
DRAFT

Deliverable 2.2: Final Architecture

Dissemination level PU
Version 1.0
Due date 31.10.2014
Version date 15.11.2014

This project is co-funded
by the European Union

DRAFT

Document information

Editors

Róbert Szabó (ETH), Balázs Sonkoly (BME) and Mario Kind (DTAG)

Contributors

George Agapiou (OTE), Katia Colucci (TI), Jokin Garay (EHU), Eduardo Jacob (EHU), David Jocha (ETH), Juhoon Kim
(DTAG), Antonio Manzalini (TI), Catalin Meirosu (EAB), Felician Nemeth (BME), Kostas Pentikousis (EICT), Fulvio Risso
(Polito), Matthias Rost (TUB), Pontus Sköldström (ACREO), Rebecca Steinert (SICS), Tobias Steinicke (TP), Wouter
Tavernier (IMINDS), David Verbeiren (INTEL), Vinicio Vercellone (TI), Fritz-Joachim Westphal (DTAG) and Hagen Woesner
(BISDN).

Coordinator

Dr. András Császár
Ericsson Magyarország Kommunikációs Rendszerek Kft. (ETH)
Könyves Kálmán körút 11/B épület
1097 Budapest, Hungary
Fax: +36 (1) 437-7467
Email: andras.csaszar@ericsson.com

Project funding

7th Framework Programme
FP7-ICT-2013-11
Collaborative project
Grant Agreement No. 619609

Legal Disclaimer

The information in this document is provided ‘as is’, and no guarantee or warranty is given that the information is fit
for any particular purpose. The above referenced consortium members shall have no liability for damages of any kind
including without limitation direct, special, indirect, or consequential damages that may result from the use of these
materials subject to any liability which is mandatory due to applicable law.
© 2013 - 2014 by UNIFY Consortium

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 i

mailto:andras.csaszar@ericsson.com

DRAFT

Executive Summary

This deliverable is a sequel to the initial architecture and use-case definitions that have been documented in [D2.1]. In
this deliverable the final architecture for unifying carrier and cloud resources is defined.

Methods of the initial architecture design followed state of the art review, definition of use-cases, requirements
and identification of key design principles as documented in [D2.1]. This document, however, focuses solely on the
definition of the architecture details.

It was identified that with combined abstraction of compute, storage and network resources one can logically cen-
tralize, automate and recursively apply resource orchestrations across domains, technologies, vendors etc. The UNIFY
architecture implements such a combined abstractions of resources and allows the overarching optimization. Thus, the
UNIFY architecture enables automated and recursive resource orchestration and operation with domain virtualization
similar to the recursive network-only virtualization of the Open Networking Forum (ONF) Software Defined Networking
(SDN) architecture but also for European Telecommunications Standards Institute (ETSI) Network Function Virtualiza-
tion (NFV) services. The defined architecture also considers the demands of a Service Provider DevOps (SP-DevOps)
regime. Along the monitoring, Verification and Troubleshooting needs of operation in carrier environments, SP-DevOps
includes support for Network Function (NF) development. The applied virtualization and orchestration concept is in-
dependent of resource or domain size, technology, and hence works from a single node, e.g., the Universal Node (UN)
concept, to complete multi technology carrier environments. Moreover the logical centralization of joint compute and
network resource orchestration enables direct control and elastic scaling of resources for the deployed NFs.

In the UNIFY architecture:

• three layers (service, orchestration and infrastructure) and a set of reference points have been defined;

• a general information model describing the most important reference points has been identified;

• a Network Function Forwarding Graph (NF-FG) for programming resource orchestration at compute, storage and
network abstraction, in accordance with the virtualization, monitoring functions and quality indicators for rapid
and flexible service creation has been defined;

• a programmable interface enabling a control and data plane split for network functions and dynamically control
of their dedicated resources and management actions has been defined;

• a monitoring framework to complement the quasi static virtualization views for fine granular observability of
both virtualized infrastructures and NF-FG-based services has been defined;

• a model-based service decomposition in order to be able to re-use and build services out of elementary (or
atomic) blocks has been defined;

• a definition and a frame how i) service programming, orchestration and optimization, ii) service provider De-
vOps and iii) commodity hardware based networking as well as execution environment can form a unified
production environment have been defined;

• a detailed functional architecture has been defined, covering all aspects framed in the overarching architecture
including a description of the primitives at the reference points.

Overall, the UNIFY design creates a unified production environment for rapid and flexible service creation through
joint resource virtualization and orchestration. While the ambition is similar to ETSI NFV, we believe that it is worth

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 ii

DRAFT

taking a different architecture approach by generalising ONF SDN principles. In this way, multi-level recursion and
better resource control of any NF which has split data- and control-plane promise to be benefits. Prototyping and
experimentation in both ETSI and UNIFY will foster our understanding of practical implications of the two different
architecture approaches.

The information provided in this deliverable and the previously documented initial version of the architecture [D2.1]
cover all essential aspects of the UNIFY architecture. However, the on-going work and achieved results of the technical
work packages will detail and verify individual aspects of this architecture.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 iii

DRAFT

Contents

Executive Summary ii

1 Introduction 1
1.1 Scope . 2
1.2 Document structure . 3

2 Abbreviations, Definitions and Conventions 4
2.1 Abbreviations . 4
2.2 Definitions . 5
2.3 Conventions . 7

3 Overarching Architecture 9
3.1 Overview . 9

3.1.1 Layers and concepts . 9
3.1.2 Reference points . 11

3.2 Main components . 12
3.2.1 Virtualizers . 12
3.2.2 Network Function Forwarding Graph . 13
3.2.3 Service management and adaptation functions . 14
3.2.4 The Universal Node . 16
3.2.5 Controller Adapter . 17
3.2.6 Network Function Information Base . 18
3.2.7 Resource Orchestrator . 19
3.2.8 Policy enforcement . 20
3.2.9 Monitoring . 22

3.3 Main features . 26
3.3.1 Model-based service decomposition . 26
3.3.2 Monolithic vs. decomposed network functions: control and data plane split design 26
3.3.3 Elastic services and the Cf-Or reference point . 27
3.3.4 Recursive orchestration . 28
3.3.5 Multiple administrations . 29
3.3.6 Developer support (DevOps) . 29

3.4 Security considerations . 31

4 Functional Architecture 34
4.1 Abstract interfaces and primitives . 35

4.1.1 Interface at the U-Sl reference point . 35
4.1.2 Interface at the Sl-Or reference point . 36
4.1.3 Interface at the Or-Ca reference point . 36
4.1.4 Interface at the Cf-Or reference point . 36
4.1.5 Interface at the Ca-Co reference point . 36
4.1.6 Interface at the Co-Rm reference point . 37

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 iv

DRAFT

4.2 Service Layer . 37
4.3 Orchestration Layer . 39

5 Towards an Integrated Prototype: Aspects of the System Architecture 41
5.1 ESCAPE prototyping framework . 41

5.1.1 Infrastructure Layer . 42
5.1.2 Orchestration Layer . 43
5.1.3 Service Layer . 43

5.2 OS/ODL based infrastructure . 43
5.3 Universal Node (UN) prototype . 45
5.4 Future directions and plans on integration . 47

6 Preliminary Evaluation of the UNIFY Architecture and Elastic Services 48
6.1 Virtualization: SDN and NFV . 48
6.2 ETSI MANO, ONF SDN and UNIFY . 49
6.3 Elastic services . 50

6.3.1 Deployment scenarios . 51
6.3.2 The ETSI setup . 53
6.3.3 The UNIFY setup . 53
6.3.4 Discussions . 53

7 Summary 55

References 56

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 v

DRAFT

List of Figures

1 The UNIFY Overarching Architecture . 9
2 An illustrative example of a Big Switch with Big Software (BiS-BiS) virtualization 13
3 Different virtualization examples of an Resource Orchestrator (RO) . 14
4 An illustrative example of a Network Function Forwarding Graph (NF-FG) 15
5 An illustrative example of a Service Graph (SG) . 15
6 Exemplary mappings of a SG to NF-FGs . 16
7 The Universal Node (UN) System Design . 17
8 An illustrative example of infrastructure resources and virtualizers . 18
9 An illustrative example of the RO’s UNIFY Resource Service . 19
10 An illustrative example of Controller Adapter (CA)’s split of NF-FG into sub-domains and protocol

translations to the underlying controllers/agents . 21
11 Main elements in XACML Policy management model . 22
12 Resource policy functionalities in the UNIFY architecture . 23
13 A flow counter monitoring example . 25
14 Model-based Service Decomposition: An Intrusion Detection System (IDS) example 27
15 An illustrative example of recursive resource orchestration . 29
16 An illustrative example of the UNIFY architecture with multiple administrations 30
17 Graph policy functionalities in UNIFY . 33
18 Top-level UNIFY Functional Architecture . 34
19 Functional architecture of the Service Layer (SL) and Orchestration Layer (OL) 37
20 The system architecture of ESCAPE with the corresponding UNIFY layers 41
21 Logical view of the OpenStack (OS)/OpenDaylight (ODL) setup . 44
22 Internal architecture of the Universal Node (UN) prototype . 46
23 ETSI NFV and ONF SDN architectures side by side . 48
24 ETSI NFV, ONF SDN and UNIFY architectures side by side . 50
25 Elastic control loop according to the ETSI MANO framework . 51
26 Elastic control loop according to the UNIFY framework . 52

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 vi

DRAFT

1 Introduction

To a large degree there is agreement in the network research, practitioner, and standardization communities that rigid
network control limits the flexibility and manageability of speedy service creation; see [Joh+13] and the references
therein. For instance, it is not unusual that an average service creation time cycle exceeds 90 hours, whereas given the
recent advances in virtualization and cloudification one would be interested in service creation times in the order of
minutes [5GP13] if not seconds.

Socio-economic drivers, progress in Information Technologies (IT), tumbling hardware costs and availability of open
source software solutions are creating the conditions for a change of paradigm in designing and operating networks
and service infrastructures. European Telecommunications Standards Institute (ETSI) Network Function Virtualization
(NFV) [ETS13b] and Open Networking Forum (ONF) Software Defined Networking (SDN) [ONF14] seem to be key tech-
nology enablers in the direction of meeting requirements such as cost reductions, service flexibility and new business
models.

SDN targets at breaking the vertical integration of network data and control planes to introduce (logically
centralized) control plane programmability for novel networking virtualization (abstraction), simplified network
(re)configuration and policy enforcement.

NFV targets at virtualizing servers and appliances that provide network functions. One of NFV’s value propositions
is Capital Expenditure (CAPEX) optimization with the usage of Commodity Off the Shelf (COTS) hardware. This, together
with increased operational efficiency is expected to also reduce Operational Expenditure (OPEX). Operational efficiency
is achieved by the automation of commission, configuration, resource management, etc. for even an order of magnitude
higher number of managed elements than before.

In order to remedy today’s limits in flexibility of service creation, the UNIFY project pursues full network and service
virtualization to enable rich and flexible services and operational efficiency. We research, develop and evaluate means to
orchestrate, verify, observe and deliver end-to-end services from home and enterprise networks through aggregation
and core networks to data centers. While focusing on enablers of this unified production environment, we

• develop an automated, dynamic service creation platform, leveraging software defined networking technologies;

• create a service abstraction model and a service creation language, enabling dynamic and automatic placement
of networking, computing and storage components across the unified infrastructure;

• develop an orchestrator with novel optimization algorithms to ensure optimal placement of elementary service
components across the unified infrastructure;

• research new management technologies (Service Provider DevOps (SP-DevOps)) and operation schemes to ad-
dress the dynamicity and agility of new services;

• and evaluate the applicability of a universal network node based on commodity hardware to support both net-
work functions and traditional data center workloads.

Throughout the definition of the UNIFY architecture we followed the concepts of layering, abstractions and the
definition of selected processes. The discussions of these design concepts and the corresponding processes are docu-
mented in Sec. 5 and Sec. 6 of [D2.1].

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 1/57

DRAFT

1.1 Scope

This document presents a revision of the D2.1: “Use Cases and Initial Architecture” deliverable [D2.1]. We reuse and
revise D2.1 sections according to the following:

• D2.1 Sec. 1 “Introduction” is relevant.

• D2.1 Sec. 2 “State of the art and related work in progress” is extended with a detailed analysis and comparison of
the UNIFY architecture and selected services in Sec. 6.

• D2.1 Sec. 3 “Use Cases” is relevant.

• D2.1 Sec. 4 “Requirements” is relevant.

• D2.1 Sec. 5 “Design principles and general properties of the UNIFY architecture” is relevant.

• D2.1 Sec. 6 “Overarching Architecture” is revised by Sec. 3.

• D2.1 Sec. 7 “Functional Architecture” is revised by Sec. 4.

Regarding the objectives of the Description of Work (DoW), we described and analyzed our use-cases in D2.1. Our
reference architecture is presented in this current document, with main components (see Sec. 3.2), abstract interfaces
and primitives (see Sec. 4.1), which reflect our priorities of design, functional and business requirements. In order to
create a resilient, trustworthy and energy-efficient architecture supporting the complete range of services and applica-
tions, we support the full flexibility of NFV, we offer isolation among service request (see Sec. 3.2.7), we enforce policy
per service consumer (see Sec. 3.2.8), we introduced embedded monitoring services (see Sec. 3.2.9) to provide enablers
for Quality of Service (QoS) support and service resilience at any level of the virtualization hierarchy.

We developed and demonstrated a number of proof of concept prototypes:

• In [Cso+14b] we showed that an Extensible Service ChAin Prototyping Environment (ESCAPE) can be built using
Mininet, Click, NETCONF and POX components, corresponding to some of the high level components of the Unify
architecture.

• In [Ris+14] we presented that user-specific network service functions can be deployed in an SDN-enabled net-
work node, which are the early steps towards the UNIFY’s Universal Node (UN).

• In [Cso+14a] we demonstrated aspects of a multi-level service orchestration in a multi-domain network envi-
ronment, which shows how an existing data center can be connected to an ESCAPE based environment and
projects the implementation of recursive UNIFY interfaces.

We discuss the integration of the prototypes in the perspective of a system architecture (see Sec. 5).
We have also identified the following items related to the architecture definition, which we need to follow-up in the

continuation of the project:

resiliency In our approach we logically centralize the main components of our architecture and left resiliency for later
investigation together with the design of the integrated prototype.

energy efficiency As mentioned in the previous point, we consider a logically centralized architecture, which might
need distributed realization due to resiliency or scalability. These will affect the energy efficiency too. We intend
to approach this question once we can measure and learn from our prototypes.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 2/57

DRAFT

1.2 Document structure

Sec. 2 lists abbreviations, definitions and conventions used in the document. Sec. 3 defines the overarching architecture
with an overview, definition of main components and main features and benefits. Sec. 4 dives into the details of our
reference points and related further components. Sec. 5 gives insight into the integration work based on the ongoing
proof of concept prototyping activities. Sec. 6 compares UNIFY to NFV and SDN architectures and services. Finally, we
draw conclusions in Sec. 7.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 3/57

DRAFT

2 Abbreviations, Definitions and Conventions

2.1 Abbreviations

API Application Programming Interface

BiS-BiS Big Switch with Big Software

BNG Broadband Network Gateway

BSS Business Support System

CA Controller Adapter

CAPEX Capital Expenditure

CAS Controller Adaptation Sublayer

CN Compute Node

COTS Commodity Off the Shelf

DC Data Center

DHCP Dynamic Host Configuration Protocol

DoV Domain Virtualizer

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DRDB Domain Resource Database

EM Element Management

EMS Element Management Systems

ESCAPE Extensible Service ChAin Prototyping Environ-
ment using Mininet, Click, NETCONF and POX

ETSI European Telecommunications Standards Institute

FE Forwarding Element

FW Firewall

GUI Graphical User Interface

HW hardware

IDS Intrusion Detection System

IL Infrastructure Layer

ISG Industry Specification Group

IT Information Technologies

KPI Key Performance Indicator

KQI Key Quality Indicator

LB Load Balancer

LSI Logical Switch Instance

MANO Management and Orchestration

MF Monitoring Function

NAT Network Address Translation

NE Network Element

NF Network Function

NF-FG Network Function Forwarding Graph

NF-IB Network Function Information Base

NFS Network Functions System

NFV Network Function Virtualization

NFVI Network Function Virtualization Infrastructure

NFVO Network Function Virtualization Orchestrator

NS Network Service

OAM Operations and Management

ODL OpenDaylight

OFS Open Flow Switch

OL Orchestration Layer

ONF Open Networking Forum

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 4/57

DRAFT

OP Observability Point

OPEX Operational Expenditure

OS OpenStack

OSS Operation Support System

OTT Over The Top

PAP Policy Administration Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Point

PoP Point of Presence

POX Python-based software-defined networking

QoS Quality of Service

RO Resource Orchestrator

ROS Resource Orchestration Sublayer

SAP Service Access Point

SDN Software Defined Networking

SG Service Graph

SL Service Layer

SLA Service Level Agreement

SLM Service Level Measurement

SP Service Provider

SP-DevOps Service Provider DevOps

UN Universal Node

VIM Virtualized Infrastructure Manager

VM Virtual Machine

VNF Virtualized Network Function

VNF-FG Virtualized Network Function Forwarding Graph

VNFM Virtualized Network Function Manager

xDPd eXtensible OpenFlow DataPath daemon

2.2 Definitions

Big Switch with Big Software (BiS-BiS) BiS-BiS is virtualization of a Forwarding Element (FE) connected with a
Compute Node (CN) node, which is capable of running Network Functions (NFs) and connecting them to the
FE. See also page 12

Management and Orchestration (MANO) In the ETSI NFV framework, this is the global entity responsible for man-
agement and orchestration of NFV lifecycle.[ETS14]

Monitoring Function (MF) MF is a Network Function (NF) that implements observability capabilities in the UNIFY pro-
duction environment. A MF is responsible for i) control of lower-level MFs, ii) collection of data, iii) data pro-
cessing and iv) operations towards the OPs.

Network Function (NF) We use the term according to the definition of the Service Function (SF).

Network Function Forwarding Graph (NF-FG) NF-FG defines a selected mapping of Network Functions (NFs) and
their forwarding overlay definition into the virtualized resources presented by the underlying virtualizer. See for
more details Definition 3 on page 13.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 5/57

DRAFT

Network Function Information Base (NF-IB) A database, which contains i) resource models at networking and soft-
ware abstraction of Network Functions for orchestration and ii) definitions for model-based Network Function
decompositions.

Network Function Virtualization (NFV) The principle of separating network functions from the hardware they run
on by using virtual hardware abstraction.

Network Function Virtualization Infrastructure (NFVI) Any combination of virtualized compute, storage and net-
work resources.

Network Service (NS) We adhere to the IETF definition: “An offering provided by an operator that is delivered using
one or more service functions.”

Observability Observability refers to methods measuring or estimating metrics or Key Performance or Quality Indi-
cators in order to determine particular system states.

Observability Point (OP) OP provides a virtual context (control plane part) which operates on virtual/physical re-
sources like counter (data plane part) and comprises of local management and access to monitoring information.
See [D4.2] for further details.

Service Access Point (SAP) A service provider’s physical or logical port, which represents customers’ point of pres-
ence, access to internal services or exchange points to other providers. SAP definitions are included into vir-
tualization. The description of the SAPs is part of the contract between the provider and the consumer of the
virtualization. See also page 13.

Service Graph (SG) SG is an ordered interconnection of abstract Network Functions (NFs), forwarding overlays, and
Key Performance Indicators (KPIs) and corresponding thresholds. An abstract NF is implementation agnostic;
the forwarding overlay contains i) traffic classifications and associated forwarding rules and ii) Service Access
Points (SAPs) or ports of NFs from other SGs. See also page 15.

Service Level Agreement (SLA) A SLA is an element of a formal, negotiated commercial contract between two Or-
ganizations, i.e., one with a provider and one with a customer role. It documents all the common understating
of all aspects of the product and the roles and responsibilities of both organizations. An organization is a single
legal entity, single individual or a group of people.[TM 12]

Software Defined Networking (SDN) The physical separation of the network control plane from the forwarding
plane, and where a control plane controls several devices.

Service Provider DevOps (SP-DevOps) SP-DevOps is an assembly of processes and supporting tools handling tech-
nical aspects of monitoring, validating and testing programmable infrastructure.

Troubleshooting Troubleshooting refers to techniques that correlate and filter information that allows identifying a
particular erroneous situation in the UNIFY production environment.

UNIFY Resource Service Resources orchestration with isolation among virtualizers and Network Function Forwarding
Graph (NF-FG) requests, where resources orchestration is defined as an optimized allocation of an NF-FG request
formulated against one of the virtualized views of a Resource Orchestrator (RO) to the underlying virtualized
resource view. See also page 19.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 6/57

DRAFT

Universal Node (UN) The Universal Node (UN) is a network node, based on COTS hardware that can execute network
functions (packet processing) as well as more traditional cloud workloads. The UN integrates with the UNIFY
orchestration and enables flexible traffic steering to the running functions or applications. The UN is optimized
for high-throughput packet processing from the network interfaces to the network functions but also allows
deployment of unmodified traditional applications with less stringent packet processing requirements. An UN
supports various execution environments for NFs and applications, using virtualization or not, thereby providing
different combinations of isolation, performance and ease of development and deployment. The UN concept
may be scaled from small systems that could be deployed at customer premises to much bigger systems that
could consist of multiple (heterogeneous) blades or even multiple (heterogeneous) interconnected chassis. A
UN can be virtualized as one or many BiS-BiS (see Def. 1 on page 12) virtualization. UN is a UNIFY concept.

Verification Verification refers to procedures that compare expected versus detected system states in the UNIFY pro-
duction environment.

Virtualized Network Function (VNF) An implementation of a Network Function that can be deployed on the virtu-
alization as presented by the lower layer component. Therefore a VNF is always relative to a virtualization and
the implementation may be an abstraction only. At the physical infrastructure a VNF may map to a software
resource or to a hardware appliance.

VNF Development Support VNF Development Support is the SP-DevOps process that enables the creator of a virtual
network function to perform development and testing tasks in a production-like environment.

2.3 Conventions

We adhere to the following conventions, some of which are also followed by ETSI NFV and ONF SDN:

abstraction is a representation of an entity in terms of selected characteristics. An abstraction hides or summarizes
characteristics irrelevant to the selection criteria.

virtualization is an abstraction whose selection criterion is dedicated to a particular consumer, client or application.

reference point identifies a peer-to-peer relationship between functional blocks. The information exchanged across
these reference points are modeled as an instance of a protocol-neutral information model.

interface is defined according to the functions exposed in a producer and consumer relationship. Interfaces are
mapped to a reference point.

We use the following color code to distinguish different roles and responsibilities in the figures included in this
deliverable:

greenish for both physical and virtualized resources;

redish for control and orchestration components at compute, storage and network abstraction; these are the most
important components for the UNIFY architecture;

bluish for management- and service-logic aware components outside the Network Functions System.

black mostly for Network Functions and other, non highlighted, components.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 7/57

DRAFT

Note, however, that components can realize multiple functionalities. As a result, the color code may vary according to
the functionality illustrated. In cases where a multitude of roles takes place, we use the color that reflects the primal
role of the functionality.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 8/57

DRAFT

3 Overarching Architecture

The UNIFY architecture defines the main architectural components and reference points relevant to the UNIFY concept
which allows focused work on orchestration, SP-DevOps and high performance data plane based on COTS hardware. We
first present an overview of all major components and reference points organized into layers in Sec. 3.1. We continue
with the description of main components in the order of their dependencies in Sec. 3.2 and with main features and
benefits in Sec. 3.3. Finally, we discuss security considerations in Sec. 3.4.

3.1 Overview

The overarching view of the UNIFY architecture comprises three layers, namely, the Service Layer (SL), the Orchestra-
tion Layer (OL) and the Infrastructure Layer (IL). The architecture also includes management components, a Network
Functions System (NFS) and reference points between the major components (see Fig. 1).

Figure 1: The UNIFY Overarching Architecture

3.1.1 Layers and concepts

We have discussed layering as one of the fundamental design principles in Sec. 5 of [D2.1]. We use the notion of layers
to group functional components with similar concerns or abstractions. Our architecture comprises of three layers as

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 9/57

DRAFT

introduced in Sec. 6.2 of [D2.1]:

Service Layer (SL) comprises “traditional” and virtualization-related management and business functions concerned
with service lifecycle (note that in Fig. 1 we denote all these functions with “Service Management and Adaption
Functions”, however their details are discussed in the context of the functional architecture in Sec. 4):

• Traditional lifecycle management functions include Element Management Systems (EMS), Operation Sup-
port Systems (OSSs) and Business Support Systems (BSSs) related to service and business management
associated with Service Providers (SPs).

• Virtualization-related management functions include lifecycle management for virtualized network ser-
vices, lifecycle management for Virtualized Network Functions (VNFs) and orchestration over the resources
presented by the lower layer.

• Adaptation functions toward the lower layer.

SL management functions should be infrastructure-agnostic and should deal with the management of the of-
fered services. We denote the users of the management systems by “Operators”.

Users of the SL typically, but not exclusively, include:

End/Enterprise Users who consume traditional telecommunication services packaged by the SP. These ser-
vices are defined with explicit or implicit Service Level Agreement (SLA)[TM 12]. The SP manages these
services using OSS and BSS. If End or Enterprise Users would like to control and manage their service
offerings then they can use the services offered to the other user types.

UNIFY Users comprising Retail Providers, Over The Top (OTT) Providers, Power Users, etc. who consume UNIFY
Resource Service (see Def. 5) directly.

Developers who, besides consuming UNIFY Resource Services (see Def. 5) directly, can develop and test Net-
work Functions (NFs) or package service offerings. They rely on SP-DevOps services as described in
Sec. 3.3.6. Note that Developers can also be internal to the SP but, for the sake of simplicity, we only show
and discuss external Developers according to Fig. 1. The different developer roles and services are detailed
in [D4.1].

The Adaptation Function is detailed in Sec. 3.2.3.

Orchestration Layer (OL) comprising of two major functional components:

Resource Orchestrator (RO) comprising of virtualizers (see Sec. 3.2.1), policy enforcement (see Sec. 3.2.8) and
resources orchestration between virtualizers and the underlying resources (see Sec. 3.2.7).

Controller Adapter (CA) comprising domain-wide resource abstraction functions and virtualization for dif-
ferent resource types, technologies, vendors or even administrations. The CA maintains the domain global
view of resources and capabilities and presents its virtualization to the RO. With respect to roles and re-
sponsibilities, the CA can be regarded as a multi-technology, multi-vendor or multi-domain controller. The
CA is detailed in Sec. 3.2.5.

The RO and CA are managed by a corresponding management system including, for example, by an OSS shown
in the right-hand side of Fig. 1.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 10/57

DRAFT

Infrastructure Layer (IL) comprising of resources, local resource agents and/or controllers:

Controllers comprising virtualization functions corresponding to a single domain. For example: an SDN Con-
troller for a transport network domain; a compute controller for a Data Center (DC).

Agents and Physical Resources comprising all possible resource options (compute, storage and network) to-
gether with their corresponding local agents, e.g., OpenFlow switch agent [Ope13], Open Stack Nova com-
pute interface [Ope14c], etc.;

Controllers, Agents and physical resources are managed by a corresponding management system such as, for
example, an OSS as illustrated in Fig. 1.

Management comprising of infrastructure management functions, (virtual) NF related management information
bases and management for the OL and IL. If the physical infrastructure belongs to the operator of the UNIFY
OL, then management functions include physical infrastructure management as well. Alternatively, a multi-
administration concept is discussed separately in Sec. 3.3.5. Part of management is a Network Function Infor-
mation Base (NF-IB) used by the RO and the management components within the SL to define the (virtualized)
NF-related information necessary for service agnostic resource orchestration (see Sec. 3.2.6).

Additionally, we have identified four management processes related to SP-DevOps: Observability, Troubleshoot-
ing, Verification and VNF Development Support (see [D4.1]). Key to all four processes is monitoring functionality
(see Sec. 3.2.9).

Network Functions System (NFS) comprising of instantiated NFs, including data, control and management plane
components and the corresponding forwarding overlays.

Note that both the CA and the RO “orchestrate” between their northbound virtualization views. However, we dis-
tinguish their roles such that the CA’s primarily task is to translate and adapt to resource provider protocols, while the
RO’s primarily task is to orchestrate requests between different virtualization views. That is, the CA translates from one
to many controller Application Programming Interfaces (APIs), while the RO translates many virtualization views to one
virtualization (one-many vs. many-one).

3.1.2 Reference points

We use reference points to identify peer-to-peer relationship between “producer” and “consumer” functional blocks.
The information exchanged across these reference points is modeled as an instance of a protocol neutral information
model.

U-Sl between users and the SL management and adaptation functions. The corresponding interface definitions are
out of the scope of the UNIFY project but our assumptions on primitives are discussed in Sec. 4.1.1. .

Sl-Or between Adaptation Functions in the SL or external consumers and the RO. The RO presents an abstract view of
resources per consumer with the help of virtualizers (see Sec. 3.2.1) and accepts resource requests in the form
of Network Function Forwarding Graphs (NF-FGs) (see Definition 3 in Sec. 3.2.2). The primitives associated with
the Sl-Or reference point are described in Sec. 4.1.2. The Sl-Or is one of the main reference points of the UNIFY
framework.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 11/57

DRAFT

Or-Ca between the RO and the CA. The CA presents an abstract view of the topology, resources and capabilities of the
underlying infrastructure (see Sec. 3.2.5) and accepts resource requests in the form of NF-FGs (see Definition 3
in Sec. 3.2.2). The primitives associated with the Or-Ca reference point are described in Sec. 4.1.3.

Ca-Co between the CA and the controllers. The Ca-Co reference point captures the various interfaces to the north of
the underlying controllers, who manage different resources, technologies, vendors, domains, etc. See Sec. 4.1.5
for further discussions.

Co-Rm between a controller and a local resource agent. The corresponding interface definitions are out of the
scope of the UNIFY project. We rely here on existing protocols and ongoing standardization work, like Open-
Flow [Ope14a], NETCONF[Enn+11], OpenStack Compute[Ope14c], etc. See Sec. 4.1.6 for further discussions.

Cf-Or between NFs and the RO. This reference point is one of the highlights of the UNIFY framework. Through the
Cf-Or reference point the OL can provide resource control functions directly to NFs deployed within the NFS.
We envision, that the management of elastic services can be shared between control plane NFs and the RO. We
detail the use of the Cf-Or reference point for elastic services in Sec. 3.3.3.

In Sec. 5.5 of [D2.1] we argued for the need of a new narrow waist programmatic reference point for joint compute,
storage and network orchestration. Our Sl-Or reference point captures the definition of such a narrow waist with a
minimalist abstraction corresponding to compute, storage and networking. The hourglass in the background of Fig. 1
illustrates such a narrow waist view.

3.2 Main components

In order to explain the UNIFY concept, we revisit here the main architectural components. Our discussion of compo-
nents and information models follows their dependencies rather than the top-down structuring introduced in Sec. 3.1.
Therefore, we start our discussions with the virtualizers and the NF-FG, which are used across several reference points.
We continue with the SL components and the IL components, so that we can discuss in details the two main compo-
nents, i.e., the CA and the RO of the UNIFY architecture. Finally, we discuss policy enforcement points and monitoring
to extend the more static view of the resources.

3.2.1 Virtualizers

Virtualizers are responsible for the allocation of abstract resources and capabilities to particular consumers and for pol-
icy enforcements. This virtualized views should be vendor, technology and domain agnostic and contain the resources
at compute, storage and network abstraction and capabilities. Capabilities are means to express explicit resources, for
example, execution environments, list of instantiable NFs, etc. They are not meant to express resources at compute,
storage and network abstraction only.

Let’s assume that for the sake of simple operations, the Service Management and Adaptation Functions residing in
the SL would like to rely completely on the orchestration services offered by the RO. That means, virtualization should
be a mean to simplify the task of resource orchestration. For a network domain, such simple virtualization approach
could be a single Big Switch abstraction. In this context let us define a compute, storage and network virtualization as
follows:

Definition 1 (Big Switch with Big Software (BiS-BiS)). BiS-BiS is virtualization of a Forwarding Element (FE) connected
with a Compute Node (CN) node, which is capable of running NFs and connecting them to the FE, as shown in Fig. 2.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 12/57

DRAFT

Figure 2: An illustrative example of a Big Switch with Big Software (BiS-BiS) virtualization

Let us also define Service Access Points (SAPs):

Definition 2 (Service Access Point (SAP)). A service provider’s physical or logical port, which represents customers’
point of presence, access to internal services or exchange points to other providers. SAP definitions are included into
virtualization. The description of the SAPs is part of the contract between the provider and the consumer of the virtu-
alization.

Examples of SAPs are “Port no.523 in Building X, with VLAN no.78 encapsulation”, or “Public IP address 123.123.123.123
with VxLAN encapsulation id 9876”.

The resource orchestration task over a single BiS-BiS virtualization is trivial: either there are enough resources to
accommodate the request in the single node or the request must be rejected. The left hand side of Fig. 3 shows an RO
presenting a single BiS-BiS virtualization to the Service Management and Adaptation functions.

However, a simple BiS-BiS virtualization may not be sufficient for all consumers, for example, a consumer want
to have control over disjoint paths between her SAPs. One possible way for a provider to expose such capability is to
create a topology of resources in which disjoint paths exist. In turn, a consumer may exercise its control regarding disjoint
paths by pointing to the corresponding resources. Therefore, the topology provides means to both expose capabilities
and to enforce policies. Therefore, by purpose, the RO can create arbitrary virtualization to its (other) consumers. Such
virtualization can be defined by an Operator (see bootstrapping in Sec. 6.4.2 in [D2.1]), by a business contract (e.g., SLA)
or may be requested dynamically through a management interfaces. The right hand side of Fig. 3 shows an example
additional virtualization associated with a Retail Provider.

One should note that all the elements are uniquely identified in their provider – consumer context, so that it is
possible to reference and reuse them later on. For example, in order to share an NF instance between two Service
Graphs (SGs), the UUID of the NF must be used in both SGs.

3.2.2 Network Function Forwarding Graph

The NF-FG is one of the key concepts of the UNIFY programmability framework of [D3.1]. The NF-FG abstract infor-
mation model is central to the UNIFY framework and it is used primarily at the Sl-Or, Cf-Or and Or-Ca reference
points.

Definition 3 (Network Function Forwarding Graph). NF-FG defines a selected mapping of NFs and their forwarding
overlay definition into the virtualized resources presented by the underlying virtualizer. The NF-FG contains:

• the assignment of NFs to the virtualized software resources;

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 13/57

DRAFT

Figure 3: Different virtualization examples of an RO

• the definition of the forwarding behavior in the virtualized network resources;

• resource allocations for NFs and forwarding (optional);

• service requirements evaluable at network and software abstraction, e.g., max delay, min bandwidth, etc. (op-
tional).

Regarding the assignment of NFs to virtualized software resources we assume that NFs can be attached to dy-
namically created ports (see blue NFs and ports in Fig. 4). Also, we assume that the corresponding consumer of the
virtualization must fully specify the forwarding overlay between infrastructure ports (green) and dynamically created
NF ports (blue). Such overlay definition can be seen in the blue call-out boxes with traffic classifications, e.g., match
(&) for ({fr-a}), and corresponding actions, e.g., forward to port 1 (=>1) with tagging (Tag=B). We consider tagging as
an infrastructure agnostic abstract mean to identify packets and convey information between the different virtualized
resources, which will be translated according to the underlying technologies orchestrated. We also consider that such
tags and ports are local to the virtualization view and can be altered by the underlying layers. The only exceptions are
the SAPs, where technology specific tagging apply, which is negotiated as part of the service contract. Otherwise, Fig. 4
shows two example NF-FGs mapped to the two virtualization options shown in Fig. 3. The blue components (NFs or for-
warding overlays) must be defined by the corresponding consumer of the virtualizers, i.e., orchestration must be done
according to the details of the virtualization. The two NF-FGs are equal with respect to the delivered service between
SAPs 0 and 1. The green ports in the figures denote ports belonging to the virtualization producer (see RO virtualizers
in Fig. 3). The blue ports are logical ports defined by the consumer for deployment.

Note, that all the components within an NF-FG must have unique identifiers (references), though identifiers may
belong to conceptual and not physical resources (see also discussions in Sec. 3.2.1). The detailed specification of the
NF-FG and its protocol mappings are given in [D3.1].

3.2.3 Service management and adaptation functions

One of the tasks of the Service Management and Adaptation Functions is to map Key Quality Indicator (KQI) associated to
the overall performance of a service/product, which is meaningful to customers, to a mix of Key Performance Indicators

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 14/57

DRAFT

Figure 4: An illustrative example of a Network Function Forwarding Graph (NF-FG)

(KPIs). The KPIs must be associated with measurements, and measurements with measurement points. Service Level
Measurement (SLM) is defined by the corresponding measurements at time t, i.e., SLM(t). A delivered service meets
its KQI at time t if the associated SLM(t) measurements are all over/below their corresponding thresholds. Note that
measurements may contain estimations or other processing[TM 12].

The main task of the Adaptation Functions is to translate different types of service requests into the format of the
underlying layer. We introduced the definition of SG to the north of the Adaptation Function.

Definition 4 (Service Graph (SG)). SG is an ordered interconnection of abstract NFs, forwarding overlays, and KPIs
and corresponding thresholds. An abstract NF is implementation agnostic; the forwarding overlay contains i) traffic
classifications and associated forwarding rules and ii) SAPs (or ports of NFs from other SGs).

Fig. 5 shows a graph representation of a SG with vertices and edges. The vertices represent the ports of NFs and NFs;
the directed edges together with their attributes define the forwarding overlays. The edge attributes contain forwarding
rules (fr-a, fr-b in the example). The forwarding rules may contain traffic classifications and/or forwarding actions, e.g.,
if “voice” then assign “priority high”. The direction of edges defines the output → input relationship between the ports
and NFs. If no explicit edge attributes are given, then we assume that all traffic are to be forwarded between the vertices.
For the sake of easier representation, we will not draw links between the ports of an NF and the NF (see for example
the SG in Fig. 6).

Figure 5: An illustrative example of a Service Graph (SG)

Every NF in a SG has a unique identifier (shown as UUID1..3) used within the SL to refer to the virtual instance
of the service component. This allows the SL to share NFs between SGs, for example, a Network Address Translation
(NAT) NF may be shared among multiple users defined by multiple SGs.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 15/57

DRAFT

Finally, a SG needs to be mapped to the virtualized resources presented by the underlying layer’s virtualizer (see
Sec. 3.2.1). If the presented resource view is a single BiS-BiS then the resource mapping is trivial. However, if the
virtualization is more complex than a single BiS-BiS, then resource orchestration shall also take place in the SL. Fig. 6
shows the mapping of an SG into two virtualization views according to Fig. 3.

Figure 6: Exemplary mappings of a SG to NF-FGs

3.2.4 The Universal Node

To be able to design a flexible, easily programmable network, we have to prove that programmability in packet process-
ing does not incur high performance penalty. We argue that today’s Ethernet chips are already at a level of complexity
where the additional overhead of programmability is relatively low. This realization may have serious impact to the un-
folding of SDN. If the price of programmability is indeed low, more programmable chips may prove to be a cost-effective
solution for a wide-range of task eventually paving the way towards SDN. With the introduction of the UN according
to [D5.1] and [D5.2] our goals are to design and develop a COTS hardware based packet processor node that is capable
of high-performance forwarding and also capable of running high-complexity NFs in its virtualized environment.

This technical approach will open up wider possibilities not only for reducing OPEX and CAPEX but also for building
up new services or re-engineering existing ones with a far more flexible approach: even more this is accelerating the
innovation cycles and enabling faster time to market, allowing for a higher degree of customization and, last but not
least, improving telecommunication economics in terms of operations.

From resource abstraction point of view, the UN is equivalent to the BiS-BiS model at Sl-Or as introduced in
Sec. 3.2.1. That is, a UN is a collection of forwarding elements and embedded software resources, albeit with high per-
formance data plane execution environment [D5.2], under a joint Resource Orchestrator for both software and network
resources. Therefore, the Northbound reference point of the UN resembles the Sl-Or reference point both virtualization
and programming wise. Fig. 1’s embedded OL resembles a UN as shown in Fig. 7.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 16/57

DRAFT

The Sl-Or reference point at the North of the UN introduces a recursion into our architecture. This is further detailed
in the next section.

Figure 7: The Universal Node (UN) System Design

3.2.5 Controller Adapter

The CA is responsible for generating the domain-wide resource abstraction. The CA also uses a virtualizer to present the
resources to the RO. However, unlike the case of Service Management and Adaptation functions in the SL, the RO wants
to take full control of the resource orchestration between the its virtualizers and the underlying resources. Therefore,
the role of the CA is to retain the topology, resources and capabilities learned from its controllers in its virtualization to
the RO.

The bottom part of Fig. 8 shows two Open Flow Switches (OFSes) with their SDN Controller and two UNs. The
SDN Controller is connected to the CA through a Ca-Co reference point, while the two UNs are connected directly
through Sl-Or reference points. The CA uses resource abstraction functions and protocol adapters to interface with
the underlying SDN Controller and the UNs; and uses a virtualizer to create the domain wide resource view. In Fig. 8,
the domain wide view contains:

• FEs and BiS-BiS Nodes as abstractions of OFSes and UNs respectively;

• topology information between the nodes (ports and corresponding links);

• resources and capabilities (e.g., BiS-BiS vs. FE).

Notes related to Fig. 8:

• the presentation is agnostic of the underlying technologies, vendors or domains and the unique identifiers of the
elements in the virtualization;

• virtualization views on the top of the RO are “independent” of the underlying virtualization views;

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 17/57

DRAFT

• the infrastructure resources could contain a DC with an appropriate controller.

Figure 8: An illustrative example of infrastructure resources and virtualizers

3.2.6 Network Function Information Base

In order for the RO to be able to orchestrate an NF-FG request it must know the resource characteristics of included NFs.
The database or catalog containing resource models for NF abstractions at networking, compute and storage resource
level is called NF-IB. The NF-IB includes the following information for each NF:

• interface descriptions;

• resource models, for example, CPU = fc(traffic rate) or Memory = fm(CPU, traffic rate);

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 18/57

DRAFT

• implementation information and constraints on capabilities, e.g., Virtual Machine (VM) image, revision, execution
environments, etc;

• decomposition mappings (see Sec. 3.3.1 and 3.3.2).

The NF-IB resides in the management of UNIFY and logically it belongs to the SL. The NF-IB is built and managed
by service logic associated with NF and Network Service (NS) template development processes of SP-DevOps (see
Sec. 3.3.6). However, the RO is the primary consumer of the NF-IB (see NF-IB Fig. 1).

3.2.7 Resource Orchestrator

An RO manages virtualizers associated to its consumers. For each of its consumer the RO provides a UNIFY Resource
Service as follows:

Definition 5 (UNIFY Resource Service). Resources orchestration with isolation among virtualizers and NF-FG requests,
where resources orchestration is defined as an optimized allocation of an NF-FG request formulated according to one
of the RO’s virtualized view to the underlying virtualized resource view.

We assume that the RO’s optimization targets can be configured by the corresponding OSS (purple OSS in Fig. 1)
and can include any mix of objectives at software and network abstraction, like high utilization, resource costs, energy
savings, etc. Let us call these as the RO’s operational policies.

Figure 9: An illustrative example of the RO’s UNIFY Resource Service

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 19/57

DRAFT

Fig. 9 shows an example resource orchestration executed by the RO. Let us assume the infrastructure and the virtu-
alizers as shown in Fig. 8. Furthermore, let us assume that the RO receives an NF-FG corresponding to the left hand side
mapping of a SG as shown in Fig. 6. Now the RO needs to orchestrate the NF-FG received at Sl-Or considering the virtu-
alization presented to this consumer to the virtualized resource view received from the CA. The output of the resource
orchestration is an NF-FG, where the NFs and the forwarding overlay definition is mapped to the resources presented
by the CA. Note, that an abstract NF of the SL might translate to a different NF abstraction in the RO with the help of
the NF-IB. Such translation is shown by the different NF types and UUIDs, e.g., NF3@UUID3 → NF3x@UUID13,
where NF3 and NF3x are deployable NF types and UUIDs are unique resource identifiers.

Additionally, Fig. 10 shows the output of the resource orchestration forwarded to the CA. The CA, in turn, splits
the NF-FG into sub-graphs corresponding to the different resource providers from the IL. If the underlying resource
provider is a UN then the sub-NF-FG is forwarded directly to the UN’s RO through a Sl-Or reference point. If the under-
lying resource provider is a controller/agent, then the corresponding sub-NF-FG must be translated to the Northbound
API of the controller/agent.

3.2.8 Policy enforcement

Nowadays, an adequate use of resources is always welcome not only from an economic point of view but also from an
environment aware one. Unfortunately, an uncontrolled use of resources can be not only the result of an erroneous
management operation but be part of an attack, by any internal or external user of the system, as well. Any service-
critical architecture should provide protection against an accidental or intentional resource starvation situation. In this
sense checking the correctness of the petition, the identity and rights of the requester and the available resources
before granting the use of it is not only beneficial from a economic point of view but is also a cornerstone for the
stability of the service provided. With this in mind a resource policy based approach is the most adequate and flexible
solution tool to cope with this problem.

The resource policy approach in UNIFY is focused on the Sl-Or and Cf-Or reference points, as these are the two
sources for resource requests. As a base for defining the functionalities to be performed by each component of the
UNIFY framework, we have followed the elements defined in [Vol+00] and extended in [XACML] detailed below and
described in Fig. 11:

Policy Administration Point (PAP) is the repository where the policies are defined and provides them to the PDP.

Policy Enforcement Point (PEP) receives the requests, evaluates them with the help of the other actors and permits
or denies the access to the resource.

Policy Decision Point (PDP) is the main decision point for the access requests. It collects all the necessary information
from other actors and concludes a decision.

Policy Information Point (PIP) is the point where the necessary attributes for the policy evaluation are retrieved from
several external or internal actors. The attributes can be retrieved from the resource to be accessed, environment
(e.g., time), subjects, and so forth.

We consider two aspects of resource policies with regards to the mapping of policy functionalities to the UNIFY
framework:

Identities Policies will define the resource usage allowed for a certain identity (could be a UNIFY User, a Control NF,
etc.), so each request must be linked to the correspondent identity to be able to evaluate the policy.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 20/57

DRAFT

Figure 10: An illustrative example of CA’s split of NF-FG into sub-domains and protocol translations to the underlying
controllers/agents

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 21/57

DRAFT

Figure 11: Main elements in XACML Policy management model

Resource domain Policies will define the resource usage allowed in a certain domain, so each evaluation of the policy
must consider the situation across the whole domain.

The functionality of the PAP maps naturally to the management components and would be part of the OSS, which
holds management information; has a complete, domain-wise view; and eases the integration with accounting and
back-office processes.

The enforcement of the policy must be done whenever a new request for resources is received, so the functionality
of the PEP must be placed in the RO, and more precisely in the virtualizers, as they interface with the consumers. This
placement also allows to cover both Sl-Or and Cf-Or with a common approach. Due to the functionalities already
present in virtualizers, e.g., protocol agent, PDPs could also be executed there.

Following the two aspects of resource policies, we envision two PIPs: one related to identity information located in
the OSS for similar reasons as for the PAP placement; and one related to resource usage located in the CA, as responsible
of the domain-wide resource abstraction.

Figure 12 shows the mapping of the resource policy functionalities to the components of the UNIFY architecture.
Considering the support for elastic services and the recursive architecture envisioned in UNIFY (see Sec. 3.3.3 and

3.3.4 respectively), as well as the design of the UN in Sec. 3.2.4, it becomes apparent that a mechanism to allow for
autonomous operation of the RO at the different levels is required, to avoid hindering the operational efficiency of such
approaches while at the same assuring that the global policy is still enforced.

Such a mechanism could be based on the delegation of resource usage quotas whenever NF-FG is deployed
through the Sl-Or interface. This way the lower level PDP could make autonomous decisions on the resource requests
as long as they meet the delegated resource quota, and the upper level PDP would still ensure that the global resource
limit in the policy is met, controlling the aggregation of the delegated quotas. When the delegated quota is exceeded,
one approach would be for the lower level PDP to request a quota extension to the upper level PDP. The upper level
PDP could grant the quota extension, if the aggregation of the delegated quotas doesn’t exceed the global policy limit
or triggering a quota redistribution among the different lower level PDPs with a delegated policy quota if required, or
deny it, if the global policy limit is fully covered and quotas could not be redistributed.

3.2.9 Monitoring

Beside orchestration and programming of services and resources, monitoring is one of the most essential building
blocks of the UNIFY framework in terms of maintaining performance of a service and rapid reaction to infrastructure
failures. In this regard, monitors collect a wide range of information that indicates performance and availability of sys-
tem components, e.g., VNFs.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 22/57

DRAFT

Figure 12: Resource policy functionalities in the UNIFY architecture

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 23/57

DRAFT

Understanding Monitoring Functions (MFs) on a big scale, they consists of the probing of performance properties,
e.g., latency, utilization of resources, or processing and analysis of monitoring data and measurements, e.g., throughput,
bandwidth utilization, energy consumption, or alarm of resource shortages. In SP-DevOps, MF addressing research
challenges identified in [D4.1] and information flows are provided as part of the Observability process.

There are three different monitoring scopes:

• Service specific monitoring with monitoring elements inside the service, which not rely explicitly on infrastruc-
ture related monitoring results;

• Infrastructure monitoring for operating the three different resources based on available monitoring capabilities;

• Correlation of service and infrastructure monitoring results for improved operation by the means of a monitoring
orchestrator.

The first one can be performed by inserting appropriate monitoring functions into service definitions. The second
one can be implemented by sending information into an OSS system and by performing appropriate infrastructure
management actions. The third scope is one of the holy grails of operating networks and needs concepts on correlat-
ing service requirements for infrastructure monitoring with appropriate translation and abstraction in-between. In the
remainder of this section, we focus on describing the third option as it is a crucial part of a unified production environ-
ment.

MFs are implemented in all the layers (see OSS in Fig. 1). In line with [D4.1], it is assumed that a MF is comprised of
as a standalone or embedded part of an NF-FG detailing monitoring NFs and Observability Points (OPs):

• A monitoring NF’s is responsible for i) control of lower-level monitoring NFs, ii) collection of data, iii) data
processing and iv) operations towards the OPs.

• An OP provides a virtual context (control plane part) which operates on virtual/physical resources like counter
(data plane part) and comprises of local management and access to monitoring information. An OP can be
comprised of various local Observability managers. This is similar to the virtualization of compute or network
resources in the ETSI Industry Specification Group (ISG) NFV definition.

Each time a service layer is involved, MFs and quality indicators needs to be translated into NF-FG elements. Thus,
the resource service offered from the orchestration layer to the service layer has to provide and indicate the capabilities
for monitoring as well. This can be done in principle in two different ways: as a standalone or embedded NF-FG. The
standalone option involves building/defining an NF-FG which consists of monitoring specifications only. The receiving
element of the monitoring specification would be either the resource orchestrator or a dedicated monitoring orches-
tration element. The embedded NF-FG option consists of both service and monitoring related aspects which are further
decomposed in the NF-FG receiving element. In both cases, the receiving element of the standalone NF-FG or the mon-
itoring relevant part of the embedded NF-FG must be forwarded to an element understanding the specifications of MF.
There the NF-FG must be translated and mapped to NFs (operating on information from OP) and existing, exposed
OP in the infrastructure by the orchestration layer. Annotations of the NF-FG in terms of monitoring functionality, as
described in [D3.1], will provide input to the translation and mapping processes.

The decomposition process is illustrated by an example of a packet counter (e.g., a base service for monitoring data
throughput) implemented as a standalone NF-FG and represented in Fig. 13. The packet counter reads packet counts
corresponding to a BiS-BiS virtualization (offered to the Service Management and Adaptation Functions in a SP) as
shown in right side of Fig. 13, the service layer translates and formulates a monitoring NF-FG request containing i) OPs

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 24/57

DRAFT

(OBS1 and OBS2) attached to the SAPs of the BiS-BiS and ii) a aggregating monitoring NF (Mon), which provides
a monitoring service aggregating the throughput of ports corresponding to the BiS-BiS virtualization. The left hand
side of Fig. 13 shows a SG definition for flow counting monitoring and the right hand side shows the corresponding
NF-FG definition as mapped to the single BiS-BiS virtualization example given in Fig. 2. Note, for simplicity, the edges
of the SG in the left side of Fig. 13 contain bi-directional links, though the forwarding definition in the NF-FG is given for
both directions separately. It is assumed that port d@Mon is using MAC based L2 forwarding to ports c@OBS1 and
c@OBS2. After its successful deployment the flow counters can be read by the consumer through VLAN=A@SAP1.
A separate VLAN is only used to separate user plane and management plane traffic for the customer. Also, since the
SAP is technology specific, we assumed the user requested this VLAN based separation according to the definition of
the SG. The consequence of the monitoring is, However, that any further NF-FG requests must be mapped between
ports 3@OBS1 and 7@OBS2 in order to be able to count the corresponding traffic, i.e., these ports will become the
new endpoints (or SAPs) for the consumer to use for service deployment as shown in the right side of Fig. 13. Therefore,
OBS1 and OBS2 become an integral part of the NF-FG throughout the orchestration process.

Figure 13: A flow counter monitoring example

In the orchestration layer, the resource orchestrator resolves where and how to instantiate the requested resources.
Here a number of options exist with regard to MFs:

1. RO interprets MF specifications, selects the appropriate resources and attaches the monitoring information and
associated behavior of NFs to the NF-FG.

2. RO has a monitoring orchestration part and transfers the monitoring part of the embedded NF-FG or the stan-
dalone NF-FG into this block. The monitoring orchestrator decomposes this monitoring related part of the NF-FG,
setups or instantiate the monitoring NFs with the help of the RO or the CA and with the help of the instantiated
monitoring NFs performs the monitoring for the NF-FG.

3. RO uses the OSS to perform the monitoring by transferring the standalone NF-FG or the monitoring relevant
parts of the embedded NF-FG to the OSS. The OSS has control over all the monitoring NFs and observability
points and performs the orchestration of monitoring information as requested by the RO as such and reports
/ performs actions like, e.g., reconfiguration in failure modes or requests for resource re-provisioning to the
resource orchestrator only.

The second option is seen from the RO as a receiver of an NF-FG. Given the support of virtualization context, the de-
mand for resources to instantiate NFs, the interaction between RO and monitoring orchestrator needs similar primitives
as the Cf-Or reference point.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 25/57

DRAFT

Currently all three options are under investigation, and will be further analyzed in [D4.2]. Part of the work includes
further understanding of the virtualization context and synchronization between the RO and monitoring orchestration,
as well as virtualization and deployment of MFs and associated OPs.

Finally, the infrastructure layer provides the OP and their information towards the orchestration layer.

3.3 Main features

3.3.1 Model-based service decomposition

We introduced model-based service decomposition in order to be able to re-use and build services out of elementary
(or atomic) blocks. Our decomposition models are service specific and are determined in design time of the NFs or SGs.
However, the corresponding decomposition rules driving the resource orchestration process are interpreted service
agnostic by the means of NF-FGs or more specifically:

The model-based service decomposition allows for a step-wise translation of high-level (compound) NFs into more
elementary or atomic NFs, which can eventually be mapped onto the infrastructure. The decomposition model is also
stored in the NF-IB as a set of decomposition rules associated with NFs. The decomposition rules define logically equiv-
alent realizations of an NF. The decomposition is given

Definition 6 (Model-based service decomposition). ~ is defined as a mapping of an NF into a set of NF-FGs, more
specifically, NFi → {NFFGi

1,NFFGi
2, . . .}. During the decomposition of an NF, the external interfaces remain

unchanged.

The details of decomposition processes and methods are described in [D3.1].

3.3.2 Monolithic vs. decomposed network functions: control and data plane split design

NFV exploits only half of the opportunities enabled by compute and network virtualization. The SDN abstraction of the
forwarding behavior enables the separation of traditional monolithic control and data plane network function designs.

For example, an Intrusion Detection System (IDS), whose role is to identify and block malicious traffic, could be
implemented in various ways. Let’s assume that the IDS service is managed by the operator, i.e., the SP manages and
operates the IDS upon the user’s subscription to the service. The user’s and the service’s view of the IDS is shown in
the left hand side of Fig. 14. The ports of the NFs are shown with tagged circles when we reference to the same ports
throughout the decomposition process. Small circles without tag denote shared ports and line ends shows unshared
ports. The IDS’s port E is connected to an Element Management (EM), which connects to an OSS for Operations and
Management (OAM). Port V is optional and may be connected to a VNF Manager (VNFM) according to the ETSI Man-
agement and Orchestration (MANO) framework. We will use this component when we revisit this example in Sec. 6.3.
Ports 1 and 2 denote the user plane ports. The IDS functional block can be realized as a hardware based monolithic
component (a); a monolithic IDS VM (b); or as a data and control plane split design according to options (c) and (d).

In option (c) the IDS control logic is separated into an IDS Control VM (IDSC), a Firewall (FW) (FW) component for
blocking of the malicious traffic and a traffic analyzer. The FW may be mapped to a FE (FE1) and the traffic analysis is
realized by the means of a generic Deep Packet Inspection (DPI) VM (VM DPI) component. The IDSC must configure
the generic VM DPI with patterns to identify malicious traffic. Yet another logical FE (FE2) is used to mirror user
traffic to the DPI.

In option (d), without loss of generality, we consider that the DPI processing can be parallelized by forking additional
VM DPI instances. The role of the control application has also to be changed. The Elastic IDSC (E-IDSC) must monitor

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 26/57

DRAFT

Figure 14: Model-based Service Decomposition: An IDS example

the load of the VM DPI components; add or remove VM DPI instances based on the demands and re-configure traffic
steering. For example, in option (d), the FE2 will not only mirror the user traffic to a single VM DPI instance but must
act as a Load Balancer (LB) among the instances of VM DPIs. Therefore, the FE2 must be dynamically configured
by the E-IDSC. In order for the E-IDSC to self manage its corresponding NF-FG, a similar interface as offered to
RO consumers through the Sl-Or reference point may be offered to this control application. Let port C denote the
interface of E-IDSC to be connected to the Cf-Or reference point of the RO. Port C is a new external interface, whose
presence depends on the decomposition option and it must connect to the RO itself, who executed the decomposition.
Therefore, we assume that i) these ports are tagged distinguishably; and that ii) the RO upon discovering such tagged
port during the decomposition process, it creates a corresponding virtualizer and connects the port to the virtualizer
(see discussions in Sec. 3.3.3).

We would like to emphasize, that the model-based service decomposition is a recursive process, i.e., there may
exist further decomposition models for an NF within a decomposition given by an NF-FG.

3.3.3 Elastic services and the Cf-Or reference point

The possibility to dynamically scale network services at run-time in an automated fashion is one of the main advantages
offered by the NFV approach, providing both better resource utilization and better service at a lower cost. Elastic NFV
could be similar to what elastic cloud services provide for compute, with “pay as you use” cost models for the customers.

There are multiple reasons for initiating a scaling procedure: a user could request higher capacity ahead of time
in order to deal with a known increase of demand in the future; the operations and management system could initi-
ate scaling to maintain service level requirements based on monitoring KPI and resource use; or the deployed service
components themselves could manage their resource needs similarly to automatic multi-threading scaling of some
software running on multi-core CPUs.

Scaling of VNFs can be done in many ways. Which one is appropriate in a particular case depends heavily on the
precise function provided by the VNFs, for example, the type of traffic it operates on and at which layer in the networking

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 27/57

DRAFT

stack; requirements on state synchronization; requirements on control traffic during the scaling event; dependencies
on other VNFs (service logic); ability to parallel processing or multi-threading; etc.

Regarding elasticity, in option (a) one can consider only sharing of the hardware (HW) resources, in options (b)
and (c) one can scale up/down the service dynamically by requesting or releasing resources associated to the individ-
ual components, e.g., requesting more CPU for the VM DPI instance. However, scaling out/in requires adding to or
removing from components and also re-configuring of the service chain.

In option (d), we assume that the fate of controlling service elasticity is shared between the service developer and
the orchestration framework. That is, the E-IDSC knows the service specific logic determining how to scale up/down
or in/out the service components it is responsible for, but the resource allocation is performed by the resource provider.
Fortunately, a similar resource orchestration service is already available at the Sl-Or reference point for established
virtualizers.

Service wise, the Cf-Or elastic control reference point offered to control applications in the NFS is equivalent to
the Sl-Or reference point. However, the major differences between Cf-Or and Sl-Or are that:

• the Cf-Or virtualization must be created autonomously upon NF instantiations when detecting a named dedi-
cated interface (see port “C” in Fig. 14);

• the connection to the corresponding Cf-Or reference point must be inserted into the NF-FG autonomously; and

• the virtualization must be strictly scoped to the subset of the NF-FG belonging to the control application.

The virtualization view is derived based on the NF mapping and decomposition models in order to prevent inter-
ference between control applications within the same genuine NF-FG.

The above IDS-based elastic service example is further elaborated and is compared to an ETSI MANO deployment
scenario in Sec. 6.3.

3.3.4 Recursive orchestration

On one hand we argue that compute virtualization in general implicitly involves network virtualization too, for example,
an OpenStack DC includes Neutron networking, a CN has internal network with logical switches, etc. On the other hand, if
one starts with an SDN network and adds compute resources to Network Elements (NEs), then compute resources must
be assigned to some virtualized network resources if offered to clients. That is, we observe that compute virtualization is
implicitly associated with network virtualization. Furthermore, virtualization leads to recursions with clients (redefining
and) reselling resources and services (see for example [HZH14]).

We argue that given the multi-level virtualization of compute, storage and network domains, automation of the cor-
responding resource provisioning needs a recursive programmatic interface. Existing separated compute and network
programming interfaces cannot provide such recursions and cannot satisfy key requirement for multi-vendor, multi-
technology and multi-provider interoperability environments. Therefore, our UNIFY architecture exploits a recursive
programmatic interface for joint compute, storage and network provisioning.

We have revealed in Fig. 1 and in the discussions of the UN in Sec. 3.2.4 that the Sl-Or reference point appears both
at the North of the RO and at the South of the CA. There are no architectural limitations on how many UNIFY domains
or UNs can be put together in a multi-level hierarchy. One natural way to end-up with a multi-level hierarchical system
is by joining together several horizontal businesses into a vertical UNIFY hierarchy.

Fig. 15 shows a multi-level hierarchy example with physical resources and UNIFY domains. Notice that infrastruc-
ture resources can already contain virtualizers hence allow isolation and independent control of their resources.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 28/57

DRAFT

Figure 15: An illustrative example of recursive resource orchestration

3.3.5 Multiple administrations

The possibility to clearly separate roles and responsibilities in an architecture allows not only technical separations (see
Sec. 3.3.4) but the possibility build a multi-level hierarchical system with more than one business actor. Such vertical
business separation (and value chains) could come along with, for example, infrastructure ownership, wholesale and
retail operations, OTT providers, etc.

Let us investigate what happens when infrastructure resources are split according to multiple vendors, technolo-
gies, administrations or businesses. Assume that the IL of Fig. 1 is split into different administrations1 as shown in Fig. 16:
IL@SP1 and IL@SP2 belong to two different SPs, and that IL@SP0 belongs to SP0, whose OL and SL is shown in
the upper part of the figure. The NF-FG within the NFS shows that the different orchestrators can see different deploy-
ment realizations corresponding to their position in the multi-level hierarchy. The OL@SP0 sees a NF-FG comprising
of VNF1 CP, VNF1 DP and VNF2, however, the later deployment of VNF2 is decomposed into a NF-FG comprising
of VNF2a DP, VNF2b CP and various number of VNF2c DP components. Note, however, that the services and
external interfaces of the NF-FG at SP1 must be equivalent to an abstract VNF2 at SP0.

One consequence of the multiple administration is that management systems became separated (see Fig. 16. This
affects how the virtualization services from the underlying resource providers are requested. We assume that such
configuration is part of the infrastructure bootstrapping processes (see [D2.1]). How such virtualization service can be
requested on-demand is left for future work dealing with business-to-business aspects.

Once, the underlying virtualization services are configured, the operational orchestration interfaces corresponding
to Ca-Co and Sl-Or are the same as discussed.

3.3.6 Developer support (DevOps)

In [Mei+14; D2.1] we presented the set of DevOps principles and processes that form the base for the SP-DevOps concept
developed in UNIFY and outlined in [D4.1] and further refined in [D4.2].

1May belong still to the same ownership.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 29/57

DRAFT

Figure 16: An illustrative example of the UNIFY architecture with multiple administrations

For resources exposed through the UNIFY Architecture, we consider that the processing of the SG within the Ser-
vice Layer is equivalent to a DevOps build step, the transformation of the NF-FG within the Orchestration Layer(s) is
equivalent to an DevOps orchestration step and finally the setting up of resource configuration parameters within the
Infrastructure Layer(s) is equivalent to a DevOps deploy process.

The build, orchestrate and deploy processes are expected to be based on deterministic algorithms that once pre-
sented the same input and the same state of the resource allocation and consumption maps, will provide the same
response. Therefore, the repeatability in the DevOps principle is achieved. The SP-DevOps Verification process defined
in WP4 is expected to check intermediary transformations of the NF-FG for policy constraints, thus creating an envi-
ronment that inspires further confidence regarding the correctness of operation and contributes towards achieving the
reliability requirement from the DevOps principle.

Virtualizer components of the UNIFY Architecture play a key role in ensuring that the build, orchestrate and deploy
processes are identical in the development, test and production environments. It enables Service Developers to first try
their service on an isolated resource slice of the infrastructure, possibly as a trial with a small number of friendly users.
It also enables them to simply redeploy the SG in the production environment, using the same reference points and API
calls as in the case of the isolated test environment. As the SGs and NF-FGs are to be described in formal languages, the
cloning of existing resource sets supporting a service in a production environment and re-creating their configuration

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 30/57

DRAFT

in an isolated slice in order to perform in-depth investigations without affecting the production system is an operation
that requires very little effort on the Service Developer.

The UNIFY Architecture supports monitoring throughout all the reference points between the layers by specifying
a set of functions that handle monitoring information [D3.1; D4.2], see section 3.2.9.

In addition, the UNIFY Architecture offers a Verify API call between several layers of the architecture [D4.2] that
could be used to trigger tools that validate certain properties on the data plane, such as reachability, the absence of
forwarding black holes, etc. UNIFY WP4 is also developing a number of tools that could be employed for checking such
properties [D4.2]. In addition, SP-DevOps defined the Troubleshooting process as a capability to automatically generate
and execute checklists or workflows.

While a VNF Developer may have the in-depth knowledge to control in detail or understand the messages gen-
erated in a high-verbosity operating mode of a particular tool, a Service Developer may order the execution of the
tool through the SP-DevOpss Troubleshooting process, determine whether a problem is present and hand over partial
results as well as all the information regarding resource allocation to the VNF Developer. In turn, the VNF Developer
encounters a familiar vocabulary and interface to interact with the system, which has the potential to speed-up the
process of reproducing the problem either in the production or in a test environment.

3.4 Security considerations

As many other research projects UNIFY relies on several technologies, so establishing a baseline regarding the security
aspects is critical to define where efforts need to be done to assure a coherent result. To do so, we have defined three
categories, each requiring a different approach.

First, we have those technologies that can be considered legacy, in the sense that they are well known and es-
tablished software or hardware developments that are used unmodified. In many cases, the technologies themselves
have implemented their own security analysis and put in place the tools and methods to get the required security func-
tionalities, and no more than that is required. For example, this could be what happens with some operating systems:
Independently of the actual configuration, there is SELinux (Security-Enhanced Linux) or Bastille to offer almost any
kind of functionality needed. The same applies, for example, to secure booting (by using UEFI Secure Boot).

Second, there are some other technologies that are themselves actually studying the implications and are currently
investigating and trying solutions. An example of this is the management of trust and compliance in OpenStack, for
which different views and solutions exists. Another example is how to load and distribute public and/or symmetric
keys in the VM images. In this case, the need of these features should be flagged at the architecture level, stating that
deployment in a production environment should implement these required features.

Finally, there are new architectures, developments, concepts and workflows that are produced as a result of the
project. In the case of requirements that directly arise from the investigation done at the project level a clear response
needs to be provided. These requirements can either produce modifications in existing features of some solution used,
or be addressing some previously unseen problems. If no previous work in the state of the art exists, a clear answer to
this should be provided at the architecture level. At the implementation level, it should be clear that although a definite
full-fledged solution is perhaps out of the scope of the project, it is very desirable that the prototype takes into account
the requirements and doesn’t break any cornerstone principle.

At the current state of the project, for the third group, the two most security-relevant topics brought up by UNIFY
are the management of the resource allocation process in the RO and the operations on both SG and NF-FG across the
different reference points. To address the former, resource policy enforcement has already been discussed in Sec. 3.2.8;
whereas for the later, the principles for secure graph operation are outlined next.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 31/57

DRAFT

As detailed in Sec. 3.1, the UNIFY framework clearly defines its components and reference points. The layer defini-
tion in the overarching architecture is oriented to match business boundaries, so the most relevant reference points for
secure graph operation would be those between layers: U-Sl, Sl-Or, Ca-Co and Cf-Or. The Ca-Co reference point
captures the various interfaces to the north of the underlying controllers and will, most probably, rely on a different
entity other than the NF-FG. However, it should include the necessary security functionalities to provide an equivalent
behaviour to the rest of reference points.

Keeping the approach selected for the resource policies, the same elements will be used to define the functionalities
to be performed by each component of the UNIFY framework. We consider three aspects of graph operation policies
with regards to the mapping of policy functionalities to the UNIFY components:

Identities Policies will define the operations allowed for a certain identity (could be a UNIFY User, a Control NF, etc.),
so each request must be linked to the correspondent identity to be able to evaluate the policy. For the requests
traversing different layers (e.g., a request related to a SG from a UNIFY user to the SL via the U-Sl triggers a
request related to a NF-FG from the SL to the OL via the Sl-Or) depending on the implementation scenario the
original identity could be maintained through the different requests or be updated in each hop.

Operations Policies will define the operations allowed to each identity, e.g., to be able to differentiate between the
functionality exposed to the different UNIFY users envisioned.

Graphs Policies will define the criteria to establish the subset of graphs each specific policy applies to (e.g., operations
allowed only in the graphs created by the requester, only specific graphs allowed for deployment, etc.).

The mapping of the PAP follows the same reasoning as for resource management policies and would be part of
the OSS, which holds management information; has a complete, domain-wise view; and eases the integration with
accounting and back-office processes.

The enforcement of the policy would be done in the U-Sl, Sl-Or and Cf-Or inter-layer reference points, so each
component at the south of this reference points would include a PEP. In the RO, it would again be placed in the virtu-
alizers, as they interface with the consumers.

To avoid problems with multiple evaluations of the policies and the complexity from distributed decisions, there
should be only one PDP per layer. At the current level of definition of the UNIFY architecture there is no strong case
about the placement of the PDP which could be implementation dependent. Fig. 17 shows a possible placement of the
PDP in the OSS of each layer.

Considering the aspects described in the graph operation policies, at least the following PIPs would be required:
one related to identity, located in the OSS for similar reasons as for the PAP placement; and others related to graph
information, located in the SL for SG information and the OL for NF-FG information. Policies including others aspects
could require additional PIPs.

Fig. 17 shows one possible mapping of the secure graph operation policy functionalities to the components of the
UNIFY architecture.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 32/57

DRAFT

Figure 17: Graph policy functionalities in UNIFY

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 33/57

DRAFT

4 Functional Architecture

The previous section has given a high-level, overarching view on UNIFY architecture introducing the main concepts
and components. The next step towards the realization is the functional design of that architecture with lower level
details and design decisions. First, we revisit the main functional components and formalize the service primitives
associated with the reference points in between. Second, we break down the Service Layer (SL) into detailed functional
components. Finally, we break down the Orchestration Layer (OL) into two sublayers and further components. As the
UNIFY architecture relies on available controller platforms with corresponding legacy infrastructure elements, and the
UN design is detailed in [D5.1; D5.2] the Infrastructure Layer (IL) details are not discussed herein.

The top-level functional architecture is presented in Fig. 18. At the highest level, the SL provides service manage-

Figure 18: Top-level UNIFY Functional Architecture

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 34/57

DRAFT

ment and service abstraction functions for all types of users (End Users, UNIFY Users, etc.). The components realizing
these services are grouped into the Service Management Sublayer. SL can also have management connections to dif-
ferent NFs withing the NFS. UNIFY Users and Developers have special roles, which require special purpose functions
and lower level access to the services of this layer. Thus, we introduce a new Service (Graph) Adaptation Sublayer in
order to group these lower level functional components.

The OL is decomposed into two sublayers: the Resource Orchestration Sublayer (ROS) and the Controller Adaptation
Sublayer (CAS) encompass the functional components corresponding to RO and CA respectively. Both sublayers are
managed from a dedicated OSS, while connections to NFs are realized via the Cf-Or reference point.

The main functional elements of the IL are Controllers with their respective infrastructure domains and OSSs.

4.1 Abstract interfaces and primitives

The interoperation between the main components of the architecture (see Sec. 3.2) are realized via the reference points
(see Sec. 3.1.2). In what follows, we introduce abstract interfaces with the primitives for each UNIFY reference points.
We use the term abstract interface to discussing these service primitives with later protocol mappings, i.e., the abstract
interface primitives defined herein can be implemented by different protocols in later phases of the project.

4.1.1 Interface at the U-Sl reference point

The primitives at the U-Sl reference point has to support the following operations:

• request / release / update service
a service (e.g., chosen in the GUI of a management system) is set up / released / updated by the SL (with the
help of lower layers) as it is requested by an End or Enterprise User and the status of the operation is sent back
to the user as an answer.

• get / send service report
SL provides high-level measurement reports related to the SLA

• notification/alarm
SL sends notifications to the user in case of failure or violation of the SLA.

• list SG
SL lists existing SGs of a given UNIFY User or Developer.

• request / release / update SG
a service described by a SG is started / released / updated by the SL (with the help of lower layers) and the status
of the operation is sent back to a UNIFY User or Developer.

• get / send SG info
different types of information on a queried SG is provided by the SL to UNIFY Users.

• list NFs from NF-IB
SL provides the list of available NFs from NF-IB (this could be seen as capabilities).

• add / remove / update NF in NF-IB
NF can be added to / removed from / updated in the NF-IB catalog by the SL according to the request coming
from a UNIFY Developer (or User if the user is allowed to do this).

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 35/57

DRAFT

• add / remove OP to/from SG
SL adds / removes OP to/from a given SG according to a Developer’s request.

• request / release UNIFY Resource Service (see Def. 5)
to request or release a virtualizer (see Sec. 3.2.1) associated with the UNIFY User or Developer; this is a manage-
ment request related to the initialization of the UNIFY service. The request is executed through the OSS/BSS in
the SL together with the OSS in the OL.

4.1.2 Interface at the Sl-Or reference point

The primitives at the Sl-Or reference point has to support the following operations:

• instantiate / tear down / change NF-FG
ROS takes the NF-FG request, tries to orchestrate it according to the UNIFY Resource Service (see Def. 5 on
page 19) and sends back the result.

• get / send virtual resource info
ROS provides resources, capabilities and topology information at compute, storage and networking abstraction
(e.g., BiS-BiS resource view).

• notification/alarm
OL sends notification to the SL in case of failure or any violation of KPI thresholds contained in the NF-FG requests.

• get / send observability info
OL provides observability info to the SL.

4.1.3 Interface at the Or-Ca reference point

The CA presents an abstract resource view of the domain to RO and accepts resource requests described by NF-FG, we
need similar interactions as it was discussed for the Sl-Or. Thus, the primitives at Or-Ca are the same as at Sl-Or.

4.1.4 Interface at the Cf-Or reference point

The main goal of the Cf-Or reference point is to share the resource management of elastic services between RO and
NFs (typically in accordance with a control and data plane split as discussed in Sec. 3.3.2 and 3.3.3). This requires the
same primitives as we defined at the Sl-Or reference point. Additionally, the RO may outsource the NF decomposition
and NF scaling tasks to an NF running in the NFS. This feature is further elaborated and discussed in [D3.1].

4.1.5 Interface at the Ca-Co reference point

The Ca-Co reference point captures the various interfaces to the North of the underlying controllers, which determine
the primitives applied here. We reuse available interfaces here without formulating any requirements. In [D3.1] we
discuss some of the related issues.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 36/57

DRAFT

4.1.6 Interface at the Co-Rm reference point

The interface at the Co-Rm reference point is determined by the protocols used at the southbound interface of the
controllers. The definition of this interface is out of the scope of the UNIFY project. In [D3.1] we discuss some of the
related issues.

4.2 Service Layer

The SL and its sublayers can be decomposed into finer functional blocks. The functional architecture at the next gran-
ularity level is given in Fig. 19.

Figure 19: Functional architecture of the Service Layer (SL) and Orchestration Layer (OL)

The Service Management Sublayer encompasses the OSS/BSS and EMs of the SP. We assume that these compo-
nents are service aware and are readily available from incumbent operations. Additional, virtualization specific, compo-

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 37/57

DRAFT

nents must be added to the management systems, e.g., SG adapter or a virtual context initiator (see later). Services can
be requested via the OSS/BSS using, for example, a GUI. The GUI or the service portal can also be used for presenting
different types of reports on the service back to the users. The OSS/BSS contains several modules regarding reporting,
notification mechanisms, translation of KQI to KPI parameters, SG adaptation, etc. The SG adaptation is responsible for
transforming the high-level service into a SG. The OSS/BSS implements the primitives regarding service operations
(request, release, update), service reports and notifications as it is shown in Fig. 19.

EMs are service aware configuration and management components connecting to NFs running in the NFS through
their traditional management interfaces (e.g., SNMP). Typically, we have one EM instance per NF Functional Type (e.g.,
firewall).

The Virtual context initiator handles the creation of new Virtualizer components at the RO via the OSS of the OL
layer. On the one hand, this event can be triggered by UNIFY Users or Developers calling a dedicated function, e.g.,
request UNIFY Resource Service. On the other hand, the OSS/BSS in the SL can request Virtualizers during for some
of its Users, e.g., for a Developer or a power user directly controlling resources through NF-FG requests.

The Service (Graph) Adaptation Sublayer contains the virtualization related components of the SL. UNIFY Users and
Developers may requests direct access to these elements. Operations with SGs, such as listing active SGs, starting, stop-
ping or updating services described by SG, querying information on given SG can be called directly via the Service Graph
Operations Manager. Typically, there is a single Service Graph Operations Manager in the SL and it connects to a single
Virtualizer of the ROS. The resources provided by the Virtualizer (via “get/send virt. resource info” primitives) are stored
in Virtual resources database. The SG Orchestration module is responsible for mapping an SG request into an appropri-
ate NF-FG as described in Sec. 3.2.3, e.g., into a BiS-BiS virtualization stored in the Virtual resources database. (A helper
object is also introduced to handle operations corresponding to virtual resources called Virtual resource manager.) The
resulted NF-FG is sent down to the RO via the Sl-Or reference point using the “instantiate/tear down/change NF-FG”
primitive provided by the corresponding Virtualizer object. This mapping information (SG to NF-FG) is also stored in
a database containing active SG instances in the SL. The Virtualized Network Function Manager (VNFM) module is re-
sponsible for the lifecycle management of VNF instances (e.g., start/stop instances, dump/reload configurations). This
component performs service agnostic tasks typically related to the operation of a VNF in a virtualized infrastructure like
refreshing software versions, pausing/resuming, dumping/initiating states, etc. Similar functionality can be optionally
delegated to a Resource Control Function as a deployed NF running in the NFS (see Sec. 3.3.3).

The Service (Graph) Adaptation Sublayer has additional functional elements for accessing the NF-IB. Using the NF-
IB manager, Developers or UNIFY Users are able to query available NFs and add, remove or update information on NFs
in the database. The NF-IB is used by the RO during orchestration, therefore it is indicated as part of the OL in Fig. 19.

Another important components of the Service (Graph) Adaptation Sublayer realize SP-DevOps services [D4.1]. The
Monitoring Orchestrator maps monitoring requirements coming from the SG or from the UNIFY Users/Developers to
available monitoring services and observability points. The Observability & Performance Manager can collect Observ-
ability information from lower layers after configuring them via dedicated interfaces. Furthermore, Developers or UNIFY
Users can directly add OPs to a given SGs by the “add/remove OPs to/from SG” primitives. These mechanisms require
additional primitives and will be discussed in more details in [D4.2]. The Verification Manager is able to conduct verifi-
cation processes on different tasks performed by the SL components, e.g., verification of the mapping of an SG to an
NF-FG at a virtualized resource.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 38/57

DRAFT

4.3 Orchestration Layer

The decomposed view of the OL is shown in the lower part of Fig. 19. Two logical groups, referred as sublayers, are
formed around the RO and the CA. The encompassed modules support the operations realized by these two main
components. Additional blocks support SP-DevOps processes or provide management functions related to this layer.
It is worth noting that the purple OSS shown in the right hand side is different from the OSS/BSS operating at the SL.
The OSS in the OL is managed by the OSS/BSS in the SL and its role and responsibility is to manage and operate the RO
and the CA.

The CAS, which is the lower part of the OL, creates a global (abstract) domain view hiding the details of the under-
lying technologies, controller platforms and infrastructure components. In order to create and manage this virtual view,
the main component (CA) interacts with different types of network and compute controllers and collects virtualized
or real infrastructure resources into a database referred as Domain Resource Database (DRDB). A number of adapters
can be integrated with the CA to implement interfaces towards different types of controllers, e.g., OpenFlow Controller
Adapter, OpenStack Controller Adapter. The main role of the CA is to provide resource abstraction functions for the Do-
main Virtualizer (DoV) module. The DoV creates a domain wide, unified global resource view of all underlying resources
and exposes that to the RO through the Or-Ca interface. The global resource view managed by the DoV can be consid-
ered as a simplified view of DRDB2. As a result, the RO and its orchestrating algorithms are infrastructure agnostic. The
idea behind the RO and CA split is to separate the concerns: orchestrating over abstract resources (RO) and mapping
the execution into different technologies, domains and protocols.

The ROS is the upper part of the OL. Its main role is mapping the NF-FG request coming from the Sl-Or or Cf-

Or reference point to domain global resources as shown by the CA. The mapping algorithms of the RO may adhere
to different operational objectives, like minimizing costs, energy; maximizing utilization, etc. The ROS contains the RO,
Virtualizers with Policy enforcement functions (PEP), and an NF-FG instances database. A Virtual context manager,
highlighted from the OSS, is responsible for creating and configuring consumer specific Virtualizers with PEPs via the
“request/release UNIFY Resource Service” primitives. Consumers of the Virtualizers are UNIFY Users or NFs in the
NFS (see Sec. 3.2.1 and 3.3.3). The virtualization is performed by the Virtualizer component by presenting a consumer
specific DRDB. This view is provided to the consumers via the “get/send virt. resource info” primitives. An NF-FG request
via the “instantiate NF-FG” primitive from the consumer is mapped to the global domain resources by the RO and
stored in the NF-FG instances database. The mapping is performed based on information stored in the NF-IB, which
database is managed from the SL (see NF-IB manager). The NF-FG instances database stores the original request and
the NF-IB entries used to decompose or map it. The mapping to the resources are stored in the DRDB. Virtualizers are
connected to the RO through their policy enforcement module (PEP). Resource policies related to the service contract
must be enforced here related to compute, storage and networking abstractions (resource specific and service agnostic
view). For example, a PEP could limit the available resources (max 10 virtual CPU, max 5 GByte RAM, less than 100Mbps
in/out rate, maximum cost of resources, etc.) or the capabilities as available NF types. Such policy information could be
extracted from the original service request and/or from consumer policies (e.g., maximum cost, etc.) and might involve
additional services, e.g., calculating the resource cost of a service.

The Monitoring Orchestrator is responsible for the allocation and operation of monitoring resources by translating
monitoring related NF-FG requests into monitoring functions and observability points and preparation of the instan-
tiation of the selected elements. The result is forwarded to the DoV or controller in the infrastructure layer. The Ob-
servability & Performance Manager together with the Verification Manager are responsible for SP-DevOps related tasks
in the OL. They are connected to similar functional blocks of the SL via the corresponding Policy enforcement module

2This relation is indicated by dotted lines between the databases in Fig. 19.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 39/57

DRAFT

and Virtualizer. By this means, the lower level components can be configured and different types of observability in-
formation can be reported upwards. These modules also interact with the RO directly in order to provide performance
information which can be taken into account during the orchestration process. To collect these measurements from
the lower layers, another direct connection to the DoV is necessary.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 40/57

DRAFT

5 Towards an Integrated Prototype: Aspects of the System Architecture

In the execution of the UNIFY project we follow agile development processes. In parallel to the definition of the overar-
ching and functional architecture, we build limited functionality proof of concept prototypes for validations and learn-
ings about our ideas. This section is devoted to briefly summarize some of these preliminary implementation efforts
paving the way for a complete system architecture and integrated prototype.

Since with UNIFY we aim to integrate multiple technologies into the compute, storage and network abstraction, we
have started to work with different types of infrastructure to understand if our abstraction (generalization) is applicable
or not. There different prototyping environments correspond to the UN, legacy DC solutions and light-weight, emulated
networking frameworks. We will briefly describe these in this section.

5.1 ESCAPE prototyping framework

Mininet [LHM] is a light-weight network emulation tool enabling rapid prototyping. It is a proper candidate to build a
UNIFY development framework around that in order to make agile prototyping possible. Therefore, we have established
such a framework including all layers of UNIFY architecture (Infrastructure Layer (IL), Orchestration Layer (OL), Service
Layer (SL)) and demonstrated in [Cso+14b] under the title of “Extensible Service ChAin Prototyping Environment using
Mininet, Click, NETCONF and POX (ESCAPE)”.

The system architecture of ESCAPE is shown in Fig. 20.

Figure 20: The system architecture of ESCAPE with the corresponding UNIFY layers

The main goal of ESCAPE is to support the development of several parts of the service chaining architecture. On
the one hand, the framework fosters VNF development by providing a simple, Mininet-based environment where SGs,

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 41/57

DRAFT

built from given VNFs, can be instantiated and tested automatically. Here, VNFs are implemented in Click modular
router [Koh+00] and run as distinct processes with configurable isolation models (based on Linux cgroups), while the
infrastructure consists of OpenFlow switches (Open vSwitch). A dedicated controller application (implemented in the
Python-based software-defined networking (POX) [POX] OpenFlow controller platform) is responsible for steering traf-
fic between VNFs. On the other hand, the framework supports the development and testing of orchestration compo-
nents. Mininet was extended by NETCONF capability in order to support managed nodes (VNF containers) hosting VNFs.
The orchestrator also communicates the NETCONF protocol and it is able to start/stop VNFs on demand. The paths are
handled similarly by our POX controller. On top of these, a MiniEdit based Graphical User Interface (GUI) can be used
to describe SGs (with requirements) and test topologies (resources in the network). Then, given SGs are mapped to
available resources dynamically, and lower-layer orchestration methods are invoked.

5.1.1 Infrastructure Layer

In ESCAPE, a light-weight, Mininet-based infrastructure emulates the lowest layer of UNIFY architecture. The goal of
this approach is twofold. On the one hand, this simple environment makes faster development possible at the higher
layers (especially in the OL) as it can be done in parallel with the UN design and prototyping. On the other hand, several
elements can be used later in an integrated framework. For example, VNF implementations can easily be migrated
to UN execution environment, the experiences with the implementation of the abstract interfaces can result in useful
feedback or refinement of the interface details.

Mininet had to be extended in several directions in order to fit UNIFY architecture requirements. The main com-
ponents of the network infrastructure of ESCAPE are the following (see the bottom part of Fig. 20): VNF Containers
(or Execution Environments or Nodes), OpenFlow switches (OVS instances), virtual Ethernet links (veth pairs), end
hosts, VNFs.

Mininet was extended with the notion of VNF and VNF Container. Here, VNF Container is a bash process with
configurable isolation models (based on Linux cgroups) with a limited amount of CPU, memory, etc. resources assigned
to it. VNF is a Click (modular router) process running in a VNF Container with configurable isolation models (similarly
based on Linux cgroups). It has multiple datapath interfaces connected to OVS ports, and additionally has a dedicated
control and management network connection (see mgmt agents of VNFs).

In order to support remote management of VNF Containers, we have extended Mininet with NETCONF capability.
Each VNF Container includes an OpenFlow switch and additionally a NETCONF agent which is responsible for start-
ing/stopping VNFs and connecting/disconnecting VNFs to/from OpenFlow switches. The NETCONF implementation is
based on the open source OpenYuma tool which was extended to support multiple instances on single machines with
given ports.

The NETCONF agents are controlled from the Orchestration layer by a NETCONF client component. The used inter-
face is a realization of the Co-Rm reference point in UNIFY architecture. The interface with the remote procedure calls
and data structures is described by a Yang model constructed for this special purpose. Based on the Yang model, low-
level instrumentation codes were implemented as NETCONF modules to hide the infrastructure level details. It is worth
noting that this approach supports migration later e.g., to UN or to OpenStack DC environment (only the instrumentation
codes have to be replaced).

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 42/57

DRAFT

5.1.2 Orchestration Layer

Implementing the OL, we aimed at constructing a modular framework where several components can be dynami-
cally changed as going forward with prototyping. During this phase, we implemented simple algorithms with limited
capabilities as proof of concepts only.

In the current version of ESCAPE we have combined OL and controllers into a common layer which is built on POX
(see the center part of Fig. 20). This approach was suitable to follow an agile prototyping way.

POX implements the Co-Rm interface for OpenFlow domains. On top of that, we have built a routing module imple-
menting the traffic steering between deployed VNFs. This module is responsible for gaining the forwarding information
from an NF-FG and calling appropriate POX functions to send flow entries to OpenFow switches. As it is implemented
internally in POX, the communication via the northbound interface is not necessary. This can be considered as a sim-
plified implementation of the Ca-Co reference point. Computing elements, i.e., VNF Containers are managed via the
NETCONF protocol. For this purpose, we have integrated a NETCONF client with the framework to communicate with
the peer agents running at the VNF Containers. The clients can call the exposed RPCs defined by the previously men-
tioned Yang model. This NETCONF client is a Controller Adapter module for computing resources.

The main component of this layer is the Orchestrator and its mapping module. These components implement the
RO of UNIFY architecture. The mapping module is responsible for mapping NF-FG to available resources where the
optimization algorithm can easily be changed. Here, we used a simplified, preliminary version of NF-FG with limited set
of information. The Or-Ca reference point is internal in this approach.

Additionally, we have other POX applications to support automatic configuration and management related tasks.
A first, simplified version of the NF-IB was also implemented referred as VNF catalog which contains a built-in

set of useful VNFs. This is a SQL-based (sqlite3) database integrated with POX and it contains only the most relevant
parameters of the VNFs, such as name, type, description, Click script, dependency information. Click scripts are stored
by Jinja2 based templates yielding easy and flexible parameterization. Furthermore, the designed VNF catalog provides
interfaces to add, remove or change VNFs in the catalog during run time.

5.1.3 Service Layer

The SL of ESCAPE with the GUI is based on Miniedit as it is shown in the top part of Fig. 20. It contains a SG manager
which is capable of describing/configuring/editing SGs, configuring requirements (SLAs), such as delay, bandwidth, on
given sub-graphs. This SG is converted to an NF-FG which is sent to the Orchestrator via an internal interface which is
a first and simplified implementation of the Sl-Or interface and the corresponding primitives.

A Mininet configuration component gives a graphical front-end to the Mininet-based infrastructure. Here, we can
describe physical topology containing OpenFlow switches (e.g. OVS), VNF Containers, Service Attachment Points (SAP)
(currently implemented as hosts) and links. Then the emulated network environment will be started according to these
configuration parameters. Moreover, resources of the emulated infrastructure such as, CPU fraction, memory fraction,
link bandwidth, link delay, can also be configured.

For VNF management and visualization purposes, we use Clicky. Clicky is a GUI for Click modular router which can
be used for configuring and monitoring Click instances.

5.2 OS/ODL based infrastructure

We have combined the prototyping framework presented in Sec. 5.1 with an OpenStack (OS) data center with the Open-
Daylight (ODL) controller to form a multi-domain setup where multi-level orchestration could be performed. The main

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 43/57

DRAFT

components of this setup are shown in Fig. 21, as presented in [Cso+14a]. In Fig. 21 the main components are the GUI, the
global orchestrator and the Mininet and OS/ODL domains, the latter with a local orchestrator. The orchestration spans
through multiple domains and service graphs can be instantiated by third parties. For this reason, we developed com-
munication interfaces and an abstract view of a whole domain which can be adopted by a global orchestrator to use the
resources in a separate domain through its local orchestrator. Our framework currently supports Mininet-based virtual
domains and data centers managed by OS/ODL, denoted by OS/ODL domain. In this sense the OS/ODL domain is some-
thing similar to a UN. VNFs are implemented in Click and in case of a Mininet domain, they run as distinct processes with
configurable isolation models, while in OS/ODL domain, virtual machines are deployed to run Click processes. We have
a VNF catalog storing available and deployable network functions. The infrastructure comprises OpenFlow switches
and VNF containers (managed nodes) hosting VNFs, while a dedicated controller application (implemented in POX) is
responsible for traffic steering.

Figure 21: Logical view of the OS/ODL setup

Our aim was to provide an abstract view of our OS/ODL domain for the ESCAPE orchestrator. We expose the whole
domain as a simple node with the capability of service graph instantiation which is managed solely by the domain’s
local orchestrator. By the global orchestrator of ESCAPE, this domain is treated as another VNF container. The global
orchestrator has a global view of the available resources and the capabilities of each node running in its domain. It is
capable of partitioning a service graph into multiple subgraphs which can be given to the OS/ODL domain for further
decomposition and instantiation. In the simplest case the subgraph could comprise only one network function which
would be instantiated in the OS/ODL domain’s data center. After successful instantiation of the subgraph, the OS/ODL
domain’s local orchestrator notifies the global orchestrator and provides information on access to the newly created
network function.

Similarly to Mininet containers, OS/ODL domain has two control interfaces implemented by dedicated components.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 44/57

DRAFT

The first one is an OVS switch steering traffic between the edge of the domain and specific ports on which the instanti-
ated network functions are reachable. This interface corresponds to a Co-Rm interface. The second one is a NETCONF
agent module which is implemented in the ODL controller and tightly integrated with its framework, corresponding to
an Sl-Or interface. The plugin calls the REST API of OS (“Nova”) to request a network function which is then initiated in
the data center as a virtual machine. After the network function is booted up and the relevant network configurations
are deployed in the data center’s network, the ODL controller sets up an overlay topology in the domain’s network and
creates a new port in the OVS switch which is directly connected to the overlay. This port’s id is signaled back to the
global orchestrator through the NETCONF protocol. Note that the edge domain OVS switch has only one master con-
troller which is the global orchestrator. The ODL controller has the right to create ports on this switch but nothing more.
In our implementation the OS cloud’s internal networking is controlled by the same ODL controller which is responsi-
ble for the domain network. OS makes network configuration requests to ODL via it’s “Neutron” REST API. Then ODL
configures the DC’s internal datapath elements via OpenFlow.

With the setup, a complex service described by a service graph (with given requirements) can be requested via
the service layer’s global orchestrator’s GUI. This complex service will be decomposed by the orchestrator to smaller
blocks. Some of these blocks will be instantiated in Mininet containers, while others in the OS/ODL cloud which makes
further local orchestration. This decomposition and instantiation details are hidden from the requester of the high level
complex service.

5.3 Universal Node (UN) prototype

This section describes the implementation of UN consisting of a single physical server, which implements the UN ar-
chitecture depicted in Fig. 7.

The main external interface of the UN is the northbound API, which has been implemented as a REST interface
accepting an NF-FG from the upper layer orchestrator. This data contains all the information needed to deploy the
graph on the physical node, namely the VNFs and the connections among them. In the case of the implemented pro-
totype, whose architecture is depicted in Fig. 22, a prototype service logic has been developed as well, targeting the
“infrastructure virtualization” use case, in order to better demonstrate the prototype in a realistic use case. However, as
evident from the picture, the above service module is seen by the UN as an upper layer orchestrator, given its output in
the NF-FG form.

The control logic of the UN is split in the following components, according to the UN architecture:

• an orchestration layer, which implements the northbound interface and that can host scheduling algorithms in
order to possibly optimize the VNF placement within the UN itself (not yet implemented the time of writing this
deliverable);

• two infrastructure controllers, respectively for the compute and networking component:

– the compute controller handles the lifecycle of the VNF, such as starting/stopping the physical compute
instance. It is further split in three logical modules dedicated to the three execution environments that are
currently supported, namely DPDK processes, Docker containers, and traditional virtual machines.

– The network controller translates NF-FG network commands into a set of OpenFlow flowmods that are
passed to the proper OpenFlow controller and that are used to actually configure the switching infrastruc-
ture.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 45/57

DRAFT

UN
LSI - 0

UN orchestrator

LSI - Tenant N

VNF1

VNF2
...

[NF-FG]

Virtual link among LSIs

Openflow connection

Network function port
(between an LSI and a VNF)

xDPd

OF controller
LSI tenant N

User profiles +
authentication

service

Service logic for the infrastructure
virtualization” use case

OF controller
LSI tenant 1

OF controller
LSI 0

LSI - Tenant 1

VM images + VNF
templates

Management connection

VNF5

[NF-FG]

Upper layer orchestrator

Network controller Compute controller

DPDK
driver

Docker
driver

VM
driver

libvirt

VNF4 VNF3

Compute control

Figure 22: Internal architecture of the Universal Node (UN) prototype

The traffic steering among the different components is based on the eXtensible OpenFlow DataPath daemon
(xDPd) softswitch a framework that supports the dynamic creation of several (pure) OpenFlow switches called Logical
Switch Instance (LSI); each LSI can be connected to physical interfaces of the node, to VNFs, and to other LSIs. In the
prototype, a different LSI (called tenant-LSI) is dedicated to steer the traffic among the VNFs of a specific NF-FG, while
the LSI-0 is in charge of classifying the traffic coming from the network (or from other graphs) and of delivering it to
the proper graph implementation. It is worth noting that the LSI-0 is the only one allowed to access to the physical
interfaces, and that the traffic flowing from one graph to another has to transit through the LSI-0 as well.

LSIs access to the network ports through the Data Plane Development Kit (DPDK) framework: the igb driver is
used in case of physical interfaces; the kni driver and the rte_rings are instead used to exchange packets with the
VNFs, according to the type of the VNFs themselves (i.e., VMs, Docker containers, or DPDK processes).

When a NF-FG description (either a new one or an update of an existing one) is received by the UN orchestrator,
this module:

• replaces the generic VNF endpoints with the actual vNICs created on the server;

• retrieves an implementation for each VNF required and installs it;

• in case of a new NF-FG, it instantiates a new tenant-LSI on xDPd and connects it to the LSI-0 and to the proper
VNFs;

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 46/57

DRAFT

• creates an OpenFlow controller that allows to insert forwarding rules into the flow table(s) of the new LSI, in
order to steer the traffic among the VNFs as required by the graph.

5.4 Future directions and plans on integration

Now that the final overarching and functional architecture definition is closed, the implementation efforts will continue
along three parallel lines:

1. Mapping of the implemented functionality to the final architecture and reference points to identify the possible
adaptations needed;

2. Implementation of those capabilities most significant for the UNIFY architecture not already covered;

3. Integration of the diverse implementations and WP-specific prototype towards the Integrated Prototype.

For the first line of work, UNIFY framework has clearly defined the reference points (U-Sl, Sl-Or, Or-Ca, Ca-Co,
Co-Rm and Cf-Or, see Sec. 3.1.2 and Fig 1) and information models (SG and NF-FG, see Sec. 3.2.3 and 3.2.2) in the
final architecture. This should make the mapping and identification a straightforward task and ease the scheduling and
dimensioning of efforts for the next lines of work.

For the second line, each technical WP is already working in different aspects of the UNIFY framework not yet
included in prototype activities, such as, for example:

1. supporting recursive and multi-level orchestration, optimized placement, NF decomposition, possibilities of the
Cf-Or or integration of NF-FG across different domains in WP3;

2. defining a language to describe monitoring functions and observability points, implementing a multi-layer and
multi-component debugging tools and other tools for verification and troubleshooting in WP4;

3. and improving UN with advanced and optimized capabilities, including support for different types of NF and
steering mechanisms in WP5.

The third line of work will be carried in task T2.3, which will first focus on aligning individual implementations and to
take care that an exchange of information is performed, moving later to define an integration plan towards an integrated
prototype.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 47/57

DRAFT

6 Preliminary Evaluation of the UNIFY Architecture and Elastic Services

For a state of the art review we would like to refer the reader to Sec. 2 of [D2.1]. Therefore, we only revisit here the ONF
SDN and the ETSI NFV architectures in comparison with the final UNIFY architecture and some highlighted services.

6.1 Virtualization: SDN and NFV

ONF works on the definition of an SDN architecture[Ope14b]. They focus on three layers: data, control and application
plane layers, but also include traditional management plane and end user systems into their architecture. SDN appli-
cations are defined as control plane functions operating over the forwarding abstraction offered by the SDN Controller.
The applications connect to the SDN controller via the A-CPI reference point. The SDN control plane’s main respon-
sibilities are i) creating the domain wide abstraction for internal use; ii) creating application or client SDN controller
specific virtualization and policy enforcement; and iii) coordinating resources and operations for virtualization. The
data plane of the SDN architecture constitutes of NEs that deals directly with customer traffic. NEs are connected to
the SDN Controller through the D-CPI reference point. The right hand side of Fig. 23 shows an illustration of the SDN
components and the corresponding reference points.

Since the SDN architecture allows other SDN Controllers (clients) to connect to the north of an SDN Controller via
the I-CPI reference point the architecture is recursive. Therefore, automated network orchestration can be executed in
multi-level virtualization environments, as long as resource virtualization and client policies related to resource use can

ETSI NVF-MANO

ETSI's Network Service

ONF
SDN Architecture

Network Infrastructure

Nework Function Virtualization Infrastructure (NFVI)

Hardware Resources

Compute Storage Network

Virtualization Layer

Compute Storage
Virtual

Network

VNF VNF VNF

NFV
Orchestrator

(NFVO)

OSS / BSS

EM EM EM

SDN
Controller

SDN
Controller

VNF2

VNF1
End

Point A
VNF3

End
Point B

VNF2cVNF2a

VNF2b

End-to-end Network Service

Nested Forwarding Graph

OSS / BSS

Service, VNF and
Infrastructure Description

Network
Control

Applications

VNF
Manager(s)

(VNFM)

Virtualized
Infrastructure
Manager(s)

(VIM)

SDN
Controller

Vi-Vnfm

Nfvo-Vnfm

Nfvo-Vi

Os-Nfvo

VeEn-Vnfm

D-CPI

D-CPI

VeEn-Vnfm

VeNf-Vnfm
A-CPI

A-CPI

I-CPI

Network
Orchestrator

& Coordinator

Figure 23: ETSI NFV and ONF SDN architectures side by side

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 48/57

DRAFT

be set. Such recursive automation enables clear separation of roles, responsibilities, information hiding and scalability.
It also provides efficient operations in multi-technology, multi-vendor, multi-domain or multi-operator environments.

If we look into the user service aspects, then flexible service definition and creation may start by abstracting and
formalizing the service into the concept of NS3. In the ETSI NFV framework [ETS13a] the NS is formulated as a Virtu-
alized Network Function Forwarding Graph (VNF-FG) (see top of the Fig. 23). These graphs represent the way in which
service end points (e.g., customer’s access) are interconnected with the desired NFs, such as firewalls, load balancers,
Dynamic Host Configuration Protocol (DHCP) servers, etc. VNF-FG representations form the input for the management
and orchestration to instantiate and configure the requested service. There is an ongoing work in the ETSI NFV ISG on
a MANO framework [ETS14] for NFV.

MANO components are the Network Function Virtualization Orchestrator (NFVO) for the lifecycle management of
the services; VNFMs for lifecycle management of individual VNFs; and Virtualized Infrastructure Managers (VIMs) for
controlling and managing compute, storage and network resources (see left hand side of Fig. 23). VNFs are instantiated
in a Network Function Virtualization Infrastructure (NFVI) by the VIM through technology specific resource controllers
like an SDN Network Controller or a Compute Controller. The MANO framework is completed by connections to tradi-
tional management functions. These include EMs connected to the VNFs and OSSs and BSSs . The ETSI NFV architecture
document also identifies the reference points between the functional components. The split of roles and responsibili-
ties follow virtualization related tasks: NFVO, VNFM and VIM are responsible for the virtualization related aspect of the
management and orchestration.

If we put side-by-side the SDN and the NFV architectures, we can see that the VIM talks to an SDN Controller (or
equivalent) to orchestrate the virtualized network in an NFVI (red arrow in Fig. 23). A VIM can use the I-CPI or the A-

CPI SDN reference points to control the network. Logically, however, a VIM and an NFVO will perform network resource
orchestration similar to a Network Orchestrator and Coordinator within the SDN architecture.

There is, however, at least one major difference between the designs of the NFV and SDN architectures: SDN relies
on a basic forwarding abstraction, which can be reused recursively for virtualization of topology and forwarding ele-
ments, while the NFV framework offers significantly different services on the top compared to what it consumes at
the bottom. Therefore, it is not straightforward, how to offer NFV services in a multi-level hierarchy with the MANO
framework.

We believe that with combined abstraction of compute and network resources, we can logically centralize all the
resource orchestration related functionalities existing distributively in the MANO framework into a resource orchestra-
tion. Such architecture, as proposed by the UNIFY project, can enable automated recursive resource orchestration and
domain virtualization similar to the ONF architecture for NFV services.

We show in Sec. 6.2 how ETSI MANO, ONF SDN and UNIFY architectures compare with regards to their main func-
tional components.

We showed that the logical centralization of joint compute and network resource orchestration enables direct con-
trol of elastic resources for the network functions. This embedding of resource control within a deployed service re-
sembles a recursive architecture similar to ONF SDN one. We compare in details elasticity control in Sec. 6.3.

6.2 ETSI MANO, ONF SDN and UNIFY

The UNIFY architecture is very similar to the SDN architecture, but it operates at the joint compute and network abstrac-
tion in each of its components. Therefore, the OL of UNIFY is equivalent to SDN’s Controller and “Network Orchestrator
and Coordinator” functionality. The SL components who directly interact with the UNIFY OL can be considered as “SDN

3ETSI term, similar to SG in UNIFY

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 49/57

DRAFT

Application plane” components (see middle and right hand side of Fig. 24). The UNIFY OL can be used to construct a
multi-level hierarchy of virtualization and control similar to the ONF SDN architecture.

Figure 24: ETSI NFV, ONF SDN and UNIFY architectures side by side

According to the ETSI MANO framework we have to compare NFVO, VNFM and VIM components to their UNIFY
correspondent. According to the detailed discussions of the UNIFY Functional Architecture in Sec. 4, we can conclude
with the followings (also see left side and the middle of Fig: 24):

VNFM: ETSI’s VNFM is responsible for lifecycle management of individual VNF. Equivalent to that fuction exists in the
UNIFY SL with the same name.

NFVO: ETSI’s NFVO is responsible for the lifecycle management of the services. In UNIFY the SG Orchestrator is re-
sponsible to a similar function.

VIM: ETSI’s VIMs are responsible for controlling and managing compute, storage and network resources. According to
the MANO framework, there can be as many VIMs as many NFVI Point of Presences (PoPs). In UNIFY we logically
centralized all resource management function with our joint programmatic reference point at Sl-Or, therefore
our OL obsoletes VIMs.

6.3 Elastic services

According to the MANO framework the VNFM is responsible for lifecycle management of individual VNFs. For exam-
ple, the VNFM function may monitor KPIs of a VNF to determine scaling operations. Scaling may include changing the

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 50/57

DRAFT

Figure 25: Elastic control loop according to the ETSI MANO framework

configuration of virtualized resources, like adding/removing CPUs, adding/removing VMs and adding/removal of as-
sociated network resources. The VNFM functions are assumed to be generic (VNF agnostic) and exposed by an open
interface (VeNf-Vnfm) for the VNFs (see Fig. 23). However, beyond resource control, VNFM’s other functionalities
are VNF instantiation and configuration; updates, upgrades and modifications; collection of VNF related performance
measurements and event information; VNF assisted or automated healing; and coordination and adaptation between
corresponding the EM and the VIM.

On the other hand, in ONF’s SDN architecture [Ope14b] framework, network resource orchestration can be recur-
sively programmed by the means of virtualizers and agents through the I-CPI interface (see Fig. 23). Virtualizers are
responsible for both i) creating client specific virtual topologies and resources and for ii) client specific policy enforce-
ments.

We argued through the introduction of the UNIFY services offered at the Cf-Or reference that a unified compute
and network programmatic interface together with policy enforcement offered directly to the VNFs could enable VNF
agnostic, automated elasticity control in a loop closest to the resources.

We will use the IDS example introduced in Fig. 14 to discuss different approaches to realize service elasticity.

6.3.1 Deployment scenarios

Let’s have a look at the different deployment scenarios depicted in Fig. 25 and 26. As a general note, signaling messages
are labeled and shown by arrow-heads in the figures, but we assume that there is always an underlying logical network
connection. Also, the arrowheads only illustrate our discussion of the primarily control message flow, but it is assumed
that control messages also pass in the reverse direction. Even though the two figures differ in their components we de-
scribe the initial service deployment by concurrently denoting the corresponding components like ETSI/UNIFY. Fig. 25
shows an example ETSI MANO set-up and Fig. 26 shows an example UNIFY set-up.

First of all, in the upper part of Fig. 25 and 26 we show the user’s view of the example network service: the cascade
of an Elastic IDS and a Broadband Network Gateway (BNG) connected to the user’s SAP and to the Internet. According to
the service definition and decomposition model introduced in Fig. 14 the Elastic IDS needs connection to the respective

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 51/57

DRAFT

Figure 26: Elastic control loop according to the UNIFY framework

EM and OSS. Let us assume that the BNG is also connected to an EM and an OSS. Let’s assume that the network service
request is issued through the BSS, translated to the OSS, who requests the allocation of the network service from the
NFVO.

In the ETSI case, any service decomposition must happen in the NFVO and a fully specified VNF-FG with associated
resource mapping must be sent to the VIM. The VIM allocates the VNF resources and the forwarding overlay resulting
in Fig. 25.

In the UNIFY case, thanks to the logically centralized RO, an abstract network service graph can be sent to the
RO by the means of an NF-FG. The RO, considering the VNF decomposition model as presented in Fig. 14, can decide
which option to initiate based on the available infrastructure resources. We must emphasis, that the services offered
by the different options are equivalent; the choice in the RO can be based on operational policies like energy efficiency,
utilization, etc.

Additionally, the RO must detect if any VNF definition contains a C interface, which must be resolved to a connec-
tion and a virtualization at the RO’s Cf-Or reference point. For example, in the case of Fig. 26, the RO must automatically
create a virtualized domain view equivalent to the orange IDS box (note that BNG components are excluded) and con-
nect the E-IDSC’s C interface to the corresponding Cf-Or agent. Note also, that the number of external interfaces
related to a service component does not change during the decomposition process (see interfaces 1 and 2 in Fig. 14).
The C interface of a VNF is internally resolved to a connection to the corresponding RO. If there are multiple levels
of virtualization domains, then the interface C is resolved when first seen by an RO. The connection between such C

interfaces and the corresponding RO is included into the NF-FG description of the service. Therefore, a proper network
overlay has to be allocated to this control network as part of the NF-FG orchestration. Finally, once the RO is done
with the full mapping of the NF-FG to the infrastructure resources, than it instructs the CA to instantiate VNFs and the
network overlay.

Last but not least, in both cases, EMs and the OSS must handle any remaining service configurations.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 52/57

DRAFT

6.3.2 The ETSI setup

According to the ETSI NFV view a VNFM or a NFVO is in charge of the scaling of the service. Let’s assume that the E-

IDSC learns that DPIs cannot sustain the user traffic (v0). E-IDSC notifies the VIM through VeNf-Vnfm (v1) about
the need of extra resources. Since VNFM deals only with VNFs and is service logic agnostic, it cannot know what further
components to deploy, but must let the NFVO know (v2) about the problem. Note here, that even the scale up/down
of a single VM looks problematic, as the resources to be increased belong to the DPI and not to the E-IDSC. Assume,
that the NFVO has to perform a scale out. The NFVO must look-up the service specific template to get an idea how to
add more resources. Once it learns that a new DPI should be instantiated and connected into the service, it can allocate
resources and send the request (v3) to the VIM. The VIM can execute the allocation by instantiating (v4/a and v5/a)
another DPI and re-configuring (v4/b and v5/b) the forwarding overlay.

It is important to note that the E-IDSC (VNF in general) must learn that the scaling operation is done, e.g., to be
able to update the LB configuration (v6). Therefore, there must be a reverse flow of control information from the VIM,
through {NFVO}, VNFM, {EM} to the control application.

6.3.3 The UNIFY setup

According to the UNIFY architecture, we can connect interface C of the E-IDSC to the RO’s realizing the Cf-Or ref-
erence point (see Fig. 26). Let’s assume again, that the E-IDSC learns that DPI is running out of resources (r0). The
E-IDSC knows the service logic as it is designed and developed as part of it. It knows its instantiated VNFs, the cor-
responding forwarding overlay and allocated resources by the means of the NF-FG abstraction conveyed through the
Cf-Or reference point. Therefore, the E-IDSC is in the best position to initiate scale up/down or scale out/in. By the
means of the virtualizer and the agent at the RO, the E-IDSC can issue an update request (r1) to its sub-set of the
deployed NF-FG.

Once the RO receives the NF-FG update request (r1) it has to verify the associated client policies and then map the
change request to the available resources. Then, the RO sends (r2) the joint compute and network mapping to CA, who
executes it through (r3/a) and (r3/b) for the DPI instantiation and for the overlay update respectively. Then E-IDSC

can update the LB configuration (r4).

6.3.4 Discussions

Regarding both set-ups all the user plane, the control plane and management plane network overlays must be created
dynamically. For example, the DPI shall not only be connected to the user plane traffic overlay, but it must also be
connected to the E-IDSC’s proper interface.

In the case of ETSI operation, the NFVO knows the updated VNF graph, however, how the E-IDSC learns the
revised structure is unspecified. In the UNIFY case, the revised NF-FG is issues by the E-IDSC itself, so upon successful
completion, it will know the structure in the first hand.

Another issue is who should configure the LB to split the load among the DPIs? If such scaling is non-transparent
to the involved network functions (e.g., stateful processing), then a service logic must assist the operational re-
configuration of components. The question is, can an external virtualization management component (e.g., NFVO, VNFM
or RO) bear with such a logic? We believe that such logic is best placed into the control application. This is similar to the
end-to-end principle of Internet, which says that application specific functions should reside in the application (control
application) rather than within the network (virtualization managers).

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 53/57

DRAFT

Regarding security issues, in the ETSI set-up the signaling goes through trusted elements like EM, OSS, VNFM, NFVO
and VIM. In this case, it is relatively easy to enforce user policies related to the service contract due to the involvement
of service layer management functions. In the case of the UNIFY approach, however, resource policies related to the
service contract must be enforced in the corresponding virtualizer, which operates at compute and storage abstractions
and has no notion of the user service logic. For example, in the virtualizers associated to the E-IDSC, the RO could limit

• the available resources (max 10 virtual CPU, max 5 Gbyte RAM, less than 100Mbps in/out rate, maximum cost of
resources, etc.),

• the capabilities as available VNF types (DPI and OFS) for the control application.

Such policy information could be extracted from the genuine service request and/or from client policies (e.g., maximum
cost, etc.). The main issue here is that unlike the NFVO, VNFM, EM and OSS, the control application is not a trusted
infrastructure component.

We believe that the direct elastic control interface (Cf-Or) of UNIFY will bring values i) to the users by the possibility
of new and innovative elastic services; ii) to the developers by better control of their service behavior and also iii) to
the resource owners by better serving the resource needs of their consumers.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 54/57

DRAFT

7 Summary

In this deliverable we summarized and concldued the UNIFY architecture in three details corresponding to an overar-
ching view, functional view and implementation based system designs. While the document is titled “final architecture”
and it already contains learnings while doing proof of conecept prototypes, we would like to reserve the right to revise
the presented archicture based on our later learnings based on implementations.

Since this document focuses solely on the architecture description, we have to point the reader to [D2.1] for state
of the art reviews, description of use cases, definition of requirements and design principles.

Our main contributions are

• the split of the architecture into service, orchestration and infrastructure layers;

• the definition of reference points between functional components;

• the definition of the Sl-Or reference point for joint virtualization and orchestration of software and networking
resource

• allowing multi-level hiearchies of UNIFY domains;

• the definition of the direct Cf-Or elastic resource control interface for NFs;

• an approach to combine the static virtualization views with dynamic resource monitoring.

The introduction of network and service functionality virtualization in carrier-grade networks promises improved
operations in terms of flexibility, efficiency, and manageability. In current practice, virtualization is controlled through
orchestrator entities that expose programmable interfaces according to the underlying resource types. Typically this
means the adoption of established data center compute/storage and network control APIs, which were originally de-
veloped in isolation. Arguably, the possibility for innovation highly depends on the capabilities and openness of the
aforementioned interfaces.

We introduced an architecture which combines compute, storage and network resources into a joint programmatic
reference point, allowing multi-level virtualization and orchestration of Network Function Forwarding Graph for fast
and flexible service chaining. The UNIFY architecture and the UN pave the way for low cost generic purpose equipment
anywhere in the network by leveraging all types of compute, storage and networking resources they offer.

We defined a SP-DevOps framework to complement resource virtualization and orchestration for both NF and
service developers with monitoring orchestration, NF-FG troubleshooting and verification.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 55/57

DRAFT

References

[5GP13] 5G-PPP Association. Contractual Arrangement: Setting up a Public-Private Partnership in the Area of Ad-
vance 5G Network Infrastructure for the Future Internet between the European Union and the 5G Infras-
tructure Association. Dec. 17, 2013. URL: http://5g-ppp.eu/contract/.

[Cso+14a] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, András Gulyás, Dávid Jocha, János Elek,
Wouter Tavernier, and Sahel Sahhaf. “Multi-layered service orchestration in a multi-domain network en-
vironment. Demonstation.” In: 2014 Third European Workshop on Software-Defined Networks (EWSDN).
http://ewsdn.eu, 2014.

[Cso+14b] Attila Csoma, Balázs Sonkoly, Levente Csikor, Felicián Németh, András Gulyás, Wouter Tavernier, and Sahel
Sahhaf. “ESCAPE: Extensible Service ChAin Prototyping Environment using Mininet, Click, NETCONF and
POX. Demonstation.” In: Proceedings of the 2014 ACM conference on SIGCOMM. ACM. 2014, pp. 125–126.

[D2.1] Unify project. Deliverable 2.1: Use Cases and Initial Architecture. Tech. rep. UNIFY Project, 2014.

[D3.1] Wouter Tavernier et al. D3.1 Programmability framework. Tech. rep. D3.1. UNIFY Project, Oct. 2014.

[D4.1] Pontus Sköldström et al. D4.1 Initial requirements for the SP-DevOps concept, Universal Node capabilities
and proposed tools. Tech. rep. D4.1. UNIFY Project, Aug. 28, 2014.

[D4.2] Catalin Meirosu et al. Deliverable 4.2: Proposal for SP-DevOps network capabilities and tools. Tech. rep. Work
in Progress. UNIFY Project, 2015. URL: to%20be%20announced.

[D5.1] Hagen Woesner et al. Deliverable 5.1: Universal Node functional specification and use case requirements
on data plane. Tech. rep. UNIFY Project, 2014. URL: https://www.fp7-unify.eu/files/fp7-unify-eu-docs/

Results/Deliverables/UNIFY-WP5-D5.1-Universal%20node%20functional%20specification.pdf .

[D5.2] Hagen Woesner et al. D5.2 Universal Node Interfaces and Software Architecture. Tech. rep. UNIFY Project,
Aug. 2014. URL: http:// fp7-unify.eu/files/ fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-

D5.2-Universal%20node%20interfaces%20and%20software%20architecture.pdf .

[Enn+11] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. Network Configuration Protocol (NETCONF). RFC
6241 (Proposed Standard). Internet Engineering Task Force, June 2011. URL: http://www.ietf.org/ rfc/

rfc6241.txt.

[ETS13a] ETSI. Architectural Framework. English. Group Specification v1.1.1. ETSI, Oct. 2013, pp. 1–21. URL: http://

docbox . etsi . org / ISG / NFV / Open / Published / gs _ NFV002v010101p % 20 - %20Architectural %

20Fwk.pdf .

[ETS13b] ETSI. White Paper: Network Functions Virtualisation (NFV). 2013. URL: http://portal.etsi.org/NFV/NFV%

5C_White%5C_Paper2.pdf .

[ETS14] ETSI. Network Function Virtualization (NFV) Management and Orchestration. Group Specification V0.6.1.
(DRAFT). ETSI, July 2014, pp. 1–196. URL: http://docbox.etsi.org/ISG/NFV/Open/Latest%5C_Drafts/

NFV-MAN001v061-%20management%20and%20orchestration.pdf .

[HZH14] Changcheng Huang, Jiafeng Zhu, and Peng He. SFC Use Cases on Recursive Service Function Chaining.
Internet-Draft draft-huang-sfc-use-case-recursive-service-00.txt. IETF Secretariat, July 2, 2014.

[Joh+13] W. John et al. “Research Directions in Network Service Chaining”. In: Future Networks and Services
(SDN4FNS), 2013 IEEE SDN for. 2013. DOI: 10.1109/SDN4FNS.2013.6702549.

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 56/57

http://5g-ppp.eu/contract/
to%20be%20announced
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.1-Universal%20node%20functional%20specification.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.1-Universal%20node%20functional%20specification.pdf
http://fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.2-Universal%20node%20interfaces%20and%20software%20architecture.pdf
http://fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.2-Universal%20node%20interfaces%20and%20software%20architecture.pdf
http://www.ietf.org/rfc/rfc6241.txt
http://www.ietf.org/rfc/rfc6241.txt
http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV002v010101p%20-%20Architectural%20Fwk.pdf
http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV002v010101p%20-%20Architectural%20Fwk.pdf
http://docbox.etsi.org/ISG/NFV/Open/Published/gs_NFV002v010101p%20-%20Architectural%20Fwk.pdf
http://portal.etsi.org/NFV/NFV%5C_White%5C_Paper2.pdf
http://portal.etsi.org/NFV/NFV%5C_White%5C_Paper2.pdf
http://docbox.etsi.org/ISG/NFV/Open/Latest%5C_Drafts/NFV-MAN001v061-%20management%20and%20orchestration.pdf
http://docbox.etsi.org/ISG/NFV/Open/Latest%5C_Drafts/NFV-MAN001v061-%20management%20and%20orchestration.pdf
http://dx.doi.org/10.1109/SDN4FNS.2013.6702549

DRAFT

[Koh+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek. “The Click modular router”.
In: ACM Transactions on Computer Systems (TOCS) 18.3 (2000), pp. 263–297.

[LHM] B. Lantz, B. Heller, and N. McKeown. “A Network in a Laptop: Rapid Prototyping for Software-defined Net-
works”. In: ACM HotNets 2010. URL: http://mininet.org/.

[Mei+14] Catalin Meirosu, Antonio Manzalini, Juhoon Kim, Rebecca Steinert, Sachin Sharma, and Guido Marchetto.
DevOps for Software-Defined Telecom Infrastructures. Internet-Draft draft-unify-nfvrg-devops-00.txt.
IETF Secretariat, Oct. 27, 2014.

[ONF14] ONF. Open Networking Foundation. 2014. URL: https://www.opennetworking.org/.

[Ope13] Open Networking Foundation. OpenFlow Switch Specification 1.4.0. Oct. 2013. URL: https : / / www .

opennetworking . org / images / stories / downloads / sdn - resources / onf - specifications / openflow /

openflow-spec-v1.4.0.pdf .

[Ope14a] Open Networking Forum (ONF). OpenFlow Specifications. web. 2014. URL: https://www.opennetworking.

org/sdn-resources/onf-specifications/openflow.

[Ope14b] Open Networking Forum (ONF). SDN architecture. TR (Technical Reference), non-normative, type 2 SDN
ARCH 1.0 06062014. ONF, June 2014. URL: https : / / www . opennetworking . org / images / stories /

downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf .

[Ope14c] OpenStack. OpenStack Compute API v2 Reference. Tech. rep. OpenStack, Oct. 2014. URL: http://developer.

openstack.org/api-ref-guides/bk-api-ref-compute-v2.pdf .

[POX] The POX Controller. 2014. URL: https://github.com/noxrepo/pox.

[Ris+14] Fulvio Risso, Ivano Cerrato, Alex Palesandro, Tobias Jungel, Marc Sune, and Hagen Woesner. “Demo: User-
specific Network Service Functions in an SDN-enabled Network Node”. In: 2014 Third European Workshop
on Software-Defined Networks (EWSDN). http://ewsdn.eu, Sept. 2014.

[TM 12] TM Forum. SLA Management Handbook. English. Tech. rep. BG917, Release 3.1, Approved Version 1.2. TM-
Forum, Nov. 2012, pp. 1–127. URL: http://www.tmforum.org/GuideBooks/GB917SLAManagement/

48401/article.html.

[Vol+00] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence.
AAA Authorization Framework. RFC 2904 (Informational). Internet Engineering Task Force, Aug. 2000. URL:
http://www.ietf.org/rfc/rfc2904.txt.

[XACML] eXtensible Access Control Markup Language (XACML) Version 3.0. 2013. URL: http://docs.oasis-open.org/

xacml/3.0/xacml-3.0-core-spec-os-en.pdf .

Deliverable 2.2: Final Architecture
This is a draft version of Deliverable D2.2. It is subject to pending approval by the European Commission.

15.11.2014 57/57

http://mininet.org/
https://www.opennetworking.org/
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
http://developer.openstack.org/api-ref-guides/bk-api-ref-compute-v2.pdf
http://developer.openstack.org/api-ref-guides/bk-api-ref-compute-v2.pdf
https://github.com/noxrepo/pox
http://www.tmforum.org/GuideBooks/GB917SLAManagement/48401/article.html
http://www.tmforum.org/GuideBooks/GB917SLAManagement/48401/article.html
http://www.ietf.org/rfc/rfc2904.txt
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

	Executive Summary
	Introduction
	Scope
	Document structure

	Abbreviations, Definitions and Conventions
	Abbreviations
	Definitions
	Conventions

	Overarching Architecture
	Overview
	Layers and concepts
	Reference points

	Main components
	Virtualizers
	Network Function Forwarding Graph
	Service management and adaptation functions
	The Universal Node
	Controller Adapter
	Network Function Information Base
	Resource Orchestrator
	Policy enforcement
	Monitoring

	Main features
	Model-based service decomposition
	Monolithic vs. decomposed network functions: control and data plane split design
	Elastic services and the Cf-Or reference point
	Recursive orchestration
	Multiple administrations
	Developer support (DevOps)

	Security considerations

	Functional Architecture
	Abstract interfaces and primitives
	Interface at the U-Sl reference point
	Interface at the Sl-Or reference point
	Interface at the Or-Ca reference point
	Interface at the Cf-Or reference point
	Interface at the Ca-Co reference point
	Interface at the Co-Rm reference point

	Service Layer
	Orchestration Layer

	Towards an Integrated Prototype: Aspects of the System Architecture
	ESCAPE prototyping framework
	Infrastructure Layer
	Orchestration Layer
	Service Layer

	OS/ODL based infrastructure
	Universal Node (UN) prototype
	Future directions and plans on integration

	Preliminary Evaluation of the UNIFY Architecture and Elastic Services
	Virtualization: sdn and nfv
	ETSI MANO, ONF SDN and UNIFY
	Elastic services
	Deployment scenarios
	The etsi setup
	The UNIFY setup
	Discussions

	Summary
	References

