Adaptation 

6.8 The required resources are 

released and/or modified 

Scaled down 

NF-FG sub-

graphs 

Resources 

released 

and/or 

modified 

Controller(s) 

6.9 Scaled down NF-FG 

management information is 

handled up to Service Layer 

Scaled down 

Resources for 

NF-FG 

Scaled down  

NF-FG id 

(constant) 

NF-FG 

management 

interface 

Controller(s) 

 

8.2 Video Content Service 

This use case covers a video content service. At the application layer the user is requesting 

the Service Graph of, e.g., a video content service, which is constructed at the Service 

Layer and includes the SG that is composed of a Traffic Optimizer NF and a Video Content 

Cache NF between two SAPs (for example access two different telecom provider 

networks). Depending on the specific characteristics of this service, two decompositions 

might be applied at the Service Layer: one for a SD video content service, and one for a HD 

video content service. While an SD service decomposition just uses a TOS marker NF for 

traffic optimization, and a simple video cache NF, the HD decomposition involves more 

advanced elements: 

● BW accelerator transforming HD video streams into compressed streams optimally 

using bandwidth 

● Duplication of caches close to the SAPs 

● Two monitoring components close to the SAPs 

● A control NF interconnected with the monitoring components which can trigger 

scale-in or scale-out events according to monitored metrics 
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A level diagram of this use case is shown in Figure 8.2, and will be further discussed in the 

next sections.  

 

Figure 8.2: Information models and process for Video Content Service 

8.2.1 Initial assumptions 

In order to define the scope of the use case, the following initial assumptions are made: 
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● The Infrastructure Layer bootstrapping process has been completed successfully 

beforehand so the infrastructure is available for the Orchestrator to deploy a Network 

Function Forwarding Graph (NF-FG). 

● The NF-FG handled to the Infrastructure Layer for deployment is fully characterised 

and the VNF images to be executed are available at the Infrastructure Layer (the process 

for retrieving the VNF image is not included in the use case). 

8.2.2 Service Graph and Network Function Forwarding graph decomposition 

The high-level use case process is very similar to the Elastic Network Function use case, 

and therefore will not be repeated. The Service Graph initially requested by the user is 

decomposed by the different layers as described in Section 6.6. In the scope of this use 

case and based on the assumptions previously stated, the following operations take place 

(described in Figure 8.2): 

● At the Service Layer a SG is selected representing a Video Content SG with 

associated KQI (e.g., HD or SD video). 

● NF-FG initial decomposition performed in Service Layer by Adaptation Functions for 

either SD or HD video content service. Figure 8.2 focuses on the decomposition for the HD 

case (indicated by the thicker arrows). This decomposition introduces additional NFs: BW 

accelerator, TOS marker, content caches, monitoring and a CtrlApp. . In addition, it maps 

(Service Layer orchestration) the resulting NF-FG to the received resource model from the 

(virtualizer component of the) Orchestration Layer consisting of two BiS-BiS components 

interconnected with the SAPs. Individual NFs have multiple ports in order to enable correct 

interconnection with other NFs/SAPs according to the unmapped NF-FG shown at the right 

upper corner of the figure. The forwarding rules in the individual BiS-BiS are not depicted 

in the figure in order to avoid unnecessary clutter. Their configuration is very similar to 

the ones explained in Section 6.2.  

● NF-FG placement and steering, performed in the Orchestration Layer by Resource 

Orchestration: the mapped NF-FG w.r.t. virtualized BiS-BiS is translated and placement to 

infrastructure in the the global resource model is determined. This implies that NFs of the 

received NF-FG connected to the first BiS-BiS (UUID11) are mapped to UN1, while the NFs 

connected to the second BiS-BiS (UUID12) are mapped to UN2. 

● NF-FG scoping, performed in the Orchestration Layer by Controller Adaptation: the 

NF-FG is split according to the domain criteria producing four sub-graphs, two for the 

individual UNs, and two for traffic steering between the SAPs and the corresponding UNs. 
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9 Conclusion 

This deliverable provides a programmability framework for controlling carrier and cloud 

networks. As a starting point for the design of this framework, requirements were 

formulated per reference point in the UNIFY architecture. These were fed back into a gap 

analysis with respect to existing protocols, models and software in order to maximally 

focus programmability contributions on novelty. 

Two core programmability process flows were identified and detailed with respect to their 

interaction between different architectural components and required data to be 

exchanged. The main information models crucial in this process are the Service Graph and 

the Network Function-Forwarding Graph. The first mainly inherits from the ETSI MANO 

VNFFG model, while the more novel model of the NF-FG was formalized in order to 

maximally benefit from the scalable, recursively layered UNIFY architecture.  These 

models will be potentially be adapted at later stages of the project in order to support 

newly identified use cases, re-use the NF-FG as a model for exposing the resources 

between orchestration components of different domains. 

The foundations of a decomposition model were described in Section 6.6. Two ways of 

decomposition are foreseen: static NF-IB rule-based decomposition and dynamic CtrlApp-

based decomposition. In the first case decomposition rules stemming from the Service 

Layer are exposed to Orchestration Layers via the NF-IB component. Here, resource 

orchestration logic can decide to decompose NFs according to available rules in the NF-IB. 

In the second case the decomposition process is steered by a deployed control NF which 

has a direct interface to a resource orchestration component (Cf-Or). The way in which NFs 

are decomposed is entirely determined by the control application. Future work will consist 

of formalizing the rules guiding static decomposition, the way in which rules are exposed 

by the Service Layer, how they are stored within the NF-IB. 

Abstract interface descriptions for any of the architectural reference points were 

identified and checked against existing work. These interfaces identify most important 

functionality required by different components within the architecture. Several aspects of 

these interfaces are experimentally supported by a set of prototypes, however future 

experimentation will further refine required functionality, as well as the identification of 

more technology-oriented characterizations of these interfaces. 

Several crucial elements of orchestration functionality were identified and described in 

Section 6.7. The latter involved ways to address scalability of both the orchestration 

framework itself, as well as scaling approaches of NFs and services. In addition, challenges 

and frameworks for supporting dynamic processes were characterized. This paves the way 

for future work focusing on tight integration of monitoring points and their impact on 

dynamic (re-)orchestration within the developed service programmability framework. This 

might involve the characterization of monitoring functionality within the service definition 
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itself, for example using constructs such as the MEASUREMENT language of Section 6.7.4.5. 

Existing work on the virtual network embedding problem and remaining challenges were 

identified. Later stages of the project will focus on the scalability of these techniques and 

apply them in the context of already developed prototypes. 

In a first stage, these prototypes will focus on simple scenario’s which nevertheless 

encompass a wide range of programmability facets described in this framework. For this 

purpose, the elastic router use case was detailed and mapped to the different models and 

processes. Future work in the project will consist of: i) prototyping core functionality 

represented by this use case, and ii) extending the use case, as well as the prototype 

functionality towards more the more complex use cases as characterized in D2.1. 
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Annex 1 Work package objectives 

The table below describes the WP3 objectives as indicated in the Description of Work (DoW). 

The objectives are referred by number in the rest of the document as follows: OBJ-nr. 

1. In this work package we will derive a generic optimization framework which supports a 

variety of services and service chains, infrastructures, and objective functions. 

2. Our solution will jointly optimize the network and node resources, and across the 

network from the data centre over the access network to the network core. There are five 

main novelties: (1) joint optimization of network and nodes; (2) opportunity for in-network 

processing in "middle-boxes" and "nano data centres"; (3) time aspects and flexibility; (4) 

support for multi-stage mapping and chaining; (5) clustering of services and functions. 

3. A major objective of the optimization is the reduction of the complexity (e.g., need 

for configurations), rendering the management of the deployment less labour intensive. This 

reduces the OPEX/CAPEX costs. 

4. We will implement the service Orchestrator role of the overarching management and 

control: the Orchestrator implements the optimization, based on the Network Information 

Base (NIB). 

5. The Orchestrator is redundant and resilient, and also the location of the Orchestrator 

itself: it may be realized close to the elements under its control to improve latency. 

6. This WP will define the necessary functionality of this programmability framework and 

determine the primitives required. The focus is not on the language itself but on the 

necessary functionality and semantics of the primitives. 

7. This WP will also propose a subset of the framework and functionality that will be part 

of the prototype. The selected elements and building blocks will be implemented and 

available as Service Programming, Orchestration and Optimization Prototype (SPOOPro). 
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Annex 2 Related work 

A.2.1 Multi-scope configuration and modelling frameworks 

A.2.1.1 Remote Procedure Call frameworks  

Programmability between distributed software components relies on remote procedure calls 

(RPC). A RPC is initiated by the client, which sends a request message to a known remote 

server to execute a specified procedure with supplied parameters. The remote server sends a 

response to the client, and the application continues its process. While the server is 

processing the call, the client is blocked (it waits until the server has finished processing 

before resuming execution), unless the client sends an asynchronous request to the server, 

such as an XHTTP13 call.  

There are many variations and subtleties in various implementations, resulting in a variety of 

different (incompatible) RPC protocols. Most RPC protocols are currently focusing on web 

services (according to W3C: a software system designed to support interoperable machine-to-

machine interaction over a network.).  

The two most important interaction paradigms/protocols for web services are: REST-ful 

service interaction, and Simple Object Access Protocol (SOAP) based service interaction. 

Although the first denotes rather a paradigm, while the second refers to a detailed protocol, 

these categories are generally agreed on14.  

SOAP is an access protocol for Web services which is based on XML and relies on other 

application layer protocols such as HTTP or SMTP for message transmission. Representational 

State Transfer (REST) [Fieldings2000] is a newer paradigm which provides a simpler method 

than SOAP to access Web services and tries to fix SOAP’s problems. Both techniques have 

advantages and disadvantages which should be considered upon selection. The simplicity of 

REST makes it an interesting option in most of the cases. It allows different data formats 

while in SOAP only XML can be used. It also provides better performance and scalability. On 

the other hand, SOAP provides more security features than REST and it supports ACID 

transactions. Also a reliable messaging is provided in SOAP which is not the case is REST. In 

REST, clients are expected to deal with communication failures by retrying. 

A.2.1.2  (Web) Interface Description Languages 

An interface description language (or alternatively, interface definition language - IDL), is a 

specification language used to describe a software component's interface. IDLs describe an 

interface in a language-independent way, enabling communication between software 

components that do not share a language – for example, between components written in C++ 

and components written in Java. IDLs are commonly used in remote procedure call software. 

                                            
13 http://xhttp.org/ 
14 http://kswenson.workcast.org/2005/RestVsSoap.pdf 
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In these cases the machines at either end of the "link" may be using different operating 

systems and computer languages. IDLs offer a bridge between the two different systems. 

The Web Services Description Language15 (WSDL pronounced "wiz'-dul") is an XML-based 

interface definition language that is used for describing the functionality offered by a web 

service [Chinnici2007]. The acronym is also used for any specific WSDL description of a web 

service (also referred to as a WSDL file), which provides a machine-readable description of 

how the service can be called, what parameters it expects, and what data structures it 

returns. It thus serves a purpose that corresponds roughly to that of a method signature in a 

programming language. 

The WSDL describes services as collections of network endpoints, or ports. The abstract 

definitions of ports and messages are separated from their concrete use or instance, allowing 

the reuse of these definitions. A port is defined by associating a network address with a 

reusable binding, and a collection of ports defines a service. Messages are abstract 

descriptions of the data being exchanged, and port types are abstract collections of 

supported operations. The concrete protocol and data format specifications for a particular 

port type constitutes a reusable binding, where the operations and messages are then bound 

to a concrete network protocol and message format. In this way, WSDL describes the public 

interface to the Web service. 

WSDL is often used in combination with SOAP and an XML Schema to provide Web services 

over the Internet. A client program connecting to a Web service can read the WSDL file to 

determine what operations are available on the server. By accepting binding to all the HTTP 

request methods (not only GET and POST as in version 1.1), the WSDL 2.0 specification offers 

better support for RESTful web services, and is much simpler to implement. 

Q-WSDL is an extension to WSDL to describe non-functional aspects or quality of service (QoS) 

characteristics of a web service [D'Ambrogio2006]. These characteristics include performance, 

reliability, availability, security, etc.  

IBM has proposed a standard for SLA documents referred as WSLA framework [Keller2003]. It 

is based on XML and provides machine-readable SLAs for Web services using the WSDL service 

descriptions. However, it is not limited to only WSDL and can be extended to deal with other 

service-based technologies. WSLA accommodate SLA structure in 3 sections: 

● Parties: This section determines all the contractual parties. 

● Service Description: The characteristics of the service and its parameters are 

described in this section. 

                                            
15 Most of the paragraphs on WSDL are taken from the Wikipedia webpage 
(http://en.wikipedia.org/wiki/Web_Services_Description_Language) 
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● Obligations: All the guarantees and the restrictions imposed on SLA parameters should 

be identified in this section. 

BPEL is a XML-based language to be used for specifying business process behavior based on 

Web services [Jordan2007]. It is mainly influenced by WSDL and its process model is a layer on 

top of service model defined in WSDL. This language is used to define an assembly of a set of 

services (Web services) for composite service description. The BPEL structure consists of two 

main sections: i) Partner Link and ii) BPEL Process. The former (together with the 

corresponding WSDL interface) is used to interact with the BPEL core process and the outside 

world. In other words, Partner Link is a logical link from BPEL process to another Web service 

or the client who invoked the service. 

Note that the composition of QoS requirements, capabilities, measurements and SLAs is 

potentially very complex and although BPEL is based on WSDL, the extensions such as Q-WSDL 

might not be useful in description of non-functional properties in composite services. These 

non-functional properties of a composite service should be estimated from the information of 

the partner services. Works such as [Christos2009] and [Mukherjee2008] provides extensions 

to BPEL to specify QoS parameters as well. Another interesting feature in BPEL is the 

exception/fault handling. BPEL introduces systematic mechanisms for dealing with exceptions 

and processing faults. This capability allows for switching to the next best solution when the 

originally selected candidate is unavailable. 

In order to deal with faults, we need to determine possible faults that might occur in a 

service component. Then we need to set up a fault handler for each of them in the BPEL 

process. 

Unified Service Description language (USDL) has been introduced to capture the business and 

operational aspects of services and align them with the technical perspective [Cardoso2010]. 

Some of the services that are addressed by USDL are human services (e.g., consultancy), 

business services (e.g. purchase order requisition), software services (e.g., WSDL and RESTful 

services), infrastructure services (e.g., CPU and storage services), etc. In USDL, the business 

description of the services is derived from the E3Service ontology [Baida2005], the PAS 1018 

[Mörschel2001] and the taxonomy introduced by O’Sullivan [O’Sullivan2006] (it can represent 

the non-functional properties of services such as availability, payment, price, discounts, 

obligations, rights, penalties, trust, security and quality.). The technical description is 

influenced by WSDL, WSMO16 and OWL-S17. 

Using USDL, the service description includes information such as: i) pricing ii) legal iii) service 

provider iv) interaction methods and v) service level agreements. In USDL, the services 

                                            
16 http://www.wsmo.org/ 
17 http://www.ai.sri.com/~daml/services/owl-s/1.2/overview/ 
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described as a black box with no information about internal interactions and components 

connections which is similar to WSDL. 

Linked USDL18 is an effort to promote the use of USDL on Web. Linked USDL remodels USDL 

based on Linked Data19 principles. The existing USDL specifications are remodeled as RDF 

vocabulary. 

Semantic (Web) Modelling frameworks 

In computer science and information science, ontologies are used to formally 

represent knowledge within a domain. An ontology is defined as a formal, explicit 

specification of a shared conceptualization. It provides a common vocabulary to denote the 

types, properties and interrelationships of concepts in a domain.  Ontology 

languages are formal languages used to construct ontologies. They allow the encoding 

of knowledge about specific domains and often include reasoning rules that support the 

processing of that knowledge. Ontology languages are usually declarative languages, are 

almost always generalizations of frame languages, and are commonly based on either first-

order logic or on description logic. 

In order to increase the quality of the interaction between distributed software components, 

not only the syntax and format of the interface might be formalized through IDLs, but also 

the semantics of different elements of these interfaces might be documented through 

ontology frameworks. Adding semantics to interface description of web services is referred as 

the semantic web. 

Resource Description Framework (RDF)20 is a model used for conceptual description of 

information in Web. It is machine-readable and is written in XML (RDF/XML). Therefore, 

different types of computers based on different operating systems can easily exchange RDF 

information. This method decomposes any type of information into small pieces with some 

rules about the meaning of those pieces. It is similar to other conceptual modelling 

approaches such as entity-relationship in the sense that it expresses a fact about (Web) 

resources using a triple in the form of (Subject, Predicate, Object). 

Web Ontology Language (OWL) is a Semantic Web language based on RDF/XML 

[McGuinness2004]. It is used by applications to process the content of information. It provides 

more facilities for expressing meaning and semantics than RDF.  

There are several other ontology languages used to formally encode the ontology. Common 

Algebraic Specification Language is a de facto standard in the area of software specifications 

developed within IFIP working group 1.3 “Foundations of System Specifications” 

[Astesiano2002]. MOF21 and UML22 are two standards of the Object Management Group (OMG). 

                                            
18 http://www.linked-usdl.org/ 
19 http://linkeddata.org/ 
20 http://www.w3.org/RDF/ 
21 http://www.omg.org/mof/ 
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OntoUML is a UML profile which is used for conceptual modelling of ontologies. DOGMA 

[Jarrar2002], SBVR23 and IDEF524 are other examples of such languages. 

OWL-S is an ontology based on Web Ontology Language (OWL) used for description of 

Semantic Web Services. It provides the automatic discovery, composition, invoking and 

monitoring of Web services for users and software agents.  

Unlike languages such as WSDL and USDL, OWL-S enables definition of composite services. The 

notion of ‘process’ is the building block of process model in this language. It consists of both 

atomic and composite processes. Each process in OWL-S has inputs, outputs, pre-conditions 

and conditional effects. 

● Preconditions: a set of conditions which should hold before invoking the service  

● Inputs: a set of inputs required for service invocation 

● Outputs: Results of service request 

● Effects: a set of statement which should be true if the service is successful. E.g. 

package being delivered 

WSDL-S is an attempt to add semantic capabilities into WSDL [Akkiraju2005]. Semantics are 

used to improve discovery and compositions of Web services.  

A.2.1.3 SNMP 

Simple Network Management Protocol (SNMP) is one of the most widely used network 

management protocols. SNMPv1 [Case1990] is already declared historical and is non-

recommended for use due to its lack of security. Later SNMPv2 [Case1996] added functional 

enhancements while SNMPv3 [Harrington2002] added security mechanisms and also revised 

the architecture according to fully modular design.  

The basic framework of SNMP, however, did not change over the versions and comprises of 

managed nodes (agents), management applications and the management protocol. 

Additionally, SNMP uses a protocol-independent data definition language (ANS.1) for the 

information repository containing management information definitions (Management 

Information Base or MIB). 

SNMP follows a manager – agent paradigm, in which the agent is responsible for providing 

access to its local managed objects (MIB) that reflects the resources and activity of the node. 

The communication pattern between the manager-agent is either transaction oriented 

(request-response pairs) or the agent can send unsolicited notifications to the manager.  

                                                                                                                                             
22 http://www.uml.org/ 
23 http://www.omg.org/spec/SBVR/ 
24 http://www.idef.com/idef5.htm 
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SNMP is widely used for monitoring purposes for both fault and performance management. 

There are many counters and state variables defined in MIBs which allow device independent 

statistics collection or state monitoring all over the network. In our UNIFY environment, SNMP 

could provide basic monitoring services.  

For configuration management and programmability, there are more advanced protocols 

available, for example NETCONF. 

A.2.1.4 NETCONF/YANG 

The widely used IETF standard for network management, namely SNMP, dates back to the 

1980s. By the beginning of 2000s, it had clearly turned out that SNMP was mainly used only 

for monitoring network elements and network operators preferred CLI-based configuration 

methods. In order to define more effective methods for network configuration which can be 

widely accepted by network operators and device vendors as well, a new working group 

(NETCONF) had been established in IETF. The work resulted in the definition of a novel 

protocol. NETCONF (Network Configuration Protocol) is a network management protocol 

defined by IETF in RFC 4741 [Enns2006] and later revised in RFC 6241 [Enns2011]. In contrast 

to SNMP, from TMN FCAPS (Telecommunications Management Network – Fault Configuration 

Accounting Performance Security) model, NETCONF focuses on the configuration part. By now 

the major equipment vendors support NETCONF in their devices (e.g., in switches, routers, 

etc.). 

NETCONF provides simple mechanisms to manage network devices, 

retrieve/upload/manipulate configuration data of network elements. The protocol allows the 

devices to expose formal application programming interfaces (APIs) and applications can use 

these to send and retrieve full or partial sets of configuration data. NETCONF is based on a 

remote procedure call (RPC) paradigm where a client encodes an RPC in XML (eXtensible 

Markup Language) and sends it to a server via a secure transport channel, while the server’s 

response is also encoded into XML. Besides the protocol messages, the encoding of 

configuration data is based on XML as well25. 

According to NETCONF terminology, the server or agent is running on the network device 

while the client is an application or a script which is typically part of a network management 

system. The communication of the peers is based on a simple RPC-based mechanism. 

NETCONF can be partitioned into four distinct layers as it is shown in Figure 9.1. 

                                            
25 There is ongoing work to have a JSON data model: http://datatracker.ietf.org/doc/draft-ietf-

netmod-yang-json/ 
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Figure 9.1: NETCONF protocol layers 

The roles of the layers from the bottom to the top are the following: 

● Secure Transport layer provides communication path between the client and the 

server. The connection-oriented transport mechanism must provide persistent connection 

between the peers, and reliable, sequenced data delivery. Authentication, data integrity, 

confidentiality, and replay protection are also required. SSH is mandatory to implement. 

● Messages layer provides a transport-independent framing mechanism for encoding 

RPCs (requests and responses) and notifications. 

● Operations layer defines a set of base protocol operations invoked as RPC methods to 

retrieve and edit the configuration data. The following operations are included: <get>, <get-

config>, <edit-config>, <copy-config>, <delete-config>, <lock>, <unlock>, <close-session>, 

<kill-session>. 

● Content layer consists of configuration and notification data. This layer is out of scope 

of NETCONF standard, data models are defined in separate documents. 

The basic functionality of NETCONF can be extended by the definition of NETCONF 

capabilities. These additional features are communicated between the client and server 

during the session setup phase. Some capabilities have been defined in RFCs such as, 

subscribing and receiving asynchronous event notifications [Chisholm2008], partial locking of 

running configuration [Lengyel2009], monitoring the NETCONF protocol and 

discovering/retrieving data models supported by a NETCONF server [Scott2010]. 

In order to develop a human-friendly modelling language for defining the semantics of 

operational data, configuration data, operations and notifications, a dedicated working group 

(NETMOD) proposed YANG in RFC 6020 [Bjorklund2010]. YANG is a data modelling language 

for NETCONF which can be used to model both configuration and state data of network 

elements. It also supports the description of event notifications which can be generated by 

devices, and makes it possible to define the signature of RPCs that can be invoked on devices 
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via NETCONF. YANG covers two layers of NETCONF protocol, namely Operations and Content 

layers (see Figure 9.1). 

YANG is a modular language with a number of built-in data types. Common YANG data types 

are defined in RFC 6991 [Schoenwaelder2013] (it obsoletes RFC 6021 [Schoenwaelder2010]) 

while additional types can be derived from built-in ones and more complex reusable data 

structures can be created by groupings. Data structures are represented in XML tree format 

and XPATH expressions can be used to define constraints on the elements. 

There are available implementations of NETCONF as well as YANG 

compilers/builders/validators. From our point of view, the following open source tools could 

be relevant: 

● OpenYuma26 is an open source NETCONF implementation and YANG compiler which is 

a fork of the de facto standard Yuma project since it went proprietary (YumaPro). 

● libnetconf 27 is an open source C implementation of NETCONF for GNU/Linux. 

● pyang28 is an extensible YANG validator and converter written in Python. 

A.2.2 Infrastructure modelling frameworks 

A.2.2.1 Common Information Model 

The Common Information Model (CIM)29 is an open standard defined by the Distributed 

Management Task Force (DMTF). CIM provides a common definition of management 

information for systems, networks, applications and services, and allows for vendor 

extensions. CIM's common definitions enable vendors to exchange semantically rich 

management information between systems throughout the network. 

CIM is composed of a Specification and a Schema. The Schema provides the actual model 

descriptions, while the Specification defines the details for integration with other 

management models. The CIM Schemas are based on the Managed Object Format (MOF), 

which is based on the CIM Metamodel. Since the CIM Metamodel is based on a subset of UML, 

all CIM Schemas can be modelled using UML. 

The CIM Specifications and generic Schemas serve as a basis for more specific 

implementations of CIM like The Cloud Management Initiative (CLOUD)30, that addresses the 

management of cloud systems or DMTF's Virtualization Management Standard (VMAN). 

Recently DMTF started a new initiative called Network Management Initiative (NETMAN)31, 

that is focused on the definition of an integrated set of standards for management of 

                                            
26 https://github.com/OpenClovis/OpenYuma 
27 http://libnetconf.googlecode.com/git/doc/doxygen/html/index.html 
28 https://code.google.com/p/pyang/ 
29 http://dmtf.org/standards/cim 
30 http://dmtf.org/standards/cloud 
31 http://www.dmtf.org/standards/netman 
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physical, virtual, application-centric and software defined networks. The initiative is 

supposed to work close with NFV in ETSI32. 

A.2.2.2 Directory-Enabled Networking(-NG) 

Directory refers to a special purpose database which stores the information about the nodes 

(devices) in a network. In directory-enabled networks, network users and applications 

interact with the network devices and services in a controlled manner to provide repeatable 

and predictable services. Directory-Enabled Networking (DEN) defines an object-oriented 

information model based on the Common Information Model. The objective is to provide 

consistent modelling of network elements and services across heterogeneous directories.  

This information model which abstracts the knowledge about the network users, applications, 

devices and their interactions consists of three parts: 

● 6 base class hierarchies to represent network elements and services 

● An extensible schema based on inheritance and aggregation used for application-

specific properties 

● Mechanisms for establishing relationship among object instances 

Using DEN, network applications can be designed which provide automatically the proper 

level of resource access to the users in case of change in the user’s status (position, location, 

etc ).  

The information model in DEN-ng (Directory Enabled Network next generation) originates 

from the network management areas [Strassner2002]. This model is closely related with 

OSS/BSS environments in telecommunications. It enables a common way to represent the 

management information which is used for consideration of policies. The information model 

consists of a single root class with three subclasses: i) Entity ii) Value and iii) MetaData. There 

are special classes (Context, PolicyConcept) which are used for handling policies. An 

interesting feature of this model is the capability of reusing the created components. Also its 

extendibility enables coverage of all aspects of a network in particular, network virtualization 

technologies.  

A.2.2.3 Network Description Language 

NDL was developed at University of Amsterdam to model network infrastructure in a 

technology independent manner [VanderHam2006]. To this end, it adopts semantic web for 

its schemas using RDF in particular. Using NDL, basic network elements such as Devices, 

Interfaces and Links and also communication flows between different network layers can be 

defined. It also enables definition of Network domains with different administrators and 

policies. An interesting feature of NDL is the support for distribution of information which 

                                            
32 http://www.etsi.org/technologies-clusters/technologies/nfv 
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means that different network operators can define their networks using NDL and publish them 

(on the Web). These can be gathered to generate a global description of the network.  

In this model, network information is categorized in i) network topologies ii) layers iii) device 

configurations iv) capabilities and v) network domains. It is worth mentioning that NDL is a 

network-centric model and does not provide models to describe computing infrastructure. 

Other models such as Network Markup Language, NOVI and GEYSERS information model are 

influenced by NDL. 

A.2.2.4 RSpec 

RSpec33 is the ProtoGENI mechanism for advertising, requesting, and describing the resources 

used by experimenters. ProtoGENI derived many of the basic principles from their previous 

format used in assign, the network mapper used in the Emulab testbed control framework34 . 

The format has the advantage of having a fairly simple structure and allows us to draw upon 8 

years of experience in dealing with resources inside of Emulab. 

The RSpec has three distinct purposes and therefore we have divided RSpecs up into three 

different closely-related languages to address each of these purposes in particular. 

● Advertisements are used to describe the resources available on a Component Manager. 

They contain information used by clients to choose resources (components). Other kinds of 

information (MAC addresses, hostnames, etc.) which are not used to select resources should 

not be in the Advertisement. 

● Requests specify which resources a client is selecting from Component Managers. They 

contain a (perhaps incomplete) mapping between physical components and abstract nodes 

and links. 

● Manifests provide useful information about the slivers actually allocated by a 

Component Manager to a client. This involves information that may not be known until the 

sliver is actually created (i.e. dynamically assigned IP addresses, hostnames), or additional 

configuration options provided to a client. 

The following components are key aspects of RSpec: 

● Identifying resources: All nodes and links are identified by URN 

● Nodes 

● Node have types 

● Geographic information can be attached 

                                            
33 Most of the description this section is taken from the homepage of the project 
http://www.protogeni.net/ProtoGeni/wiki/RSpec 
34 http://www.emulab.net/ 

http://www.protogeni.net/ProtoGeni/wiki/ComponentManager
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● Virtualization technology is included as a field 

● Descriptions of additional optional facilities provided by the component manager (e.g. 

login protocols, installation of software, commands to run) can be supplied 

● Links 

● Links are point-to-point: LANs and other "full connectivity" environments (such at the 

Internet), a "LAN node" is created, and all members are linked to it. 

● Links have bandwidth, a type, etc. 

● Links endpoints reference Interfaces on Nodes 

● Links have LinkTypes which describe how experimental traffic is to be encapsulated 

and what layer(s) are supported for that traffic. 

● Interfaces 

● Endpoint of a link 

● Named by node, plus an opaque interface name 

● In progress: Interfaces will be first-class entities, declared as part of the component 

they belong to 

● Metadata, incl. a "valid until" field and a "generated" time 

● ExternalReferences: A mechanism by which CMs can describe how their components 

connect with the components in other CMs. 

A.2.2.5 NDL-OWL 

NDL-OWL extends NDL by using Web Ontology Language (OWL) [Baldine2010]. Networks 

topology, layers, utilities and technologies (PC, Ethernet, fiber switch), cloud computing, 

virtual machines and service procedures and protocols can be modelled using their ontology.  

They extend NDL with more virtualization and service description features to describe their 

infrastructure. Such description can be used by both client and management software. Clients 

use them to describe requests and management software uses them to map the requests to 

the infrastructure.  

NDL-OWL provides a flexible semantic query-based programming approach which enables 

implementation of resource allocation, path computation and topology embedding. There are 

5 models considered in their ontology: 

● Substrate models: Used to describe resource and topology. 

● Delegation models: Used to advertise an aggregate’s resources and services externally. 

http://www.protogeni.net/ProtoGeni/wiki/LinkTypes
http://www.protogeni.net/ProtoGeni/wiki/ExternalReferences
https://geni-orca.renci.org/trac/wiki/NDL-OWL-substrate
https://geni-orca.renci.org/trac/wiki/NDL-OWL-delegation
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● Request models: User resource requests are described by this model. 

● Reservation models: Used by ORCA (a control framework to provision virtual network 

systems) brokers to return resource tickets to SM (Slice Manager) controller. 

● Manifest models: Access method, state and post-configuration information of the 

reserved slivers (virtual resources) are described by this model. 

A.2.2.6 Network Markup Language 

The Network Markup Language (NML) defines a standard schema to exchange network 

topology information [VanderHam2013]. NML is a standard at the Open Grid Forum (OGF) and 

tries to combine several initiatives (cNIS, NDL, UNIS, VDXL, OGF) to a single single standard 

describing its network topology, its capabilities and its configuration. 

The following is the set of requirements set for the NML specification: 

 Network Infrastructure Agnostic – the NML schema must be not depend on specific 

network infrastructure. 

 Encoding Agnostic – the NML schema must be able to be easily transformed into 

different wire encodings (e.g. XML, OWL[OWL], etc.). 

 Extensible – the NML schema must be extensible to support new network infrastructure 

types as well as the needs of different applications. 

 Concise – the NML abstraction should represent core network definitions (e.g. node, 

port, link) enough to model the basic network infrastructure. Complex structures should be 

provided as extensions. 

 Scalable – NML must be able to deal with heterogeneous, dynamically growing 

networks. 

 Multi-layer and multi-domain – NML must fit into the applications running in the multi-

domain networks, aware of multi-layer structure 

A.2.2.7 Infrastructure and Networking Description Language 

The Infrastructure and Networking Description Language (INDL) has the aim to provide a 

technology independent model of computing infrastructure [Ghijsen2012]. INDL can also be 

utilized to describe virtualized resources and the services offered by the infrastructure. 

Despite using INDL only it can be well connected with NML to describe compute and network 

resources altogether.  

INDL can be compared to NDL-OWL, since both are built on top of Semantic-Web 

technologies. While INDL leverages the latest conclusions of OGF's NML-WG to describe 

networking resources, NDL-OWL uses the slightly older NDL. NDL-OWL is also more detailed on 

https://geni-orca.renci.org/trac/wiki/NDL-OWL-request
https://geni-orca.renci.org/trac/wiki/NDL-OWL-reservation
https://geni-orca.renci.org/trac/wiki/NDL-OWL-manifest
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the resource description capabilities, while INDL keeps the resource information rather 

simple. 

A.2.3 Network Programming and Control 

The lower layer interface toward the networking elements is generally referred as 

southbound interface (SBI). During the past decades, several interfaces and protocols have 

been standardized to control, manage, or configure the network nodes. These SBI protocols 

address different aspects of the operation. For example, OpenFlow separates the data and 

control plane of the network and defines a protocol to control the forwarding elements, i.e. 

the OpenFlow capable switches. This section briefly summarizes the most relevant SBI 

protocols and tools. 

A.2.3.1 Node-level programming and Control 

A.2.3.1.1  OpenFlow 

The OpenFlow protocol [McKeown2008] specifies an API in which network controllers are able 

to program how packets must be handled by an OpenFlow-capable switch. It is based on the 

fact that most modern routers/switches contain a proprietary FIB (Forwarding Information 

Base) which is implemented in the forwarding hardware using TCAMs (Ternary Content 

Addressable Memory). OpenFlow provides the concept of a FlowTable that is an abstraction of 

the FIB. In addition to this, it provides a protocol to program the FIB via 

“adding/deleting/modifying” entries in the FlowTable.  

An entry in the FlowTable consists of: (1) a set of packet fields to match with incoming 

packets (grouped as flows), (2) “statistics” which keep track of matching packets per flow, 

and (3) “actions” which define how packets should be processed. When a packet arrives at an 

OpenFlow switch, the header of the packet is compared with the flow of the Flow Entries in 

the FlowTable. If a match is found, the actions specified in the matching entry are 

performed. If no match is found, the packet (a part thereof) is forwarded to the controller. 

Thereafter, the controller makes a decision on how to handle the packet. It may return the 

packet to the switch indicating the forwarding port, or it may add a Flow Entry directing the 

switch on how to forward packets with the same flow. 

Stanford University released the first versions of OpenFlow known as version 1.0 [OF1.0] and 

1.1 [OF1.1] in year 2009 and 2011 respectively. Industrial players such as Deutsche Telekom, 

Google, Microsoft, Verizon, and Yahoo! have then formed ONF (Open Networking Foundation) 

to standardize and release the next versions of OpenFlow versions according to their needs 

and demands. Since then, many versions (1.2, 1.3.0, 1.3.1, 1.3.2, 1.3.3 and 1.4.0) have been 

released publicly35. 

                                            
35 https://www.opennetworking.org/sdn-resources/onf-specifications 
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For enabling widespread deployment in a production and carrier environments, new OpenFlow 

versions provide additional functionalities. Table 9.1 depicts functionalities available in 

different OpenFlow versions.  

Multiple table support, group tables, multiprotocol label switching (MPLS), and controller-

connection failure support are available from OpenFlow 1.1. The OpenFlow spec 1.2 and 

higher also include support for IPv6, and controller redundancy (role-change). Furthermore, 

the per-flow meter, PBB (Provider Backbone Bridge), and expendedIPv6 support are available 

from OpenFlow version 1.3, and optical port and PBB-UCA (Use Customer Address) support are 

available in 1.3.1. 

Table 9.1: Functionalities available in different OpenFlow versions 

 

Besides the growing number of functionalities in newer OpenFlow versions, matching 

functionality in the Flow-Entries has also been extended (Table 9.2). Starting from Ethernet, 

IP and transport layer packets matching in OpenFlow 1.0, MPLS headers and metadata can be 

matched from 1.1, as well as IPV6 headers (source, destination addresses) matching is 

Main functionalities version  1.0 version 1.1 version 1.2 version 1.3 version 1.3.1, 1.3.2, 

1.3.3, 1.4

1 Single FlowTable 

support

X X X X X

2 Slicing X X X X X

3 Normal stack (Ethernet 

switching mode)

X X X X X

4 Matching support X X

(more fields are 

added see Table 2)

X

(more fields are 

added see Table 2)

X

(more fields are added 

see Table 2)

X

(more fields are 

added see Table 2)

5 Queue support X X X X X

6 Statistics X X

(more fields are 

added see Table 3)

X

(more fields are 

added see Table 3)

X

(more fields are added 

see Table 3)

X

7 Multiple FlowTable 

support

X X X X

8 GroupTable support X X X X

9 Tags: MPLS X X X X

10 Controller connection 

Failure

X X X X

11 Basic IPv6 support X X X

12 Controller role-change

mechanism

X X X

13 Per-flow meters X X

14 PBB (Provider Backbone 

Bridge) tagging

X X

15 Expanded IPv6 support X X

16 Optical Port support X

17 PBB-UCA support X
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supported since 1.2. Furthermore, in OpenFlow version 1.3, the IPV6-extensible and PBB 

headers can be matched against the flow and in the latest versions, PBB-UCA headers can be 

matched with the flow of Flow-Entries. 

Table 9.2: Flow Matching Fields in different OpenFlow versions  

 

Several statistics can be gathered in the controller via the OpenFlow interface towards 

switches. Table 9.3 shows the statistics fields in different versions. It shows that the per-

table, per-port, per flow-entry, per queue statistics can be gather in OpenFlow version 1.0. In 

version 1.1, this is extended with statistics about Group-Entry and action-bucket statistics. In 

the latest OpenFlow versions, flow-meter and Flow meter-band statistics can be gathered. 

Table 9.3: Statistics Fields in different versions of OpenFlow 

 

Matching  Fields version  1.0 version 1.1 version 1.2 version 1.3.0 version 1.3.1, 1.3.2, 

1.3.3, 1.4

1 Ingress port X X X X X

2 Ethernet fields (src,dst, 

type, vlan)

X X X X X

3 Internet protocol fields 

(IP src, dst, protocol, 

TOS)

X X X X X

4 Transport layer fields

(TCP src port, TCP dst

port)

X X X X X

5 Metadata X X X X

6 MPLS field (Label,

Traffic class)

X X X X

7 IPV6 (src,dst, label) X X X

8 IPV6 extensible header X X

9 PBB headers X X

10 PBB-UCA headers X

Statistics  Fields version  1.0 version 1.1 version 1.2 version 1.3.0 version 1.3.1, 1.3.2, 

1.3.3, 1.4

1 Table statistics X X X X X

2 Port statistics X X X X X

3 Flow-Entry statistics X X X X X

4 Queue statistics X X X X X

5 Group-Entry statistics X X X X

6 Action-bucket statistics X X X X

7 Flow-meter statistics X X

8 Flow meter band 

statistics

X X
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Despite the many extensions to OpenFlow specification standards, a couple of functionalities 

are currently still missing: 

● Connectivity verification mechanisms on a per link or per-flow level, such as BFD 

(Bidirectional Forwarding Detection)[Katz2010] 

● Quality of service (QoS) support is limited, for example creation or configuration of 

output queues is only possible through implementation/vendor-specific extensions or 

protocols such as OVS-DB (Open vSwitch Database Management Protocol) 

A.2.3.1.2  OF-Config 

The OF-Config protocol36 was defined in order to cover management and configuration of 

OpenFlow datapath elements which are not covered within OpenFlow (e.g., the setup of 

control channel towards the OpenFlow controller). Figure 9.2 illustrates how an OpenFlow-

capable switch is hosting one or more logical OpenFlow switches. The logical switches are the 

actual network elements controlled by OpenFlow controllers. An OF Configuration Point is a 

service that interacts with the OF-Config protocol with the OF Capable switch.  

The OF-Config protocol is based on NETCONF and focuses on the definition of schema to 

ensure consistent representation of configuration elements in the switch. The OF-Config 

specification was given as a YANG model and includes the following functionality: 

● Assignment of OF controllers 

● Configuration of queues and ports 

● Ability to remotely change aspects of ports (up/down) 

● Configuration of certificates for secure communication towards OF Controllers 

● Discovery of capabilities of OF logical switch 

● Configuration of tunnel types such as IP-in-GRE, NV-GRE and VxLAN 

                                            
36 https://www.opennetworking.org/images/stories/downloads/of-config/of-config-1.1.pdf  

https://www.opennetworking.org/images/stories/downloads/of-config/of-config-1.1.pdf
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 Figure 9.2: ONFs SDN architecture including OpenFlow and OF-Config   

A.2.3.1.3  OVSDB 

The Open vSwitch Database (OVSDB) management protocol was defined as part of the Open 

vSwitch (OVS)37  project. Open vSwitch is an open-source software switch, designed to be 

used as a virtual switch in virtualized server environments, and it is open to programmatic 

extension and control using OpenFlow and OVSDB. The architecture of OVS is shown in the 

Figure 9.3. 

 

Figure 9.3: OVS architecture  

Regarding OVSDB there are two main parts that has to be considered: 

● OVSDB protocol, detailed in [Pfaff2013] (The Open vSwitch Database Management 

Protocol (informational, released December 2013)), is used for interacting with the 

configuration database for the purposes of managing and configuring Open vSwitch instances, 

                                            
37 http://openvswitch.org/ 
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while it also provides means for discovering the schema in use, but does not define the 

contents. The OVSDB management protocol uses JSON [Crockford2006] for its wire format and 

is based on JSON-RPC version 1.038 . 

● OVS schema, detailed in Open vSwitch Manual (ovs-vswitchd.conf.db(5)), describes the 

configuration tables and the relation between them. Figure 9.4 shows the main tables 

considered and Figure 9.5 shows the complete set of tables included in the schema, 

representing also the detail of the relationships between them. Edges are labelled with their 

column names, followed by a constraint on the number of allowed values: ? for zero or one, * 

for zero or more, + for one or more.  

 

 

Figure 9.4: OVS main configuration tables 

 

Figure 9.5: Detailed OVS schema with table relations 

                                            
38 http://www.jsonrpc.org/    

http://www.jsonrpc.org/
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Also to be considered in the scope of UNIFY, OVSDB Integration is a project for OpenDaylight 

that will implement the Open vSwitch Database management protocol, allowing southbound 

configuration of vSwitches. The project consists of a library, along with various plugin usages. 

The OpenDaylight's OVSDBsouthbound plugin is made up of one or more OSGi bundles 

addressing different services / functionalities: 

● Connection Service - Based on Netty 

● Network Configuration Service 

● Bidirectional JSON-RPC Library 

● OVSDB Schema definitions and Object mappers 

● Overlay Tunnel management 

● OVSDB to OpenFlow plugin mapping service 

● Inventory Service 

A.2.3.1.4  Click Modular Router 

Click is a software router framework for *nix operating systems focusing on data-plane logic39. 

Click elements are C++ classes implementing a given set of methods defining how packets are 

received, and what actions should be performed on them. The modularity and extensible 

nature of the architecture enables building of extensible and complex software routers, 

forwarders or packet-processing functions with little effort. Click already provides a wide 

range of packet-processing components such as NAT, Classifier, Encryption/Decryption, but 

can be easily extended by implementing new C++ classes. Handler interfaces enable external 

configuration of these components through tcp or unix control sockets. As such, a click 

packet-processing element is similar to a simple, atomic Network Function. 

More advanced/composed Network Functions such as a DHCP or CDN server functionality are 

typically not implemented as atomic Click elements, but either as Click script 

(interconnecting multiple simpler components) or as regular *nix OS daemon/process. The 

latter can possibly interact with regular Click elements through special socket interfaces 

crossing the regular network stack. Click scripts can thus be a good starting point to describe 

and implement composed Network Functions. 

In ClickOS [Ahmed2012] a Click configuration is deployed in a light-weight virtual, rather than 

a physical machine. The latter enables to deploy multiple Click-driven Network Functions on 

the same physical machine. Such a setup is a starting point to enable the implementation of 

Service Function Graphs involving multiple physical machines based on NFs implemented by 

Click-scripts. 

                                            
39 http://www.read.cs.ucla.edu/click/click 
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A.2.3.1.5  HILTI  

HILTI (High-level Intermediary Language for Traffic Inspection) is an environment for traffic 

analysis which provides high-level data structures, control flow primitives, concurrency 

support and a secure memory model [Sommer2012]. It can be seen as a middle-layer between 

the operating system and a host application which tries to close the gap between high-level 

description of analysis and low-level detailed implementation. It consists of two parts: i) an 

abstract machine model for networking domain and ii) a compilation strategy which is used to 

convert the programs for the abstract machine to an optimized code for a given platform. 

 

Figure 9.6: Workflow of using HILTI from [Sommer2012]  

Figure 9.6 illustrates the workflow for using HILTI. An application usually has an analysis 

specification which should be deployed (e.g. a set of filtering rules for firewall). This 

specification should be converted to HILTI code through a custom analysis compiler provided 

by the application. The compiler generates a set of C stubs for the application to interface 

with the compiled code. The system linker combines the resulting code, stubs and the 

application to a single program. 

The instruction set of HILTI is built on register-based assembler languages. In addition to 

standard atomic types such as integers, floating-point, etc, HILTI provides domain-specific 

types such as IP addresses, transport-layer ports and timestamp types. These types can 

enable optimization and data flow analyses.  

HILTI has an extensive C API which enables access to all of its data types. The exception 

handling and thread scheduling between applications and HILTI is integrated through the C 

interface. There exists a Python based AST (Abstract Syntax tree) interface used for building 

HILTI programs in memory. This API can be used by applications to compile their analysis 

specifications to HILTI code 

A.2.3.1.6  ForCES 

Forwarding and Control Element Separation (ForCES) is an approach to network 

programmability, where the focus is on a clear separation of forwarding functions of a 

switch/router from its control functions [Doria2010]. The work on ForCES started in early 

2000s, when the relatively powerful network processing units (NPU) found widespread use in 

networking elements like IP routers. The need for having a standard framework for 
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programming such NPUs has contributed to the ForCES initiation. Currently, ForCES is an 

active working group of IETF. 

ForCES specifies a modular architectural framework for structuring separated forwarding 

elements (FEs) and control elements (CE) in a networking element (NE), as depicted in Figure 

9.7. The ForCES architecture defines several reference points between the architectural 

elements, including between CE and FE. Furthermore, ForCES specifies a protocol for 

communicating between a CE and a FE.  

In the ForCES architecture a FE represent a logical data-path entity performing per-packet 

processing and forwarding. That is, external input/output data-path ports are connected to 

FEs. An example of a FE realization is a line card in an IP router. The CE, on the other hand, 

implements all the control functions of the NE (such as routing and signalling) and control the 

forwarding behaviour of FEs using the ForCES protocol. FEs and CEs can dynamically join a NE, 

where a CE controls the operation of several FEs based on the master-slave model. For the 

sake of redundancy or load balancing, a NE might include several CEs with the same 

functionality. The management functions of FEs and CEs are performed by the corresponding 

manager entities, as depicted in Figure 9.7. An example of a management function is the 

assignment of a FE control to a specific CE.  

A forwarding element in a NE is further structured into several logical functional blocks (LFBs) 

interconnected in a directed graph. A LFB is defined as a logical entity performing a single 

action on the packets passing through it, and is modelled using the XML. Examples of LFBs 

include a packet classifier, or a particular packet encapsulation. A CE controlling a FE can 

instantiate, update or delete LFBs within a FE, based on the library of LFBs supported in the 

FE. Therefore, The CE can dynamically program the functionality of corresponding FEs.  

 

Figure 9.7: ForCES provides a modular framework for structuring a network element (NE) 
into forwarding elements (FEs) and control elements (CE) 

A.2.3.2 Network-level Programming and Control 

A.2.3.2.1  SDN control platforms 

The role of the controller is crucial in the context of Software-Defined Networks. This section 

gives a short overview on most common SDN control frameworks. Figure 9.8 gives an overview 

of a selection of open SDN platforms taken from [Al-Somaidai2014]. 
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Figure 9.8: SDN control platform overview from [Al-Somaidai2014] 

The OpenDaylight platform40 is one of the SDN control platforms which gets more traction and 

support compared to other frameworks. Deliverable D2.1 Section 2.6 and Annex 2 provides an 

extensive description of the platform, as it is of substantial interest for the UNIFY project. 

The NOX controller41 was the original (academic) control framework for OpenFlow networks. 

It is written in C++ and provides a higher-level programmable interface upon forwarding 

devices and applications. It is designed to support small networks hundreds switches and 

hosts. NOX's core has features of fast, asynchronous I/O, topology discovery, host tracking 

possibility, and learning switch feature. The POX platform42 was derived from NOX controller 

platform with the main difference is using Python programming language instead of C++ 

platform. POX uses Python API (version 2.7) to support network virtualization, SDN debugging, 

and different application such as layer-2 switch, etc. POX and NOX support the same GUI and 

visualization setup.  

Floodlight43 is another popular SDN control framework developed by Big Switch networks on 

top of the Java Virtual Machine and is targeting large networks of OpenFlow-capable devices. 

Floodlight controller realizes a set of common functionalities to control and inquire an 

OpenFlow network. The controller has features of simple to extend and enhance, easy to 

setup with minimal dependencies, support for Open Stack Quantum cloud, topology 

management, and it deals with mixed OpenFlow and non-OpenFlow network. Floodlight 

supports applications that include a learning switch, firewall, etc. applications.  

Ryu44 is a component-based, open source framework implemented entirely in Python. Ryu 

targets an operating system for SDN for large networks. Ryu controller includes event 

                                            
40 http://www.opendaylight.org/software/ 
41 http://www.noxrepo.org/nox/about-nox/ 
42 http://www.noxrepo.org/pox/about-pox/ 
43 http://www.projectfloodlight.org/floodlight/ 
44 http://osrg.github.io/ryu/ 
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management, in-memory state management, application management, and series of reusable 

libraries (e.g NetCOONF library, sFlow/NetFlow library and OF-Config library).  

The authors of [Kreutz2014] give an extensive overview on the main design characteristics of 

another set of SDN control platforms. While we won’t go into detail of these,  

 

Figure 9.9: Architecture and design elements of SDN controllers from [Kreutz2014] 

A.2.3.2.2  Network Programming Language Overview 

Controlling the network behaviour directly via OpenFlow requires low-level programming and 

managing, considering too much information to achieve the desired operation. As a 

consequence, several tools, control frameworks and network programming languages have 

been proposed recently to raise the abstraction level at which network operators can write 

custom network control software.  

Frenetic [Foster2011] proposes a higher-level language design on top of NOX (a development 

platform for SDN CtrlApps), built around a combination of: i) a declarative query language 

with an SQL-like syntax, ii) a Functional Reactive Programming (FRP) language, and iii) a 

specification language for describing packet forwarding.  

NetCore [Monsanto2012] as an improvement of Frenetic was proposed by the same authors. It 

is a declarative programming language describing packet processing in OpenFlow networks at 

a high abstraction level. It facilitates the compilation of network policies into low-level 

OpenFlow rules. Network policies are considered as assignments of a set of forwarding target 

locations (e.g., all ports, controller) to predicates which define a subset of traffic. NetCore 

provides stateful, dynamic policies which can reactively specialize to traffic. Moreover, 

different operators can be applied on policies in order to compose more complex ones, and a 

special mathematical algebra guarantees the correctness of the compilation.  



 

167 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

NetKAT [Anderson2014] is another tool originated from NetCore. It uses regular expressions on 

network policies to describe the network behaviour. It supports the separation of topology 

specific and global (topology independent) policies. NetKAT provides a network-wide 

language and also the concept of network slices to be able to program a dedicated part of a 

network independently from others. Based on an extended Kleene algebra, the mathematical 

proof of correctness and soundness can also be provided. High-level questions on the 

network, such as “Can all hosts talk to each other?”, can be answered by algorithmic proof. 

Merlin [Soulé2013] is a recently proposed network management framework where network 

policies can be expressed in a declarative language based on logical predicates (defining a 

subset of traffic) and regular expressions on Network Functions and bandwidth requirements. 

Merlin can automatically partition the high-level program into smaller components that can 

be placed on different types of devices, such as switches, middleboxes and end hosts. Merlin 

contains a constraint solver and heuristic algorithms to allocate resources according to the 

demands. Currently, traffic steering is implemented by OpenFlow rules, middlebox functions 

are realized by generated Click modules, while traffic filtering and rate limiting are 

implemented by iptables and tc on end hosts. 

Alternate designs such as Nettle [Voellmy2011] also enable high-abstraction level network 

programs through FRP-constructs embedded in the Haskell language. These do not rely on 

NOX and directly transform network programs into low-level data plane actions. While this 

approach is more self-contained, it excludes the possibility of having other CtrlApps running 

alongside them on the same network OS (e.g. NOX). The Lithium architecture of Georgia Tech 

provides an alternative event-driven network control framework on top of NOX, to enable 

higher-level languages such as Nettle or network policy languages such as Procera 

[Voellmy2012] as an additional layer. 

FatTire [Reitblatt2013] is a declarative language which enables description of network paths 

with fault-tolerance requirements. Using this language, each flow can have its own 

alternative paths in order to deal with failures. Other features such as model checking and 

dynamic verification are provided by languages such as FlowLog [Nelson2013] and Flog 

[Katta2012]. 

The above frameworks provide some support for reasoning about network programs. This 

enables them, e.g., to assure that the compilation process generates instruction sequences 

resulting into consistent network states (e.g, avoiding loops in routing). A two-phase commit 

mechanism to guarantee consistent network updates on top of a runtime system is 

documented in [Reitblatt2011]. 

As it is not the purpose of this document to go into detail on all possible network 

programming language frameworks, we direct the interested reader to [Kreutz2014]. An 
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overview table of the main characteristics of the discussed languages of the referred paper is 

given in Figure 9.10 

 

Figure 9.10: Network Programming language overview from [Kreutz2014] 

A.2.3.2.3  Network Monitoring Language Overview 

Frenetic/Pyretic 

Frenetic [Foster2011] aims to design a simple and intuitive abstractions for programming the 

three main stages of network management: monitoring network traffic, specifying and 

composing packet forwarding policies, and updating policies in a consistent way. Frenetic 

consists of a high-level query language, compiler and run-time system. The query language 

can subscribe to streams of information about network state, including traffic statistics and 

topology changes. The runtime system handles the details of polling switch counters, 

aggregating statistics, and responding to events.  

Frenetic’s query language allows programmers to express what they want to monitor and 

control the information they receive using a collection of high-level operators for classifying, 

filtering, transforming, and aggregating the stream of packets traversing the network., 

leaving the details of how to actually collect the necessary traffic statistics to the runtime 

system. Below is an example to query the traffic histogram: 

Select(bytes) * 

Where(inport=2 & srcport=80) * 

GroupBy([srcip]) * 

Every(60) 

It uses a syntax that closely resembles SQL, including constructs for selecting, filtering, 

splitting, and aggregating the streams of packets flowing through the network. The 
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Select(bytes) clause states that the program wants to receive the total number of bytes 

of traffic. The Where(inport=2 & srcport=80) clause restricts the query to HTTP traffic 

arriving on ingress port 2 on the switch. The GroupBy([srcip]) states to aggregate traffic 

based on the source IP address. The Every(60) says that the traffic counts should be 

collected every 60 seconds.  

The runtime system handles all of the low-level details of supporting queries—installing rules, 

polling the counters, receiving the responses, combining the results as needed, and 

composing query implementation with the implementation of other policies. For example, 

suppose the programmer composes the example monitoring query with a routing policy that 

forwards packets based on the destination IP address. The runtime system ensures that the 

first TCP port 80 packet from each source IP address reaches the application’s printer 

routine, while guaranteeing that this packet (and all subsequent packets from this source) is 

forwarded to the output port indicated by the routing policy. Initial Frenetic run-time system 

had a reactive, microflow-based strategy for installing rules on switches. At the start of 

execution, the flow table of each switch is empty, so every packet is sent to the controller 

and passed to the packet_in handler. Upon receiving a packet, the runtime system iterates 

through all of the queries, and then traverses all of the registered forwarding policies to 

collect a list of actions for that switch. The current Frenetic runtime system is proactive 

(generating rules before packets arrive at the switches) and uses wildcard rules (matching on 

larger traffic aggregates). It uses an intermediate language, called NetCore, for expressing 

packet forwarding policies and a compiler that proactively generates as many OpenFlow-level 

rules for as many switches as possible, but where impossible (or intractable), uses an 

algorithm called reactive specialization to dynamically unfold switch-level rules on demand. 

Now the run-time system support OpenFlow 1.0. 

Pyretic is a Python implementation of Frenetic and is developed by Princeton University 

[Reich2013].  

The Akamai Query System  

The Akamai platform is a network of over ten thousands servers supporting content delivery 

services including HTTP content, live, on-demand streaming media and etc. The maintenance 

of such a network requires significant monitoring infrastructure to enable detailed 

understanding of its state at all times [Cohen2010]. For that purpose, Akamai has developed 

and uses Query, a distributed monitoring system in which all Akamai machines participate. 

Query collects data at the edges of the Internet and aggregates it at several hundred places 

to be used to answer SQL queries about the state of the Akamai network.  

Query is partly distributed and partly centralized. The collection of data in thousands of 

clusters all over the world is fully distributed, but that data need to be aggregated to allow 

the issuing of SQL queries about the entire Akamai network. A set of a few hundred machines, 

called Top-Level Aggregators (TLAs) collects data from the cluster proxies and combines data 
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from all the clusters into larger tables. Because it takes all the resources available to most 

TLAs just to talk to all those clusters and combine their data, TLAs don’t have enough 

processing time left to also answer queries. Therefore they send their aggregated tables to 

SQL parsers that actually receive queries and compute their answers. 

 

Figure 9.11: The Akamai Query System 

Query provides aggregated data in the form of tables that can be accessed using a SQL 

interface. This interface enables users to easily combine data from multiple data sources, as 

well as statically generated configuration data. For example, by issuing a query such as the 

one below, a user can see processes on machines with role “dns” that are using more than 

75% of system memory for their RSS: 

SELECT sys.ip ip, procname, rss, pid 

FROM sys, processes 

WHERE sys.ip = processes.ip 

AND (rss*100)/sys.memtotal > 75 

AND sys.ip in 

(SELECT ip 

FROM machinerole 

WHERE role=’dns’); 

In Akamai's Query system, alerts can be activated by writing SQL statements which are 

submitted to the Query system at regular intervals. For example, consider this simplified SQL 

statement to detect disks with less than 3% of their disk space left free: 

SELECT 

machineip ip key, 

mountp mnt key, 
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bavail*bsize free space, 

(100*bavail)/blocks pct 

FROM 

filesystem a 

WHERE 

blocks > 0 and 

(100*bavail)/blocks < 3; 

ip key mnt key free space pct 

------------ ---- ----------- -- 

10.123.123.1 /var 150,179,840 2 

10.123.123.7 /var 72,216,576 1 

The SQL statement along with other configurable settings defines an alert definition. Each 

row returned by the SQL statement constitutes a problematic condition, or an alert instance. 

Each time the alert query is run, the result is compared to the previous result. Any new rows 

are considered new instances of the alert. As soon as an alert instance is detected, the alert 

is said to fire. If any rows from the previous iteration are no longer present, the alert is said 

to clear. Three commonly used alert definition settings deal with these timing parameters: 

frequency of SQL execution (typically one minute); number of iterations the data are present 

before an alert fires and amount of time the data must be absent before an alert clears. 

Simple Management API 

Simple Management API (SMI)45 is introduced by TM Forum to provide management 

capabilities for services deployed by service providers.  

The following capabilities are available on a SMI interface: Activation/Provisioning of a 

Service of a Service; State/Usage/Health monitoring of a Service; Update/De-activation of a 

Service. 

 

Figure 9.12: Simple Management API architecture 

                                            
45 http://www.tmforum.org/TechnicalReports/TR198MultiCloudService/52095/article.html 
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 The SMI interface can be described by a WSDL description file. The SMI WSDL is provided with 

SOAP bindings and will support REST as well. A reference REST interface implementation is 

deployed on Apigee API hosting site.  

In addition it pre-provides all the relevant data structure definition (XSD files) which is 

necessary for using the SID data definitions and therefore enables the use of TM Forum 

resource modelling.  

Several operations are defined in SMI: Get/Set ExecutionState; Get/Set ServiceConfiguration; 

Get ManagementReport; and Register/UnRegister Listener.  

Monitoring related operations are defined in ManagementReport which contains information 

about the service instance health, execution state, eventual failures and metrics. 

In SMI, the Metric entity contains the following attributes: Code which is used as a code for 

identifying a particular Metric in a list of metrics; SourceID which is used to relate a Metric 

with a particular service or resource that the reporting service instance depends on; Value 

which is the value measured; Reference which is an optional reference identifier used to 

correlate the Metric with a particular service consumer or operation context. 

OGF NM(C)WG schemas  

The Network Measurement Working Group in Open Grid Forum (OGF NM-WG) [Swany2009] has 

defined a set of extensible schemas for representing network measurement and performance 

data. These are Extensible Markup Language (XML) schemas, developed using the RELAX NG46 

compact notation. Schemas are defined for information such as the subject of a measurement 

(e.g. a network path or router interface), the network characteristic measured (e.g. link 

usage or round-trip time), the time of a measurement and the measurement data themselves.  

These schemas are designed to be used together with a base schema for a message type. The 

message may be one of request, response or store. Only the first two message types described 

in base schema; a request for particular measurement data, sent by a client, and the 

corresponding response containing the data, sent by the framework. 

The basic schema design is based on the observation that network measurement data can be 

divided into two major classes: Metadata, which describes the type of measurement data; 

and Data itself. This structure is present both in the Messages sent between various data 

elements and in data Stores – persistent storage of XML documents representing system state. 

The message structure may contain multiple metadata and data sections. The schema for the 

top-level message envelope is shown below. 

namespace nmwg = 

"http://ggf.org/ns/nmwg/2.0/" 

element nmwg:message { 

attribute type { xsd:string } & 

                                            
46 http://relaxng.org/ 

http://ggf.org/ns/nmwg/2.0/
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( Metadata | Data )+ 

} 

In NW-WG, the schema is written in the RELAX NG language. Tools exist to perform 

translation from RELAX NG to XML Schema when appropriate. 

NW-WG only defines base schema and allows independent extensions of the schema to co-

exist without central coordination. It has adopted XML namespaces to allow reuse of these 

same basic element names. The namespace-based approach provides extensibility by defining 

new basic elements in a tool- or characteristic-specific namespace. 

In open source project perfSONAR47, some of these protocol definitions have been 

implemented using NM-WG’s basic schema and extension. 

A.2.3.2.4  I2RS 

The Interface to the Routing System Project (I2RS) working group (WG) [Ward2012] of the 

Internet Engineering Task Force (IETF) was created in 2012 with the goal of creating an 

architecture revolving around a modern, logically centralized, and programmable interface to 

a routing system. The I2RS architecture will give a network oriented application the 

possibility to rapidly influence, and get updated by a routing system. 

The routing system is seen as currently implemented control and management plane 

processes and protocols, as well as the forwarding plane. I2RS is to co-exist with, and 

complement, the already existing routing system functions, e.g. routing and management 

protocols, and is to directly interact with relevant parts of this system. 

I2RS architecture consists of two main components; the client and the agent. It is through the 

client that the applications interact with the routing system, and through the agent that the 

routing system interaction is facilitated (see Figure 9.13).  

                                            
47 http://www.perfsonar.net/ 
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Figure 9.13: I2RS problem space and interaction with relevant routing system functions.  

Work within IETF I2RS WG focuses on the I2RS Client and Agent the interface between them. 

Other functional blocks and interfaces are currently out of scope [Atlas2013, Farrel2013]. 

● The main objectives of the architecture are to facilitate [Hares2013]: 

● an interface that is programmatic, asynchronous, and offers fast interactive access; 

● access to structured information and state that is frequently not directly configurable 

or modelled in existing implementations or configuration protocols;  

● ability to subscribe to structured, filterable event notifications from the router; 

● operations of I2RS is to be data-model driven to facilitate extensibility and provide 

standard data-models to be used by network applications. 

Currently the WG only have three WG documents; architecture [Hares2013], problem 

statement [Atlas2013] and information model [Bahadur2013], but quite a few individual 

drafts. Work is delayed as compared to charter but the work activity is high and progress 

good.  

Besides the I2RS architecture, problem statement and information model, the WG is 

chartered to, and currently working on: 

● The ability to extract information about topology from the network.  

● Allowing read/write access to the routing information base (RIB), but no direct access 

to the Forwarding Information Base (FIB). 

● Control and analysis of the operation of the Border Gateway Protocol (BGP) including 

the setting and activation of policies related to the protocol. 
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● Control, optimization, and choice of where the traffic exits the network. This can be 

done based on information external to that provided by the dynamic control plane. 

● Distributed reaction to network-based attacks through rapid modification of the 

control plane behaviour to reroute traffic for one destination while leaving standard 

mechanisms (filters, metrics, and policy) in place for other routes. 

● Service Layer routing to improve on existing hub-and-spoke traffic. 

Other things worth mentioning are that injection and creation of topology will not be 

considered as an initial work item, and that the IETF individual draft on PCE-based 

Architecture for Application-based Network Operations (ABNO) [King2013] includes I2RS into 

its architecture. 

A.2.3.2.5  ABNO 

The goal of the Application-Based Network Operation (ABNO) framework [King2013] is to build 

on existing functional components and to create a framework that utilizes these components 

for an application triggered controller of packet and lower layer forwarding technologies, see 

Figure 9.14. The draft is currently an individual submission, i.e. not a working group (WG), 

and the intended RFC status is Informational. 

 

Figure 9.14: Generic functional ABNO architecture 

As mentioned above and depicted in Figure 9.14, ABNO includes a number of functional 

blocks.  
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The draft indicates the level of extensions the components need in order function as a whole, 

and it also indicates where interfaces and components are missing. 

An OSS or NMS are consumers of resources supplied by the ABNO system. The interaction 

includes high level service requests, policy specifications, OAM event updates, and direct 

access to the traffic engineering database (TED DB). All of which will be handled through e.g. 

programmatic or configuration interface interactions. ABNO also assumes that an application 

can request services, and it interprets an application in a broad sense and thereby groups all 

possible implementations of an application into the Application Service Coordinator (ASC) 

block which has request and status interactions with the ABNO Controller. 

The ABNO Controller is the main attachment point to the system and invokes the ABNO 

components in the right order in response to changing network conditions and application 

network requirements and policies. In this the Policy Agent plays an important part and is 

responsible for propagating and coordinating policies into and between the other components 

of the ABNO system. Another highly important component is the Operations Administrations 

and Maintenance (OAM) Handler which is responsible for how the network is operating, 

detecting faults, and taking coordinated actions to possible problems. 

Also included are one or more PCEs which can perform and coordinate path computation 

based on a corresponding set of Traffic Engineering Databases (TED), collecting separated 

information in e.g. multi-domain or multi-layer use-cases. The Path Computation Element 

(PCE) can either be stateless or stateful depending on the requirements, where the stateful 

realization allows for the PCE to take part in the provisioning process. 

An ALTO (Application-Layer Traffic Optimization) Server can be used for supplying abstracted 

views on network information to the Application Service Coordinator, in order to facilitate 

that relevant information exists for higher layer functions to make decisions. The ALTO Server 

views are computed based on information in the network databases, taking Policy Agent 

based policies into account, and through the algorithms used by the PCE.  

The Provisioning Manager (PM) is responsible for initiating or channelling requests for 

establishing LSPs either through control plane triggering or through a programmatic interface. 

The Virtual Network Topology Manager (VNTM) has a similar function as the PM and in ABNO it 

can delegate these functions to the PM while focusing on the underlying decisions and policies 

that are basis for initiating resource allocations, e.g. efficient Server Network Layer 

allocations in support of Client Network Layer connectivity.  

The draft describes a number of different databases that can be used in an ABNO system and 

points out the two main ones are the TED and LSP Database (LSP-DB), but also databases for 

topology (ALTO Server), policy (Policy Agent), services (ABNO Controller) etc. The draft 

identifies contention and sequencing as a possible issue since it is assumed that all functional 

components can have access to these databases. 
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Between all these functional blocks there is a need for functional interfaces. The draft, 

again, tries to build on existing protocols (e.g. OpenFlow, NETCONF, PCEP, IGP-TE, I2RS etc.) 

while trying to point out areas where more protocol specification is needed.  

Finally the draft includes a number of use-cases and exemplifies these through a high level 

specification on the information flows and decisions that needs be made, between and by the 

different functional components. 

A.2.4 Cloud Programming and Control 

A.2.4.1 Cloud-level Programming and Control 

A.2.4.1.1  OpenStack 

OpenStack48 is a cloud operating system that controls large pools of compute, storage, and 

networking resources throughout a datacentre, all managed through a dashboard that gives 

administrators control while empowering their users to provision resources through a web 

interface. 

 

Figure 9.15: OpenStack 

OpenStack consists of the following main components: 

● Compute (codenamed "Nova") provides virtual servers upon demand. Rackspace and HP 

provide commercial compute services built on Nova and it is used internally at companies like 

Mercado Libre and NASA (where it originated). 

● Network (codenamed "Neutron") provides "network connectivity as a service" between 

interface devices managed by other OpenStack services (most likely Nova). The service works 

by allowing users to create their own networks and then attach interfaces to them. 

OpenStack Network has a pluggable architecture to support many popular networking vendors 

and technologies. 

                                            
48 https://www.openstack.org/ 

https://www.openstack.org/
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● Image (codenamed "Glance") provides a catalogue and repository for virtual disk 

images. These disk images are most commonly used in OpenStack Compute. While this service 

is technically optional, any cloud of reasonable size will require it. 

● Object Store (codenamed "Swift") provides object storage. It allows you to store or 

retrieve files (but not mount directories like a fileserver). Several companies provide 

commercial storage services based on Swift. These include KT, Rackspace (from which Swift 

originated) and Internap. Swift is also used internally at many large companies to store their 

data. 

● Dashboard (codenamed "Horizon") provides a modular web-based user interface for all 

the OpenStack services. With this web GUI, you can perform most operations on your cloud 

like launching an instance, assigning IP addresses and setting access controls. 

● Identity (codenamed "Keystone") provides authentication and authorization for all the 

OpenStack services. It also provides a service catalogue of services within a particular 

OpenStack cloud. 

● Orchestration (codenamed “Heat”) implements an orchestration engine to launch 

multiple composite cloud applications based on templates. 

● Monitoring (codenamed “Celiometer”) can be used for example to collect usage data 

for billing purposes. 

The interactions between the components are depicted in the following figure: 
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Figure 9.16: OpenStack components 

Each of the components provides an API to access it, which can be used as a REST API with 

the http protocol, or as CLI. The OpenStack APIs are documented in [OS-API]. 

The computation (Nova) API and the networking (Neutron) are the most related to the UNIFY 

data plane. 

The Nova API49 uses the following concepts: 

● Server: A virtual machine (VM) instance in the compute system. Flavour and image are 

requisite elements when creating a server. 

● Flavour: An available hardware configuration for a server. Each flavour has a unique 

combination of disk space, memory capacity and priority for CPU time. 

● Image: A collection of files used to create or rebuild a server. Operators provide a 

number of pre-built OS images by default. One may also create custom images from cloud 

                                            
49 http://docs.openstack.org/api/openstack-compute/2/content 
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servers have launched. These custom images are useful for backup purposes or for producing 

“gold” server images if someone plans to deploy a particular server configuration frequently. 

The possible operations related to servers are: 

● List servers: list of servers by image, flavour, name, and status through the respective 

query parameters 

● Create server: This operation asynchronously provisions a new server. The progress of 

this operation depends on several factors including location of the requested image, network 

I/O, host load, and the selected flavour. 

● Get server details: Gets details for a specified server. 

● Update server: Updates the editable attributes of the specified server. 

● Delete server: Deletes a specified server. 

The possible further actions on given servers are listed below, the possibly significant ones for 

UNIFY underlined: 

● Change password 

● Reboot server 

● Rebuild server 

● Resize server 

● Confirm resized server 

● Revert resized server 

● Create image 

There are so called server admin actions, which permit administrators to perform actions on a 

server are listed below, the possibly significant ones for UNIFY underlined: 

● Pause server 

● Unpause server 

● Suspend server 

● Resume server 

● Migrate server 

● Reset networking on server 

● Inject network information 
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● Lock server 

● Unlock server 

● Create server backup 

● Live-migrate server 

● Reset server state 

● Evacuate server 

● Add security group 

● Remove security group 

● Add floating IP address 

The command line API of Nova50 can be used to start experimenting with Nova 

programmability. The first commands to use to start a VM are the following ones: 

● Get the list of available compute resources: “nova hypervisor-list” 

● Get the list of available VM images to boot: “nova image-list” 

● Get the list of available networks: “nova network-list” 

● Boot a new VM: “nova boot --image imagename --flavor m1.tiny --availability-zone 

nova:hypervisor_name --nic net-id=network_id vm_name” 

Further type of Nova API types are related to accessing server consoles, managing Flavours, 

administering Projects (containing multiple machines and networks), security, networking, 

and volumes. 

                                            
50 http://docs.openstack.org/cli-reference/content/novaclient_commands.html 
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Figure 9.17: Internals of Nova, steps to launch a VM. 

OpenStack, as an open-source data centre implementation is a candidate to be managed and 

orchestrated by UNIFY. The open codebase and interfaces, the widespread use by industry 

and the wide selection of pluggable hypervisors and networking components supports to use it 

in UNIFY. Actually this is the legacy datacentre that we consider in UNIFY, because of the 

large development community and wide industrial support. 

Besides using OpenStack as a “legacy” datacentre as a whole to be orchestrated, specific 

components are also related to UNIFY. The computation (Nova) API can be a candidate to be 

used for controlling the computing resources in the Unified Node. The networking (Neutron) 

interface used for intra-datacentre networking provides a subset of the networking 

functionality needed for the whole UNIFY scope. The orchestration (Heat) interface –which is 

not an orchestration in the UNIFY terminology, because doesn’t consider network and 

datacentre together and it doesn’t make complex optimization on mapping the request to 

resources/locations – shows a subset of cloud application parameters, to be considered when 

defining UNIFY Service Graphs. 

A.2.4.2 Cloud Controller Overview 

There exist several frameworks such as Eucalyptus, Nimbus, OpenNebula, OpenStack and 

some industry efforts including openQRM51 and Enomalism52 which are used to offer virtual 

machines to users in Cloud computing. OpenStack has been already explained in details and 

we briefly describe some of the other frameworks in this section.  

                                            
51 http://www.openqrm-enterprise.com/ 
52 https://www.openhub.net/p/enomalism 
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OpenNebula53 is an open source IaaS (Infrastructure as a Service) which has a modular design. 

Such flexible and modular design enables integration with different network infrastructure 

configurations. Different dynamics such as change in the resource requirements, scaling 

(resource additions), migration and physical resource failures can be handled in OpenNebula. 

Another feature of this framework is the capability of cloud federation which offers interface 

with external clouds to have scalability, multiple-site support and isolation. 

Several access interfaces are supported by OpenNebula such as: i) REST-based interfaces ii) 

OGF OCCI service interfaces and iii) Cloud API standards. 

The next framework developed for Cloud computing is EUCALYPTUS54 which stands for Elastic 

Utility Computing Architecture for Linking Your Program To Useful System. It is compatible 

with Amazon Web service API (EC2/S3 APIs) used for deploying On-premise private Cloud. It 

enables collection of heterogeneous virtualization technologies in a single Cloud. It is 

composed of the following components: 

 Cloud Controller: entry point for end user, project managers, developer and 

administrator 

 Cluster Controller: manages the Virtual Machine(VMs) Network. 

 Storage Controller: provides block-level network storage 

 Node Controller: controls VM activities (installed in each node) 

Nimbus55 is also an open-source toolkit for IaaS. The project is focusing on two pieces: i) 

Nimbus Infrastructure and ii) Nimbus Platform. The former is an EC2/S3 compatible 

implementation with features including support for proxy credentials, best-effort allocations 

and batch schedulers. The second piece is providing additional tools which can simplify the 

management of infrastructure services. This can enable integration with other clouds such as 

OpenStack and Amazon. 

A.2.5 Service-level Programming and Control 

A.2.5.1 CLOUDSCALE and ScaleDL 

The main goal of this project is to analyse, predict and solve scalability issues in software-

based services or in other terms support scalable service engineering. This project provides 

tools and methods for detecting scalability issues and offers solutions/guidance for the 

detected issues. ScaleDL is a description language used by service providers as a basis to 

determine the scalability properties of cloud services. 

ScaleDL is a description language for cloud service characterization with the focus on 

scalability properties. It is composed of 4 sublanguages: i) ScaleDL Usage Evolution ii) ScaleDL 

                                            
53 http://opennebula.org/ 
54 https://www.eucalyptus.com/ 
55 http://www.nimbusproject.org/ 
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Architectural Template iii) ScaleDL Overview and iv) Palladio’s PCM extended by SimuLizar’s 

self-adaptation language. A short description for each of these sublanguages is reported 

below: 

● ScaleDL Usage Evolution 

● Used by service providers to determine the scalability requirements (e.g. cost metrics 

of the offered services) 

● It specifies scalability requirements by determining the changes of the service 

workload over time. 

● ScaleDL Architectural Template 

● Used by architects to model systems according to the best practices and to reuse 

scalability models provided by architectural template engineers 

● ScaleDL Overview 

● Used by architects to model the structure of cloud-based architectures at a high level 

abstractions which is user-friendly as well 

● Extended PCM 

● Used by architects to model components, their assembly to a system, resources, etc. 

of the services. PCM is extended to support modelling of self-adaptation (monitoring 

specifications and adaptation rules) 

A.2.5.2 ETSI MANO VNF56 Graph model 

The Network Service describes the relationship between VNFs and possibly PNFs that it 

contains and the links needed to connect VNFs that are implemented in the NFVI network. 

Links are also used to interconnect the VNFs to PNFs and endpoints. Endpoints provide an 

interface to the existing network, including the possibility of incorporating Physical Network 

Functions to facilitate evolution of the network. 

                                            
56 http://docbox.etsi.org/ISG/NFV/Open/Published/ 
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Figure 9.18: ETSI MANO descriptor files 

ETSI NFV MANO distinguishes between two categories of information: 

● Information that resides in descriptors. These are deployment templates that contain 

relatively static information used in the process of on-boarding VNFs and NSs. 

● Information that resides in records. These contain relatively dynamic run-time data 

representing e.g. VNF or NS instances; this data is maintained throughout the lifetime of the 

instance. 

To describe a Network Service and the components comprising the Network Service, 

information elements representing these components are introduced. There are four 

information elements defined apart from the top level Network Service (NS) information 

element: 

● Virtual Network Function (VNF) information element 

● Physical Network Function (PNF) information element 

● Virtual Link (VL) information element 

● VNF Forwarding Graph (VNFFG) information element 
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The information elements can be used in two different contexts: as descriptors in a catalogue 

or template context or as instance records in a runtime context. 

Descriptors: 

● A Network Service Descriptor (NSD) is a deployment template for a Network Service 

referencing all other descriptors which describe components that are part of that Network 

Service. 

● A VNF Forwarding Graph Descriptor (VNFFGD) is a deployment template which 

describes a topology of the Network Service or a portion of the Network Service, by 

referencing VNFs and PNFs and Virtual Links that connect them. 

● A Virtual Link Descriptor (VLD) is a deployment template which describes the resource 

requirements that are needed for a link between VNFs, PNFs and endpoints of the Network 

Service, which could be met by various link options that are available in the NFVI. The NFVO 

can select an option following consultation of the VNF-FG to determine the appropriate NFVI 

to be used based on functional (e.g., dual separate paths for resilience) and other needs 

(e.g., geography and regulatory requirements). 

● A VNF Descriptor (VNFD) is a deployment template which describes a VNF in terms of 

its deployment and operational behaviour requirements. It is primarily used by the VNFM in 

the process of VNF instantiation and lifecycle management of a VNF instance. The 

information provided in the VNFD is also used by the NFVO to manage and orchestrate 

Network Services and virtualised resources on the NFVI. The VNFD also contains connectivity, 

interface and KPIs requirements that can be used by NFV-MANO functional blocks to establish 

appropriate Virtual Links within the NFVI between its VNFC instances, or between a VNF 

instance and the endpoint interface to the other Network Functions. 

● A Physical Network Function Descriptor (PNFD) describes the connectivity, Interface 

and KPIs requirements of virtual Links to an attached Physical Network Function. This is 

needed if a physical device is incorporated in a Network Service to facilitate network 

evolution. 

A.2.6 Algorithmic Survey: The Virtual Network Embedding Problem 

In the early 2000's the Testbed Problem arose when researchers were trying to embed overlay 

topologies into a given testbed. Back then, the task was to place the overlay nodes in such a 

fashion that the testbed nodes as well as the testbed links are not over-provisioned 

[Ricci2003]. In the light of the virtualisation trend, the Virtual Network Embedding Problem 

(VNEP) arose, to attend the general problem of mapping or embedding a (virtual) graph onto 

another (substrate) graph. 
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The below figure outlines the general idea: Given multiple Virtual Networks (VNets) and a 

common physical infrastructure, an embedding which maps virtual nodes onto substrate nodes 

and virtual links onto paths in the substrate is searched for.  

 

 

Figure 9.19: Network embedding concept 

In the literature many different versions of the VNEP are considered (see for surveys 

[Belbekkouche2012; Fischer2013]). Based on the very general problem statement and the 

VNEP's many different applications, we first present a taxonomy of problem types that have 

been considered, then discuss several algorithmic approaches that were employed to tackle 

the VNEP and outline how these results can be incorporated into UNIFY. 

A.2.6.1 Types of Specification 

While we will not detail the mathematic formalisms underlying the general VNEP, we will 

shortly outline the several different problem types that have been considered in the 

literature: 

● The virtual networks as well as the substrate may either be directed or undirected. 

While undirected virtual networks may be used to represent bi-directional links, the substrate 

of wired networks should be represented bi-directed. 

● Virtual as well as substrate nodes may specify arbitrary resource demands or 

capacities. Normally, an abstraction that is based on a combination of single properties as 

CPU, RAM, etc. is chosen. It is also common, to specify substrate nodes' capacities by the 

number of virtual machines that may be hosted. 

● Additionally to modelling resources, a virtual network may specify restrictions on the 

mapping of its nodes. This may either be due to incompatible hardware types or the virtual 

network's spatial specification. In the first cast, a virtual node representing an open flow 

switch may only be mapped on real open flow switches. In the second case, if the virtual 

network shall be used to connect multiple locations of a company, then some of the service 

access points need to be fixed near to these locations. 

● Virtual as well as substrate links are generally specified via the necessary or available 

bandwidth. Additionally latency constraints may be considered. 
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A.2.6.2 VNEP Settings 

The VNEP has been formulated to attend several different settings, namely: 

● There are algorithms attending to the online as well as the offline scenario. In the 

online scenario (see e.g. [Bienkowski2014]) a single virtual network needs to be embedded 

instantaneously. In the offline variant, multiple virtual networks are given that are to be 

embedded in the future ([Rost2014; Schaffrath2012] ). Note that the VNEP requires in both 

cases to perform access control, i.e. to decide whether to embed a virtual network or reject 

the request. Second level objectives might be to maximize energy savings or to minimize the 

load of the network by balancing the allocations. 

● While centralized approaches that compute embeddings via global knowledge and 

control over the substrate have initially been the focal point of research, distributed VNEP 

algorithms have been developed recently (see e.g. [Houidi2008] ).  

● Due to the generality of the graph-mapping approach, the VNEP has applications both 

in datacentre and widea-area networks and different algorithms have been developed to 

obtain good results on either of these topology types (see e.g. [Guo2010] for data centers and 

[Houidi2011a] ).  

● While a single virtual node has to be mapped on exactly one node, virtual links may be 

embedded in a splittable or unsplittable fashion. Splittable here means that to establish a 

single virtual link multiple paths in the substrate may be used to realize the single link (see 

e.g. [M. Yu2008]). This may also depend on the specification of the virtual network as some 

services may deal with packet reorderings while others may not. Especially in the wide-are 

network further technological routing limitation may need to be considered, e.g. when the 

standard destination-based routing model is employed. 

● The possibility to dynamically alter already existing embeddings, namely the migration 

of virtual nodes onto other substrate nodes, and the reconfiguration of link realizations, is 

considered in some of the more recent works. This problem arises e.g. when the 

infrastructure provider wants to re-balance greedily made embedding decisions or to reduce 

the virtual networks' footprint by compacting the existing embedding (see e.g. [Cai2010; 

Fan2006; Houidi2010]). 

● For embedding a single virtual network across multiple domains on several different 

infrastructure providers, the hierarchical or multi-provider VNEP was coined. In this setting, 

the virtual network must be partitioned a priori to decide which parts of the virtual network 

shall be embedded on whose infrastructure. The general objective in this case is to minimize 

the inter-domain traffic, to reduce costs (see e.g. [Choi2013; Hasan2012; Houidi2011b; 

Xin2011] ). 

● Lastly, the VNEP may be considered with or without survivability or resiliency 

constraints, such that some kind of fault tolerance is provided (see e.g. [Rahman2010; 
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Yeow2011; H. Yu2010, 2011] ) . Especially for large scale service chains as considered by the 

UNIFY project, resiliency will be of importance. 

A.2.6.3 Algorithmic Approaches 

As both node and link resources need to be considered at the same time, solving the VNEP is 

NP-hard in most of the cases [Mcgeer2010] . As detailed in the survey [Fischer2012], several 

dozen algorithmic approaches have been developed so far. The algorithmic approaches can be 

subdivided into multiple categories according to the envisioned setting. One of the most 

prominent categorization is whether the presented algorithm is an heuristic or whether it will 

yield optimal solutions and is therefore exact. In the realm of exact algorithms, the usage of 

Mixed-Integer Programming (see [Bertsimas2005]  for an introduction) is widely established 

and also may yield polynomial-time heuristics (see. e.g. [Chowdhury2009; Rost2014] ). The 

literature on heuristic algorithms is much more diverse and ideas from very different fields 

have been considered. The proposed algorithms range from meta-heuristic approaches like 

ant-colony optimization [Fajjari2011] over graph isomorphism approaches [Lischka2009]  to 

Markov-Chain random walks [Cheng2011] . 

Even though the literature is rich on algorithmic proposals to solve the VNEP, many algorithms 

are specifically designed for a certain setting and are only evaluated on specific scenarios. 

This severely reduces the comparability of the performance with respect to the quality of 

found solutions (acceptance ratio, network load, etc.) as well as to their time complexity. 

Within the UNIFY project, it is therefore advisable to consider both exact and heuristic 

approaches: 

● Heuristic algorithms with polynomial runtime are of high importance for ensuring the 

elasticity of the service chain deployments. Given e.g. a failure or a scaling request, this 

issue must be handled within a short frame of time. 

● Exact algorithms, especially using Mixed-Integer Programming, allow for obtaining 

lower and upper bounds for specific scenarios. With respect to the incomparability of solution 

approaches, employing exact algorithms for obtaining a baseline seems appropriate. 

A.2.6.4 Specific Techniques Pertaining to the UNIFY Project 

While above a coarse overview on the variety of the VNEP was given, in the following specific 

problem types and their relation to UNIFY are discussed in-depth. 

A.2.6.4.1  Hierarchical VNEP 

As introduced above, the hierarchical VNEP considers the scenario where a virtual network 

must be embedded across multiple different domains or providers. In this scenario the main 

objective is to minimize the costs arising for inter-provider link usage. Therefore, the 

approach generally taken is to partition the virtual network into disjoint parts, such that each 

of these partitions can be fully mapped onto a single provider and the inter-domain 

bandwidth costs are minimized. In a second optimization step, the sub virtual networks are 



 

190 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

then mapped by the respective providers [Houidi2011; Wu2012]. The approaches used for 

partitioning the virtual networks are mainly based on linear or quadratic programming 

[Bertsimas2005]. 

The hierarchical VNEP is of special importance when the different providers do not want to 

share information about how they perform their respective mappings. The reasons brought 

forward in the literature are the general unwillingness to export topological information as 

well as the fact that different provider may actually compete [Albarca2013; Dietrich2013]. 

A.2.6.4.2  Collocation and Clustering 

Similarly to the partitioning of virtual networks in the hierarchical VNEP, recent works allow 

for collocation of virtual nodes, i.e. that a substrate node may host multiple virtual nodes 

[Fuerst2013; Rost2014]. While again the main idea lies in saving as much bandwidth as 

possible, the collocation approach easily allows for grouping functionality into a single virtual 

node by performing a priori graph clusterings. The clustering operation is beneficial in two 

respects. Firstly, the clustering operation reduces the size of the virtual network, thereby 

also reducing the runtime of any later on  executed embedding algorithm [Fuerst2013]. 

Secondly, grouping multiple virtual nodes may also be beneficial to estimate the total 

resource consumption, given all the entailed functionalities. While previous graph algorithms 

for the VNEP did not allow for such collocations [Lischka2009], the LoCo algorithm presented 

in [Fuerst2013]   already combines the clustering and the embedding steps. 

In the light of the recursive orchestration capabilities of the UNIFY architecture, collocation 

may be used to map service blocks, instead of single VNFs, onto sub-orchestrators. For 

approximating the capabilities of sub-orchestrators locality-preserving clusterings as 

presented in [Shen2012] or topology aggregation as presented by [Awerbuch2001]   might be 

used. 

A.2.6.4.3  Resiliency 

Resiliency or survivability have been considered both in heuristic as well as in exact 

approaches. While some approaches consider all different types of fault tolerances, namely 

link failures or node failures, most of the literature considers the problem of ensuring enough 

(virtual) bandwidth even if a single subtrate link may fail [Fischer2013]. Additionally, some 

works consider the resiliency under the failure of a whole regional failures [H. Yu2010]. 

The approaches for achieving resiliency can be subdivided into proactive and reactive ones. 

While the proactive approaches reserve some fraction of the requested resources along 

otherwise unused substrate nodes or links, the reactive approaches merely pre-compute how 

to react under failures, e.g. by initially computing multiple paths, but reserving bandwidth 

only along a single route. Especially, if the substrate is shared by a multitude of virtual 

networks and if multiple failures are not very probable, it can be beneficial to allocate 

failover resources for a set of virtual networks [Rahman2010]. 
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A.2.6.4.4  Reconfigurations 

Lastly, as the UNIFY architecture will provide scalable Network Functions, we shortly highlight 

some works in the area of adaptive or reconfigurable virtual network. Reconfigurations, i.e. 

the ability to change an already existing embedding, were already considered in 2006 in the 

context of overlay networks in the seminal paper of [Fan2006]: given a virtual network with 

changing communication requirements, how and when shall routes be computed such that the 

overall embedding cost over time is minimized?  

Within the realm of the VNEP, reconfigurations are considered in multiple scenarios. Firstly, 

the requirements of a customer may change and trigger a re-embedding [Fan2006]. Secondly, 

reconfigurations may be used to optimize the overall embedding of multiple virtual networks 

across the same substrate, e.g. to reduce the bandwidth usage or to save energy 

[Schaffrath2012]. Thirdly, reconfiguration may become necessary in case of failures in the 

substrate [Houidi2010]. In all of the above cases, the reconfiguration costs, e.g. bandwidth 

usage for transferring a virtual machine or management costs, must be traded off with the 

respective optimization goal.  

While both heuristic and exact approaches for reconfigurations are considered in the 

literature [Fischer2013], Bienkowski et al. were the first to provide a competitive online 

algorithm for virtual network reconfigurations [Bienkowski2010], such that without knowledge 

about the future, the found algorithm always achieves a certain approximation guarantee. 



 

192 D3.1 Programmability framework14.11.2014 version 1.0 
This is a draft version of Deliverable D3.1. It is subject to pending approval by the European Commission. 

Annex 3 Service Provider Scenario for Optimization 

Network operators are planning to integrate Cloud/NFV and SDN support into their network 

infrastructure, in order to simplify the process of provisioning customized service chains, with 

reduced costs, delivery times and management issues. Enabling Service Chain creation for an 

ISP means to deploy NFV infrastructure at the edge of his network. Figure 9.20 illustrates a 

hypothetical architecture for an ISP Point of Presence (POP), which shows a NFV 

infrastructure next to a edge of devices for Retail and Business accesses. All edge and NFV 

apparatuses are organized in a hierarchical system, which can easily scale by adding new 

devices and hierarchical levels if necessary. Note that also the NFV infrastructure and the 

internal server architecture are usually arranged in a hierarchical setup (e.g. cluster of 

servers, chassis of servers, servers, CPUs, cores) and all interconnections follow the same 

pattern accordingly. Such a hierarchical design simplifies also the VNE problem when the task 

of embedding service chains of virtual/physical appliances is considered. 

 

Figure 9.20: ISP Network Point of Presence with integrated NFV infrastructure 

NFV subsystems can be deployed gradually in the POPs of the network, or can be deployed 

only in a small number of central sites. It is possible for the traffic to be steered through 

service chains implemented in a NFV subsystem also from remote network sites, not only from 

the co-located site. In this scenario, the VNE problem consists of mapping network resources 

required by service chains to the set of virtual/physical resources available in the NFV portion 

of the ISP network. As a matter of fact, it is difficult to conceive an optimization task to be 

applied at the level of the whole ISP network infrastructure, because most of the network 

resources (edge access nodes, intra-POP interconnection, backbone infrastructure) are still 

beyond the control of the optimization process. Initially, only the resources in the NFV 
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infrastructure (e.g. server memory, storage, CPU cores, virtual and physical ports on cloud 

servers and switches, intra-cloud link bandwidth) are targets of the optimization strategy. In 

perspective, however, a successful deployment of an orchestration system for an NFV 

subsystem could be extended to cover all network resources and services of an ISP network, 

by changing completely the paradigm with which the network is managed and the services are 

created and provisioned. 

 

Figure 9.21: Service Chain example with redundant path 

A Service Chain is a sequence of virtual/physical appliances through which some traffic is 

steered (see Figure 9.21). A service chain applies to a «class» of retail/business clients or 

application flows. Traffic belonging to a «class» is identified at the “steer points” by means 

of network policies, by interacting with the client authentication system and the routing 

system. Steer points are ingress/egress nodes where classified traffic is routed through the 

service chain. Steer points can be also on remote routers which tunnel steered traffic to/from 

the NFV system.  

Service chains may also implement a redundancy scheme (cold/warm/hot standby, load 

balancing). So a redundant path must be provided, for service reliability under severe 

conditions (system crashes, power failures, routing faults, overload situations, etc.). 

Implementing a HA scheme therefore means reserving and allocating additional network, 

computing and storage resources. 

In order to admit service chain requests in an optimized and controlled process, the following 

information have to be provided for each request: 
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 The network graph (N, L) of the service chain, describing a set of virtual/physical 

appliances and their interconnection;  

 The bandwidth matrix between nodes in the network graph; 

 The specification of service chain virtual/physical nodes, describing main node 

parameters and constraints; 

 The requested instantiation of node parameters (i.e. definition of the 

expected/required values for each node parameter, coherent with node specification 

constraints, e.g. number of CPU cores, amount of memory and storage, expected load or 

session rate, etc.); 

 The service chain requirements, which shall be satisfied by the VNE algorithm for the 

service chain to be deployed; they are, typically, performance requirements (bandwidth, 

delay, loss)  or high availability requirements (e.g. redundancy scheme). 

In the above service chain scenario a VNE algorithm/strategy should be used to provide an 

admission control mechanism in order to accept as many service chain requests as possible, 

with the following constraints: 

 Satisfy the service chain performance requirements for transit delay; 

 Minimize resource utilization (in particular the bandwidth utilization); 

 Satisfy the service chain requirements for HA (cold/hot standby, Load Balancing); 

 Minimize power consumption 

Note that, if the network architecture is regular and hierarchical as described at the 

beginning of this section, it is possible to apply easy criteria for searching optimal virtual 

network embeddings: 

 for a service chain, locate a path of VMs preferably on the same compute server or 

chassis, alternatively on the same cluster, in order to reduce transit delays and bandwidth 

consumption; 

 locate redundant paths of a service chain on different clusters of the same POP, 

alternatively on different chassis/server; 

 avoid allocation of VMs of a service chain spread over different POPs; 

 if a NFV infrastructure is not available in a POP, allocate service chains in the closest 

NFV site to reduce geographical delays. 
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